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A Bayesian Nash equilibrium-based moving
target defense against stealthy sensor attacks

David Umsonst, Serkan Sarıtaş, György Dán and Henrik Sandberg

Abstract— We present a moving target defense strategy
to reduce the impact of stealthy sensor attacks on feedback
systems. The defender periodically and randomly switches
between thresholds from a discrete set to increase the
uncertainty for the attacker and make stealthy attacks de-
tectable. However, the defender does not know the exact
goal of the attacker but only the prior of the possible
attacker goals. Here, we model one period with a constant
threshold as a Bayesian game and use the Bayesian Nash
equilibrium concept to find the distribution for the choice
of the threshold in that period, which takes the defender’s
uncertainty about the attacker into account. To obtain the
equilibrium distribution, the defender minimizes its cost
consisting of the cost for false alarms and the cost induced
by the attack. We present a necessary and sufficient con-
dition for the existence of a moving target defense and
formulate a linear program to determine the moving target
defense. Furthermore, we present a closed-form solution
for the special case when the defender knows the attacker’s
goals. The results are numerically evaluated on a four-tank
process.

Index Terms— Bayesian games, Cyber-physical security,
Game theory, Optimization, Optimal Control, Moving Target
Defense, Detection threshold, False data injection attacks

I. INTRODUCTION

Critical infrastructures and control systems are increasingly
connected to public communication networks, such as the In-
ternet, and constitute geographically distributed cyber-physical
systems (CPS). The use of public network infrastructures
can save costs, for example cabling, but also increase the
performance of the CPS. However, this interconnection comes
at the price of vulnerability to cyber-attacks, which are already
impacting critical infrastructures, such as the Ukranian power
grid [1], as well as industrial control systems, such as a steel
mill in Germany [2].
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To improve CPS security and complement existing infor-
mation technology (IT) security measures, such as encryp-
tion and authentication, a new branch of security measures
based on control-theoretic methods has emerged over the
last decade. These novel security measures are based on the
physics of the CPS and use physical models to detect, isolate,
and mitigate malicious attacks. Hence, the control-theoretic
security measures are a complementary approach to the IT
security measures. In the authors’ opinion the main difference
between IT security measures and control-theoretic security
measures is that IT security measures consider cryptography
and logical isolation, while control-theoretic security measures
are based on the physical models of the closed-loop system and
can verify its operational consistency. Consequently, control-
theoretic security measures also allow for safety aspects to be
taken into account. Thus, using both control-theoretic and IT
security measures contributes directly to a defense-in-depth
approach to security. An introduction to this topic can be
found in the tutorial papers [3] and [4]. Since the attacker and
the operator/defender are rational entities, their interaction is
strategic and can thus be modeled using game-theoretic tools,
see, for example, [5].

An emerging approach to detect attacks and to limit their
impact, which can combine both physical models and game
theory, are moving target defense (MTD) strategies [6] that
induce controlled uncertainties into the CPS to confuse the at-
tacker. Gairo et al. [7], for example, randomly switch between
the sensors used to detect otherwise stealthy attacks, while in
[8] a random watermarking signal is injected into the CPS to
make stealthy attacks detectable. Furthermore, perturbations of
power line impedances are analyzed in [9], where an in-depth
analysis is conducted to determine when the MTD will be
successful. Another system-switching approach is considered
in [10], which considers both actuator and sensor attacks.
However, the MTD strategies in [7]–[10] directly influence
the closed-loop behavior of the CPS and can decrease its
performance. Griffioen et al. [11] propose three different
MTD schemes, where the first one is similar to [7] but it
also switches the plant and input matrix and not only the
measurements used. The second MTD of [11] introduces an
auxiliary system to not influence the closed-loop behavior
and simultaneously detect an attack, while the third MTD
utilizes the nonlinearities in the measurements. In this work,
we propose a moving target defense that is placed in the
anomaly detector of the CPS, which is located outside of the
control loop (see Figure 1). Therefore, the proposed MTD
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neither influences the closed-loop performance directly, nor is
there a need of introducing new auxiliary components to the
system such that the controller and the moving target defense
can be designed independently.

A. Contribution

When using an anomaly detector the defender faces a trade-
off between the cost for false alarms and the cost for the
impact of a stealthy attack, where ideally both costs should
be as small as possible, However, fewer false alarms typically
lead to a larger attack impact, and vice versa, such that we
cannot minimize both costs at the same time. Therefore, we
formulate a game where the defender periodically chooses a
detector threshold at random to mitigate the trade-off between
its cost for false alarms and its cost induced by the stealthy
attack launched by the attacker. The goal of the attacker is to
maximize its payoff, which can, for example, be characterized
by an unsafe region in the system’s state space, while the
defender wants to minimize the cost induced by false alarms
and the cost induced by the attack. However, the defender
is uncertain about the payoff function the attacker tries to
optimize and only has a belief of facing an attacker with a
certain payoff function. Here, we present an initial analysis
of this game. We consider a single period with a constant
threshold and look at the threshold choice for this period. We
show that there is an equivalent matrix game to analyse the
equilibrium strategies of each player.

The matrix game formulation is used to provide a necessary
and sufficient condition for when a Bayesian Nash equilibrium
exists in which the defender’s strategy is mixed and does
not concentrate the whole probability on one action. The
defender’s equilibrium strategy is then a moving target defense
strategy. Furthermore, by using the structure of the matrix
game, we show that the Bayesian Nash equilibrium can be
obtained by solving a linear program. For the special case
where the defender knows the attacker’s type, we provide a
closed-form solution for the Nash equilibrium, which gives
us insights about the equilibrium strategies of the defender
and attacker. Finally, we numerically verify our results with a
four-tank system.

B. Related Work

Since control systems are typically equipped with an
anomaly detector to detect faults, several research groups
have investigated how the choice and tuning of the anomaly
detector threshold can help limiting the attack impact of
stealthy attacks. When it comes to the choice of the detector,
Murguia et al. [12] compare a χ2 and a CUSUM detector and
investigate which detector mitigates the impact of a sensor
attack the most.

In the present work, we are interested in the case where
the detector is already chosen and we want to define a way
to choose the thresholds to limit the attack impact. Urbina et
al. [13] point out that there will be a trade-off between the
number of false alarms and the maximum impact of a stealthy
attack when tuning the anomaly detector.

There are several other works that use the anomaly detector
threshold to limit the attack impact or to detect attacks.
Ghafouri et al. [14] propose a Stackelberg game framework for
choosing the detector threshold. Both a static choice as well
as a dynamic choice of the detector threshold are presented,
but the attack is assumed to be detectable. The cost that the
defender wants to minimize is composed of the cost of false
alarms, the cost of the attack impact, and the cost for switching
between thresholds.

In [15], we extend the static detector threshold choice of
[14] to the case of stealthy sensor attacks and prove the
existence of such a threshold and provide conditions for the
uniqueness.

Niu et al. [16] formulated the detector threshold switching
problem as a zero-sum Stackelberg game without considering
the cost for false alarms.

In [17], we consider a similar game but there the defender
exactly knows the attacker’s objective. This assumption is
relaxed in the present work since the defender only has a prior
over possible attacker objectives. Therefore, we extend the
results of [17] to a broader class of games, namely Bayesian
games. Here, we also provide a closed-form solution to the
special case considered in [17].

C. Notation
Let x ∈ Rn be an n-dimensional column vector and

A ∈ Rm×n be an m-by-n matrix. The ith element of x is
denoted by xi and Aij corresponds to the element in the
ith row and jth column of A. Further xi:j is the vector
[xi, xi+1, . . . , xj−1, xj ]

T , where i ≤ j. If a random variable
x has a Gaussian distribution with mean µ ∈ Rn and
covariance matrix Σ ∈ Rn×n, we denote it as x ∼ N (µ,Σ).
The expected value of a random variable x is denoted by
E{x}. The n-by-n identity matrix is denoted by In and an
n-dimensional column vector with all elements equal to one
as 1n, while the indicator function of an event D is represented
by 1{D}.

II. SYSTEM MODEL

In this section, we introduce the models for the plant,
controller, and detector and present our assumptions on the
attacker and the defender. Further, in Section II-E we will
discuss the assumptions made on the system, the attacker, and
the defender. Figure 1 shows a block diagram of the sensor
attack scenario that we consider.

A. Plant and Controller Model
In our setup, the plant receives actuator signals and sends

measurement signals over a network. We model the plant in
Fig. 1 as a linear discrete-time system,

x(k + 1) = Ax(k) +Bũ(k) + w(k),

y(k) = Cx(k) + v(k),

where x(k) ∈ Rnx is the plant’s state, ũ(k) ∈ Rnu is the
actuator signal received over the network, y(k) ∈ Rny is
the measurement signal, w(k) ∈ Rnx is the process noise,
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Fig. 1. Block diagram of the sensor attack scenario.

and v(k) ∈ Rny is the measurement noise. Both w(k) and
v(k) have independent and identically distributed zero-mean
multivariate Gaussian distributions with covariance matrices
Σw and Σv , respectively. Further, w(k) and v(k) are inde-
pendent processes. The system, input, and output matrices are
A ∈ Rnx×nx , B ∈ Rnx×nu , and C ∈ Rny×nx , respectively.

Assumption 1: (A,B) is stabilizable, (C,A) is detectable,
and (A,Σ

1
2
w) has no uncontrollable modes on the unit circle.

The plant is controlled using a Kalman filter-based observer,
which estimates the plant’s state as x̂(k) ∈ Rnx . The dynamics
of the controller are

x̂(k + 1) = Ax̂(k) +Bu(k) + L(ỹ(k)− Cx̂(k)),

u(k) = −Kx̂(k),

where ỹ(k) is the measurement signal received over the net-
work, u(k) is the actuator signal determined by the controller,
and K and L are the controller gain and steady-state Kalman
gain, respectively. Further, L = APCT (CPCT + Σv)

−1,
where P is the stabilizing solution to the algebraic Riccati
equation

P = APAT +Σw − (APCT )(CPC +Σv)
−1(APCT )T ,

and P exists due to Assumption 1.

B. Detector Model

Since faults and/or malicious attacks can occur, the closed-
loop system is equipped with an anomaly detector on the
controller side, which has the possibly nonlinear dynamics

xD(k + 1) = θ(xD(k), r(k)),

yD(k + 1) = d(xD(k), r(k)),
(1)

where xD(k) ∈ RnD is the detector’s internal state,
yD(k) ∈ R≥0 is the detector output, and r(k) ∈ Rny is
the detector input. The exact structure of θ(xD(k), r(k)) and
d(xD(k), r(k)) depends on the detector the defender will use.
For example, in Section VII we consider the static χ2 detector,
i.e., yD(k+1) = ∥r(k)∥22. More detector models can be found
in [18], [19].

We define the input r(k) to be the residual signal, which
is the normalized difference between the received and the
predicted measurements, i.e.,

r(k) = Σ
− 1

2

r̃ (ỹ(k)− Cx̂(k)) ,

where Σr̃ = CPCT +Σv is the steady state covariance matrix
of r̃(k) = ỹ(k)−Cx̂(k) under nominal conditions (no faults,
no attacks), i.e., ũ(k) = u(k) and ỹ(k) = y(k) for all k.

Assumption 2: The detector dynamics (1) fulfill the subse-
quent three conditions:

1) θ
(
xD(k), r(k)

)
and d

(
xD(k), r(k)

)
are

continuous in xD(k) and r(k);

2) d
(
xD(k), r(k)

)
is coercive1 in xD(k) and r(k);

3) d(0, 0) = 0 and θ(0, 0) = 0.
If the predictions are accurate, i.e., r(k) ≈ 0, the detector
output should be small. However, if the predictions are inac-
curate, both the detector state and the detector output should
increase. Furthermore, the detector triggers an alarm whenever
the detector output yD(k) exceeds the detection threshold
JD > 0.

Since the detector input is a random variable under nominal
conditions, that is, r(k) ∼ N (0, Iny

) due to the Kalman filter,
the detector output yD(k) is also a random variable. To avoid
too frequent false alarms, i.e., alarms triggered under nominal
conditions when there is no attacker present, the threshold
JD should be chosen large enough. However, if it is chosen
too large, the detector might not be able to detect anomalies
(missed detections). Hence, there is a trade-off between false
alarms and missed detections when choosing JD. Urbina et
al. [13] further noted that there is also a trade-off between
false alarms and the attack impact of a stealthy attack, which
in our case corresponds to a missed detection. For example, a
larger JD reduces the frequency of false alarms but gives the
attacker more space to remain stealthy while causing harm.

Since the amount of false alarms plays an important role
in detector tuning, we denote by τ the mean time between
false alarms. The larger time between false alarms we want
to achieve, the larger the detector threshold has to be such that
the following is a reasonable assumption.

Assumption 3: The detector threshold is a strictly increas-
ing (possibly nonlinear) function of τ , i.e., JD(τa) < JD(τb)
if, and only if, τa < τb.

Instead of considering the threshold, JD, we will consider
the mean time between false alarms, τ , in the following, since
there is a direct relation between JD and τ . Further, the value
of τ is more meaningful to the operator. To circumvent the
trade-off between false alarms and missed detections (and the
impact of stealthy attacks), the defender could periodically
randomize the choice of the mean time between false alarms
τ such that in one period the threshold reduces the number of
false alarms while in another it limits the impact of a potential
stealthy attack. That is, it chooses τ periodically from the
fixed set {τ1, . . . , τm}, pre-determined by the defender, with
probability distribution p, where 1 ≤ τ1 < τ2 < . . . < τm,
pi ∈ [0, 1] is the probability of choosing τi, and

∑m
i=1 pi = 1.

1A function g(x) is called coercive if g(x) → ∞ as ∥x∥ → ∞.
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We make the following assumption about the random choice
of τ .

Assumption 4: At the beginning of each period, τ is drawn
from the probability distribution p, independent from previous
realizations.

Our definition of a moving target defense is stated next.
Definition 1: A probability distribution p ∈ Rm over a

fixed set of mean times between false alarms {τ1, . . . , τm} is
a moving target defense if p does not have singleton support,
i.e., the probability of choosing τi fulfills pi ∈ [0, 1) for all
i ∈ {1, · · · ,m}.

C. Attacker Model

In this paper, our focus lies on sensor attacks.
Assumption 5: The measurement signals are subject to

an additive attack ya(k) chosen by the attacker, and
the actuator signals are transmitted fault/attack-free, i.e.,
ỹ(k) = y(k) + ya(k) and ũ(k) = u(k).

Furthermore, we make the following assumption on the
attacker’s model knowledge.

Assumption 6: The attacker knows the closed-loop system
matrices, A, B, C, L, K, the noise statistics Σw, Σv , and
the detector dynamics. The attack starts at time k = 0 and
has a length of N time steps. The length N of the attack
is such that the attacker is able to complete the attack before
the next threshold switch. The attacker knows both xD(0) and
x̂(0), and has access to the measurements y(k). Moreover, the
attacker knows the function JD(τ) and the set {τ1, . . . , τm}
but not the exact value of τ .

An attacker according to Assumption 6 can launch an attack
of the form (see [12])

ya(k) = −y(k) + Cx̂(k) + Σ
1
2

r̃ a(k),

which gives the attacker complete control over the detector
input, i.e., r(k) = a(k). This attack is a closed-loop attack
since it uses the measurements y(k), whereas a(k) can be
interpreted as the attacker’s reference signal. The attacker can
define the set of attacks that do not trigger an alarm for a
given τ as

A(τ) :=

{a, xD(0)}

∣∣∣∣∣
xD(k + 1) = θ

(
xD(k), a(k)

)
yD(k + 1) = d

(
xD(k), a(k)

)
≤ JD(τ)

k ∈ [0, N − 1]

,

where a = [a(0)T , · · · , a(N − 1)T ]T is the complete attack
trajectory during the attack. Here, the set A(τ) constrains the
size of ya(k) as well by constraining a(k).

Remark 1: Note that A(τa) ⊂ A(τb) if τa < τb due to
Assumption 3. Thus, the threshold chosen for setting the false
alarm rate under nominal conditions does affect the set of
attacks that do not trigger an alarm, i.e., the false negative
rate. Furthermore, where appropriate we will use a ∈ A(τ)
instead of {a, xD(0)} ∈ A(τ) for the sake of readability.

If the attacker manages to choose a such that {a, xD(0)} ∈
A(τ) in the current period with a constant threshold, the
attacker remains stealthy, which is the main constraint of the
attacker as described below.

Assumption 7: The attacker has one of nϕ different types,
which determine the objective of the attacker. An attacker of
type ϕ wants to maximize its expected payoff characterized by
fϕ(a). Further, if the attack is detected, the attacker receives no
payoff and, therefore, it wants to remain stealthy, i.e., yD(k+
1) ≤ JD(τ) for k ∈ [0, N − 1].

Next, we define the attacker’s expected payoff for a given
attacker type,

p(τ, a|ϕ) := 1{{a,xD(0)}∈A(τ)}fϕ(a), (2)

where we use the indicator function to take into account that
the attacker will not get any payoff if it is detected.

Assumption 8: For a given attacker type ϕ, the correspond-
ing expected attacker payoff fϕ(a) is continuous and fulfills
maxa∈A(τa) fϕ(a) < maxa∈A(τb) fϕ(a) if τa < τb except
when fϕ(a) = 0 for all a.

Remark 2: If fϕ(a) is a continuous, convex function and
A(τ) is a closed convex set, then Assumption 8 is fulfilled,
since then maxa∈A(τ) fϕ(a) is equivalent to a concave min-
imization problem, whose optimizers are the extreme points
of A(τ) (see [20]). If we use a vector norm-based stateless
detector, such as the χ2 detector, A(τ) is a closed convex set.

D. Defender model
Next, we describe our defender model. When choosing τ

the defender needs to take into account the expected cost that
is induced by the false alarms in the nominal case, but also
the expected cost of an undetectable attack. This leads to the
following cost function for the defender assuming an attacker
of type ϕ,

c(τ, a|ϕ) := cF

τ
+ p(τ, a|ϕ), (3)

where cF > 0 is the cost factor for false alarms. Note that
while the attacker has one of nϕ possible types, the defender
has only one type, but its cost function is influenced by the
attacker type.

Remark 3: Since the defender’s cost (3) is always influ-
enced by the attacker’s payoff, it is reasonable to introduce an
attacker type with zero payoff, i.e., fϕ(a) = 0 for all a. This
means that the case of there not being an attacker present in
the system is modeled as well in our moving target defense
framework.

Next, let us make the following assumption about the
knowledge the attacker and defender have about each other.

Assumption 9: The defender knows (2) for each possible
ϕ and it has a prior πϕ of facing an attacker of type ϕ, where
πϕ ∈ [0, 1] and

∑nϕ

ϕ=1 πϕ = 1. The attacker, in addition to
Assumption 6, knows the defender’s cost function (3), its own
type ϕ ∈ {1, . . . , nϕ}, and the defender’s prior πϕ for each
attacker type.

E. Discussion of the system model
In this section, we discuss the assumptions made during the

setup of the model.
First, we discuss the assumption about the iid choice of τ

(Assumption 4) and the attack length (Assumption 6). Since
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the values of τ are realizations of iid random variables, the
current value of τ is independent of its previous values,
observing the system does hence not reveal information about
τ beyond its distribution, which the attacker can deduce from
its system knowledge. The attacker will be able to estimate the
distribution p under the iid choice if it has access to previous
values of τ . This case is already taken into account in our MTD
framework. A change of threshold implies a reconfiguration of
the system, which can be costly for the operator of a safety-
critical large-scale infrastructure. Therefore, the operator does
not switch the thresholds too frequently. Hence, it is not
unreasonable to analyse the case where the attack is carried
out during a fixed, but random, configuration. Note that an
approach to consider the cost of a finite amount of switches can
be found in [14]. Furthermore, for industrial processes, where
a product is produced in batches, an iid choice of the threshold
between different batches is also a reasonable assumption.

The analysis of an attacker that experiences threshold
switches during the attack is similar to the analysis we present
in the subsequent sections, because we can determine the
probability of first choosing τi and then τj due to the iid choice
in Assumption 4. However, the notation would become more
involved. Therefore, these assumptions simplify the problem
formulation so that it becomes mathematically more tractable.

Next, we justify the assumptions on the attacker’s knowl-
edge and goals. According to [21], one should design the plant
for the worst-case attacker knowledge, because, given enough
time, an attacker may be able to obtain a perfect model of the
plant, the controller, and the detector. For example, the plant
and controller could be estimated through system identification
techniques from the observed sensor data, while the detector
model could be obtained from leaked documentation of the
system. Hence, the extensive knowledge of the attacker about
the closed-loop system and detector according to Assump-
tion 6 is in line with [21]. In our previous work [22], we
showed how the attacker can obtain the internal states of both
the controller and the detector in an experimental setup. Hence,
assuming that the attacker has knowledge of the controller and
detector states is not unreasonable. Further, the knowledge of
xD(0) and x̂(0) can be interpreted as an opportunistic attacker
choosing to attack at the best time instant, which we define
to occur without loss of generality at k = 0. In contrast, the
choice of τ is not visible in the sensor data observed by the
attacker. In addition, the attacker knowledge in Assumption 6
together with the assumption that the attacker will maximize
its objective function fϕ(a) (Assumption 7) results in a worst-
case scenario for the defender under the given assumption.

While both xD(0) and x̂(0) depend on the measurements
and could, therefore, be estimated by the attacker, τ is chosen
randomly from {τ1, . . . , τm} (see Assumption 4) such that the
attacker cannot know the exact value of τ . Further, τ does not
directly influence the system variables, such that the attacker
is also not able to estimate τ from the measurements.

In Assumption 7, we introduce attacker types. A given
attacker type, ϕ, describes the target of the attacker through
its objective, fϕ(a). Since the attacker’s target is often not
known to the defender, having different attacker types gives the
defender the possibility to distinguish between different targets

while using our sensor attack model, and also incorporate the
case of no attacker being present (Remark 3).

The assumption that the attacker will not get any payoff
when detected (Assumption 7) is a strong assumption on both
the attacker and defender, which is mostly beneficial for the
defender. However, if we consider critical infrastructures, such
as the power grid, an operator has to mitigate the attack quickly
when detected to prevent harm. Furthermore, we can also
imagine that the attacker has made a significant investment to
obtain its system knowledge and infiltrate the system. Hence,
the attacker wants to remain undetected in order to not risk
losing its investment. This kind of attacker has similarities
to an advanced persistent threat, which is an attacker with
knowledge about the system and that targets specific parts of
the system while remaining stealthy (see, for example, [23]).
It is important to point out that due to the random choice of τ
(Assumption 4) it is more difficult for the attacker to remain
stealthy but at the same time obtain a large payoff.

The defender will rarely know the intentions of the attacker.
To obtain information about potential targets of the attack, the
defender can conduct a risk assessment [24] of the system.
By conducting a risk assessment, the defender determines
the vulnerabilities in its system, the likelihood of an attacker
exploiting a vulnerability, and the potential impact of a suc-
cessful attack. A vulnerability could be an unsafe region in
the system’s state space, e.g., the overpressure region for a
tank, such that the attacker’s objective would be to bring the
system into this unsafe region. The different vulnerabilities
can be interpreted as attacker types ϕ, the prior πϕ as the
likelihood of an attacker exploiting a vulnerability, and the
impacts are reflected by the attacker’s payoff fϕ(a), which
directly influence the defender’s cost (3). Hence, the defender’s
knowledge about possible attack objectives, their prior and
their impact, as assumed in Assumption 9, can be interpreted
as the outcome of a risk assessment conducted by the defender
before implementing the proposed MTD. Therefore, we can
interpret the Bayesian moving target defense framework as a
tool to enhance the security for the defender similar to the
ARMOR framework deployed at LAX [25], which makes use
of the outcomes of the risk assessment.

III. PROBLEM FORMULATION

Now we formulate the problem of finding a moving target
defense strategy as a game between the defender and the
attacker, where the defender’s goal is to choose τ to minimize
the expected value of (3) with respect to the prior of the
attacker types while the attacker chooses a to maximize (2).
Due to Assumption 6, we can focus on the game over one
period with a constant threshold. This focus on one only period
can also be interpreted as a repeated game with memoryless
players, which has been considered in [26].

The game has both imperfect and incomplete information.
The information is imperfect because neither player observes
the action taken by the other player. The information is
incomplete because the defender does not know which type of
attacker it faces. The defender believes that with probability
πϕ it will play the game with an attacker of type ϕ. The
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imperfect information lets us interpret the game as a game
with simultaneous moves, while the incomplete information
results in a Bayesian game framework. Therefore, we define
the moving target defense game M = ⟨P,A, T ,Π,U⟩,
where P = {Defender,Attacker} is the set of players,
A = {τ1, . . . , τm} × RNny+nD is the action set, T =
{1} × {1, . . . , nϕ} is the set of player types, Π = {1} ×
{π1, . . . , πnϕ

} is the prior, and U = (c(τ, a|ϕ), p(τ, a|ϕ))
contains the cost and payoff functions of each player. For the
analysis, we also define the game Mϕ = ⟨P,A,U⟩, where
the defender is certain about the attacker type it faces, that is,
πϕ = 1 for some ϕ ∈ {1, . . . , nϕ} in M.

The Bayesian game framework together with the simul-
taneous choice of actions lead us to the Bayesian Nash
equilibrium as the solution concept. To define the Bayesian
Nash equilibrium we introduce the (possibly mixed) strategies
of the defender and attacker. Let ∆p be the set of probability
distributions over the defender’s actions. Then p ∈ ∆p is a
discrete probability distribution, where the ith element, pi,
is the probability that the defender chooses τi. For a given
attacker type ϕ, ∆q(ϕ) is the set of probability distributions
over the attacker’s action set. Since the attacker, to obtain
a non-zero payoff, chooses a trajectory a from A(τ), which
is typically not a discrete set, qϕ ∈ ∆q(ϕ) may represent a
continuous probability distribution. We call both p and qϕ a
mixed strategy, if it does not concentrate the whole probability
on one action. Otherwise, we call it a pure strategy.

Since both the attacker and defender might use mixed
strategies, we investigate the average cost of the defender

c̄ϕ(p, qϕ) =

∫ m∑
i=1

pic(τi, a|ϕ)qϕ(a)da (4)

and the average payoff of the attacker

p̄ϕ(p, qϕ) =

∫ m∑
i=1

pip(τi, a|ϕ)qϕ(a)da (5)

for a given attacker type ϕ. Hence, (4) and (5) represent the
average cost and payoff of the players in the game Mϕ.

A mixed strategy Bayesian Nash equilibrium, p∗ ∈ ∆p and
q∗ϕ ∈ ∆q(ϕ), fulfills

nϕ∑
ϕ′=1

πϕ′ c̄ϕ′(p∗, q∗ϕ′) ≤
nϕ∑

ϕ′=1

πϕ′ c̄ϕ′(p, q∗ϕ′),

p̄ϕ(p
∗, q∗ϕ) ≥ p̄ϕ(p

∗, qϕ)

(6)

for all p ∈ ∆p, qϕ ∈ ∆q(ϕ), and ϕ ∈ {1, · · · , nϕ}.
In the Bayesian Nash equilibrium, a change from p∗ to

another p ∈ ∆p does not lead to a decrease in the cost for
the defender, and, similarly, a change from q∗ϕ to another
qϕ ∈ ∆q(ϕ) does not lead to an increase in payoff for an
attacker of type ϕ. Hence, neither the defender nor the attacker
want to deviate from their equilibrium strategies. Here, the
defender needs to consider all possible attacker types, which
results in averaging of the costs of each game Mϕ over the
prior, while the attacker needs to have an equilibrium strategy
for each type. This is because the attacker knows its own type,

which the defender does not know, while the defender has only
one type, which is known to both the defender and attacker.

Equipped with the definition of both the MTD and the
Bayesian Nash equilibrium, we formulate the two problems
we investigate in the remainder of this paper.

Problem 1: Characterize when a Bayesian Nash equilib-
rium (6) representing a MTD (Definition 1) exists.

Problem 2: If a Bayesian Nash equilibrium representing a
MTD exists, compute an equilibrium strategy p∗.

IV. MATRIX GAME FORMULATION

Recall that the defender plays against one of nϕ adver-
saries, but it does not know which adversary it is facing.
Furthermore, while the defender has a finite set of actions,
i.e., {τ1, . . . , τm}, the attacker’s action set, RNny+nD , is a
continuum. This makes finding Bayesian Nash equilibrium
strategies challenging. In this section, we will show that each
game Mϕ can be reformulated into a strategically equivalent
game M̃ϕ, where the attacker’s action set is finite too.

We begin by recalling that for a given τ the attacker
will only receive a non-zero payoff if {a, xD(0)} ∈ A(τ).
Hence, for a given τ the attacker will always choose its attack
trajectory such that {a, xD(0)} ∈ A(τ). Due to the discrete
set of actions for the defender, we can separate the continuous
action space of the attacker into m+1 sets in the game Mϕ as
shown in Table I. The set A(τi) \ A(τi−1) contains all attack
trajectories that are stealthy for τi excluding the ones that are
stealthy for τi−1. Hence, if {a, xD(0)} ∈ A(τi)\A(τi−1) then
the attack will be detected if the defender chooses τi−1, but not
if it chooses τi. We can remove the last column from Table I,
because a ̸∈ A(τm) results in zero payoff for the attacker.

We define the maximum payoff for a given τi and a given
attacker type ϕ as

Iϕ
i := max

a,xD(0)
1{{a,xD(0)}∈A(τi)}fϕ(a) = max

{a,xD(0)}∈A(τi)
fϕ(a).

Note that we also optimize over xD(0), which the attacker
has normally no influence over. We do that to obtain the
maximum possible payoff an attacker could achieve, which
goes along with the scenario of the worst-case attacker and
the interpretation that the attacker waits for the optimal time
to attack. We can show the following for the maximum payoff.

Lemma 1: Consider an attacker of type ϕ.
For a given τi, the maximum payoff ex-
ists and Iϕ

i := max{a,xD(0)}∈A(τi) fϕ(a) =
max{a,xD(0)}∈A(τi)\A(τi−1) fϕ(a).

Proof: We begin by proving the first part of the lemma.
The first and second condition in Assumption 2 guarantee that
A(τi) is a compact set for a given τi (see Theorem 7.1 in
[27]). Hence, by the extreme value theorem, we know that Iϕ

i

always exists for a given τi and ϕ. The second part of the
lemma readily follows from Assumption 8.
With the maximum payoff for a given τi, we can formulate
a finite matrix game M̃ϕ = ⟨P, Ãϕ, Ũϕ⟩, where P is defined
as in M, Ãϕ = {τ1, . . . , τm} × {Iϕ

1 , . . . , Iϕ
m}, and Ũϕ =

( cF
τi

+ 1{j≤i}Iϕ
j ,1{j≤i}Iϕ

j ), where i, j ∈ {1, . . . ,m}. Since
both the attacker and the defender have finite actions sets in
M̃ϕ, we formulate M̃ϕ as the matrix game shown in Table II.
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TABLE I
THE GAME Mϕ WITH DISJOINT SETS FOR THE ATTACKER’S ACTION

a1 ∈ A(τ1) a2 ∈ A(τ2) \ A(τ1) · · · am ∈ A(τm) \ A(τm−1) a ̸∈ A(τm)
τ1

cF
τ1

+ fϕ(a1), fϕ(a1)
cF
τ1

, 0 · · · cF
τ1

, 0 cF
τ1

, 0

τ2
cF
τ2

+ fϕ(a1), fϕ(a1)
cF
τ2

+ fϕ(a2), fϕ(a2) · · · cF
τ2

, 0 cF
τ2

, 0

...
...

...
. . .

...
...

τm
cF
τm

+ fϕ(a1), fϕ(a1)
cF
τm

+ fϕ(a2), fϕ(a2) · · · cF
τm

+ fϕ(am), fϕ(am) cF
τm

, 0

Further, we define the m ×m matrix Ω(ϕ) as the defender’s
cost matrix with elements Ωi,j(ϕ) =

cF
τi
+1{j≤i}Iϕ

j , and Υ(ϕ)
as the m×m matrix that has the attacker’s payoff matrix with
elements Υi,j(ϕ) = 1{j≤i}Iϕ

j .
Proposition 1: The finite game M̃ϕ in Table II is strategi-

cally equivalent to the game Mϕ in Table I.
Proof: Since the attacker’s objective is to maximize its

payoff (2), it always chooses the trajectory that maximizes
its payoff. From Lemma 1 we know there exists a maximum
payoff trajectory for each of the columns in Table I. Hence,
choosing the maximum payoff is strategically equivalent to
choosing an attack trajectory that yields the maximum payoff.

TABLE II
FINITE m × m MATRIX GAME M̃ϕ FOR THRESHOLD SWITCHING

Iϕ
1 Iϕ

2 · · · Iϕ
m

τ1
cF
τ1

+ Iϕ
1 , Iϕ

1
cF
τ1

, 0 · · · cF
τ1

, 0

τ2
cF
τ2

+ Iϕ
1 , Iϕ

1
cF
τ2

+ Iϕ
2 , Iϕ

2 · · · cF
τ2

, 0

...
...

...
. . .

...
τm

cF
τm

+ Iϕ
1 , Iϕ

1
cF
τm

+ Iϕ
2 , Iϕ

2 · · · cF
τm

+ Iϕ
m, Iϕ

m

By using the equivalent game in Table II, we can simplify
the average cost functions, (4) and (5) of the game Mϕ, used
in the Bayesian Nash equilibrium (6) to bilinear functions of p
and qϕ, which helps us to solve both Problem 1 and Problem 2.

Corollary 1: In the strategically equivalent finite game
M̃ϕ, the average cost of the defender is given by

c̄ϕ(p, qϕ) = pTΩ(ϕ)qϕ

and the average payoff of the attacker is given by

p̄ϕ(p, qϕ) = pTΥ(ϕ)qϕ

for each attacker type, where the ith element, qϕ,i, of qϕ is
the probability of choosing an attack trajectory that leads to
the maximum payoff Iϕ

i .
Proof: Since the attacker has a finite set of actions in

M̃ϕ, its mixed strategy qϕ is a discrete probability distribution.
This leads directly to bilinear functions of p and qϕ for the
average cost and payoff, respectively.

Remark 4: We would like to point out that the matrix game
in Table II depends only on the worst-case impact of the
attacker type. Hence, while the focus of this paper is on sensor
attacks, one could also focus on attacks targeting other system
components, such as actuator attacks, to determine the matrix
game in Table II.

V. BAYESIAN NASH EQUILIBRIUM-BASED MTD

In the previous section, we showed that for any particular
ϕ the corresponding game Mϕ is strategically equivalent to
a finite matrix game M̃ϕ. This means that the Bayesian
game M is strategically equivalent to a finite Bayesian game,
denoted by M̃ and its equilibria can be found by formulating
an induced matrix game [28], obtained by combining the
games M̃ϕ with respect to the prior. In what follows, we first
illustrate the procedure and we then use the induced game to
give a necessary and sufficient condition for the existence of
a Bayesian Nash equilibrium that is a moving target defense
according to Definition 1.

A. An illustrative example

We start with an illustrative example, where each player
has two actions to choose from. The attacker is assumed to
have type 1 with probability π1 and type 2 with probability
π2 = 1 − π1. Hence, the finite game M̃ϕ corresponding to
attacker type ϕ is as shown in Table III, where ϕ ∈ {1, 2}.

TABLE III
2 × 2 MATRIX GAME EXAMPLE

Iϕ
1 Iϕ

2

τ1
cF
τ1

+ Iϕ
1 , Iϕ

1
cF
τ1

, 0

τ2
cF
τ2

+ Iϕ
1 , Iϕ

1
cF
τ2

+ Iϕ
2 , Iϕ

2

To find the Bayesian Nash equilibrium, we can formulate an
induced matrix game (see [28]) and find the Nash equilibria of
that induced matrix game, which correspond to the Bayesian
Nash equilibria of the original game M. In the induced game,
we combine the matrix games M̃1 and M̃2 into one game.
The actions of the defender in the induced game are the same
as in the games M̃1 and M̃2, that is, it can choose τ1 or τ2 as
its action. The attacker, however, has the actions I1

i1
I2
i2

, where
i1 and i2 are in {1, 2}. Hence, the attacker in the induced
game is a combination of the attackers in the games M̃1 and
M̃2 and its payoff is the expected value over the attacker
types given the defender’s prior [π1, π2]. The induced game
is illustrated in Table IV. If the attacker chooses I1

i1
I2
i2

in the
induced game, then in M̃1 the action of the attacker is its i1th
action, i.e., I1

i1
, and in M̃2 the action of the attacker is its i2th

action, i.e., I2
i2

.
From Table IV, we observe that the defender prefers τ2 over
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TABLE IV
INDUCED MATRIX GAME FOR THE 2 × 2 GAME EXAMPLE

I1
1I2

1 I1
1I2

2 I1
2I2

1 I1
2I2

2
τ1

cF
τ1

+ π1I1
1 + π2I2

1 , π1I1
1 + π2I2

1
cF
τ1

+ π1I1
1 , π1I1

1
cF
τ1

+ π2I2
1 , π2I2

1
cF
τ1

, 0

τ2
cF
τ2

+ π1I1
1 + π2I2

1 , π1I1
1 + π2I2

1
cF
τ2

+ π1I1
1 + π2I2

2 , π1I1
1 + π2I2

2
cF
τ2

+ π1I1
2 + π2I2

1 , π1I1
2 + π2I2

1
cF
τ2

+ π1I1
2 + π2I2

2 , π1I1
2 + π2I2

2

τ1 if the following conditions hold
cF

τ1
+ π1I1

1 + π2I2
1 >

cF

τ2
+ π1I1

1 + π2I2
1 ,

cF

τ1
+ π1I1

1 >
cF

τ2
+ π1I1

1 + π2I2
2 ,

cF

τ1
+ π2I2

1 >
cF

τ2
+ π1I1

2 + π2I2
1 ,

cF

τ1
>

cF

τ2
+ π1I1

2 + π2I2
2 ,

which are equivalent to
cF

τ1
>

cF

τ2
,

cF

τ1
>

cF

τ2
+ π2I2

2 ,

cF

τ1
>

cF

τ2
+ π1I1

2 ,

cF

τ1
>

cF

τ2
+ π1I1

2 + π2I2
2 .

Note that the first inequality always holds, while the second
and third inequalities hold if the last inequality holds.

Hence, we see that the defender prefers to play τ2 over
playing τ1 if cF

τ1
> cF

τ2
+π1I1

2+π2I2
2 . In this case, the defender

will play τ2 independent of the attacker’s action, such that the
attacker will always play the action that maximizes its payoff,
i.e., I1

2I2
2 . Therefore, there exists only a pure Bayesian Nash

equilibrium strategy, which is not a moving target defense.
For this simple example, we determined a sufficient condition
for when an MTD does not exist. However, this is a simple
example where the induced matrix game has a manageable
size and we can calculate the Bayesian Nash equilibrium by
hand. Assume now that the defender has m > 2 actions, while
the attacker has m actions and nϕ > 1 types. Then the induced
matrix game is an m×mnϕ matrix game, whose size becomes
unmanageable as either m, nϕ, or both, grow.

B. Best responses and strictly dominated actions

In the induced matrix game, the actions of the attacker are
I1
i1
I2
i2
· · · Inϕ

inϕ
, where iϕ ∈ {1, . . . ,m} and ϕ ∈ {1, . . . , nϕ},

while the defender chooses τl. This leads to the attacker payoff

pind(τl, I1
i1I

2
i2 · · · I

nϕ

inϕ
) =

nϕ∑
j=1

1{ij≤l}πjIj
ij

and the defender cost

cind(τl, I1
i1I

2
i2 · · · I

nϕ

inϕ
) =

cF

τl
+

nϕ∑
j=1

1{ij≤l}πjIj
ij

in the induced matrix game, which we can use to characterize
the best responses of the players.

Lemma 2: The best response of the attacker to a given
action τl is

bA(τl) = {I1
l I2

l · · · I
nϕ

l }, (7)

and the best response of the defender to a given action
I1
i1
I2
i2
· · · Inϕ

inϕ
is

bD(I1
i1
I2
i2

· · · Inϕ
inϕ

) =
{
τl|l ∈ argminl∈{1,··· ,m}

cF
τl

+
∑nϕ

j=1 1{ij≤l}πjI
j
ij

}
.

(8)
Proof: We start by investigating the best response of the

attacker. For a given τl, the payoff Ij
ij

of type j with ij > l
is zero since it is detected. Hence, ij ≤ l needs to be fulfilled
for each attacker type if it wants to get a payoff. Recall that
Ij
i < Ij

η for all i < η. Hence, to obtain the maximum payoff
for a given τl, the attacker has a unique best response given
by (7) in the induced matrix game.

For a given attack action, the defender’s best response is to
choose τl to minimize its cost, which results in the set of best
responses given in (8).
While Lemma 2 provides the unique best response of the
attacker, the defender might have several best responses. For
example, it could be best to choose τm for a given attacker
action to minimize the cost for false alarms. By choosing a
smaller τ , even though it increases the false alarm cost, it
makes more attacks detectable, which in turn decreases the
attack cost. Hence, the best response depends on many factors.

Now that we looked at best responses, we will investigate
when actions are strictly dominated in the induced matrix
game. For the defender, an action τl strictly dominates τη if the
cost for τl is strictly lower than the cost for τη for all possible
actions of the attacker. Strict dominance of one attacker action
over another can be defined similarly. With the best responses
and the strictly dominated actions, we are then equipped to
prove the existence of moving target defenses according to
Definition 1. Recall that by eliminating strictly dominated
actions, we do not change the set of the Nash equilibria of
the induced game and, therefore, neither the Bayesian Nash
equilibria of the original game M.

Lemma 3: Assume that there exists l > η such that

cF

τη
>

cF

τl
+

nϕ∑
j=1

πjIj
l , (9)

then we can eliminate the defender actions τ1, . . . , τη
and the attacker actions for which I1

i1
I2
i2
· · · Inϕ

inϕ
̸=

I1
η+1I2

η+1 · · · I
nϕ

η+1 holds for ij ∈ {1, · · · , η + 1}, and obtain
a reduced (m− η)× (mnϕ − (η + 1)nϕ + 1) induced matrix
game.

Proof: We start with the strict dominance of the rows.
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First note that τl strictly dominates τη if

cF

τη
+

nϕ∑
j=1

1{ij≤η}πjIj
ij
>

cF

τl
+

nϕ∑
j=1

1{ij≤l}πjIj
ij

(10)

holds for all possible attacker actions I1
i1
I2
i2
· · · Inϕ

inϕ
. We can

split this condition into three cases:
1) All attacker types use attacks that are stealthy for τη ,

i.e., actions I1
i1
I2
i2
· · · Inϕ

inϕ
with

∑nϕ

j=1 1{ij≤η} = nϕ.
Here, we see that the terms related to the attacker payoff
on both sides of the inequality in (10) are the same,
such that (10) simplifies to cF

τη
< cF

τl
. Hence, η < l is

necessary for the strict dominance of τl over τη .
2) All attacker types use attacks that will be detected for

τl, i.e., actions I1
i1
I2
i2
· · · Inϕ

inϕ
with

∑nϕ

j=1 1{ij>l} = nϕ.
Since the attacks are detected by τl, they will also be
detected by τη such that the terms related to the attacker
payoff on both sides of the inequality in (10) disappear.
Therefore, (10) simplifies again to cF

τη
< cF

τl
.

3) There exists at least one attacker type that uses a
strategy that is stealthy for τl but not for τη , i.e., actions
I1
i1
I2
i2
· · · Inϕ

inϕ
with

∑nϕ

j=1 1{η+1≤ij≤l} > 0.
Subtracting the terms related to the attacker payoff on
the left side of (10) from the inequality itself leads to

cF

τη
>

cF

τl
+

nϕ∑
j=1

1{η+1≤ij≤l}πjIj
ij
. (11)

The first two cases show that we need τl > τη or equiva-
lently l > η for τl to strictly dominate τη . For the third case,
since

cF

τl
+

nϕ∑
j=1

πjIj
l ≥ cF

τl
+

nϕ∑
j=1

1{η+1≤ij≤l}πjIj
ij

is always correct, (11) holds if (9) holds.
Further, since the following inequalities

cF

τν
+

nϕ∑
j=1

1{ij≤ν}πjIj
ij
>

cF

τν
>

cF

τη
>

cF

τl
+

nϕ∑
j=1

πjIj
l

hold for all ij ∈ {1, . . . ,m} and j ∈ {1, . . . , nϕ}, we see that
if (9) holds τl does not only strictly dominate τη , but all τν
with ν ∈ {1, . . . , η}.

Therefore, if (9) holds we can remove the first η rows of
the induced matrix game. With the first η rows removed it
follows that I1

η+1I2
η+1 · · · I

nϕ

η+1 strictly dominates all actions
where the attacker of type j chooses ij ∈ {1, · · · , η + 1}
with j ∈ {1, . . . , nϕ} such that

∑nϕ

j=1 1{ij=η+1} ̸= nϕ holds,
i.e., all actions I1

i1
I2
i2
· · · Inϕ

inϕ
̸= I1

η+1I2
η+1 · · · I

nϕ

η+1 for ij ∈
{1, · · · , η + 1}. Hence, we can additionally remove the (η +
1)nϕ −1 columns corresponding to these actions to obtain the
reduced matrix game.

C. Existence of a MTD strategy (Problem 1)
We now formulate a necessary and sufficient condition for

the existence of a MTD strategy for the defender in the
Bayesian game M according to Definition 1.

Theorem 1: A moving target defense strategy exists if, and
only if,

cF

τm−1
≤ cF

τm
+

nϕ∑
j=1

πjIj
m. (12)

Proof: First, assume that (12) does not hold. Then (9) is
fulfilled with l = m and η = m−1. Hence, we can reduce the
induced matrix game to a 1× 1 matrix game (see Lemma 3),
which has a pure strategy equilibrium. Therefore, the original
Bayesian game, M, has a unique and pure Bayesian Nash
equilibrium, such that no MTD strategy exists.

Next, we show that there exists at least one Nash equi-
librium where the defender plays an MTD strategy if (12)
holds. Since the induced matrix game is a finite matrix game,
we know that there exists at least one Nash equilibrium and
equivalently at least one Bayesian Nash equilibrium for the
original game, M. For the Nash equilibrium to be a pure
strategy Nash equilibrium, each player needs to play a best
response to the other player’s best response. Assume that
(τl, I1

i1
I2
i2
· · · Inϕ

inϕ
) is a pure strategy Nash equilibrium, then

according to Lemma 2 the following needs to be fulfilled

I1
i1I

2
i2 · · · I

nϕ

inϕ
∈ bA(τl),

τl ∈ bD(I1
i1I

2
i2 · · · I

nϕ

inϕ
),

i.e., each player’s action is a best response to the other player’s
best response. Comparing the first equation with the attacker’s
best response (7), we see that in a pure Nash equilibrium i1 =
i2 = · · · = inϕ

= l. With (8), we determine that the best
response of the defender is

bD(I1
l I2

l · · · I
nϕ

l ) =


{τl−1} if cF

τl−1
< cF

τm
+

∑nϕ

j=1 πjIj
l ,

{τl−1, τm} if cF
τl−1

= cF
τm

+
∑nϕ

j=1 πjIj
l ,

{τm} otherwise.

(13)

To have a pure Nash equilibrium we need l = m. We observe
that there cannot be a pure Nash equilibrium if (12) holds with
inequality such that all equilibria are moving target defenses.
However, if (12) holds with equality, the best response of the
defender to I1

mI2
m · · · Inϕ

m can be both τm−1 and τm. Hence,
in this case there exists a pure strategy Nash equilibrium in
the induced matrix game. Next, we show that a moving target
defense equilibrium strategy exists as well in this case.

First, note that if (12) holds with equality then τi is strictly
dominated by τm for all i ∈ {1, . . . ,m−2}, such that we can
reduce the induced matrix game to a 2×(mnϕ−(m−1)nϕ+1)
matrix game. Further, from (13) we see that any distribution
over τm−1 and τm is a best response to the attack strategy
I1
mI2

m · · · Inϕ
m . If we can show that I1

mI2
m · · · Inϕ

m is also a best
response to at least one distribution over τm−1 and τm then
we have found a Bayesian Nash equilibrium, which fulfills
Definition 1. By multiplying the attacker’s payoff matrix in
the reduced matrix game from the left with the distribution
over τm−1 and τm, we determine that the expected payoff for
playing I1

i1
I2
i2
· · · Inϕ

iϕ
is

nϕ∑
j=1

πj1{ij≤m−1}Ij
ij
+ pm

nϕ∑
j=1

πj1{ij=m}Ij
m,
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where ij ∈ {1, . . . ,m} for all j ∈ {1, . . . , nϕ} and pm is the
probability of choosing τm. Note that I1

mI2
m · · · Inϕ

m is a best
response to the mixed strategy of the defender, if the expected
payoff for choosing I1

mI2
m · · · Inϕ

m is greater than or equal to
all other expected payoffs the attacker could receive, i.e.,
nϕ∑
j=1

πj1{ij≤m−1}Ij
ij
+ pm

nϕ∑
j=1

πj1{ij=m}Ij
m ≤ pm

nϕ∑
j=1

πjIj
m

for all ij such that
∑nϕ

j=1 1{ij=m} < nϕ. Hence, the attacker
prefers to play I1

mI2
m · · · Inϕ

m if the defender chooses

pm ∈

[
max

i1,...,inϕ

∑nϕ

j=1 1{ij=m−1}πjIj
m−1∑nϕ

j=1 1{ij=m−1}πjIj
m

, 1

)
,

where we used that Iij < Im−1 for all ij < m − 1. This
shows us that there there are infinitely many Nash equilibria
in the induced matrix game where the defender uses a MTD
strategy according to Definition 1 if (12) holds with equality.

Therefore, we conclude that a moving target defense strat-
egy according to Definition 1 exists if, and only if, (12) holds.

Remark 5: If πi = 1 for some i, i.e., we have only one
attacker type, the condition in Theorem 1 simplifies to the
condition for the existence of a MTD from [17].

Remark 6: In case (12) holds with equality, we can intro-
duce an attacker type that has zero payoff as mentioned in
Remark 3 with a prior of ϵ > 0 and subtract ϵ from one of
the priors πj . This will lead to (12) holding with inequality.
Hence, (12) can always be turned into an inequality by an
arbitrarily small change in the priors.

VI. COMPUTING A MTD STRATEGY (PROBLEM 2)
In this section, we look into computing a MTD strategy.

First, we investigate the general case and formulate a linear
program to compute MTD strategies. Second, we investigate
the special case nϕ = 1 and provide a closed-form solution
for computing a MTD strategy.

A. General case
Finding Nash equilibria of a finite matrix game leads to a

bilinear optimization problem as shown in [29]. For Bayesian
Nash equilibria, we can adopt the optimization problem in [30]
to obtain the following bilinear optimization problem

min
p,qϕ,c̄,p̄(ϕ)

pT
(∑nϕ

ϕ=1 πϕ (Ω(ϕ)−Υ(ϕ)) qϕ

)
+ c̄−

∑nϕ

ϕ=1 πϕp̄(ϕ)

s.t. pT 1m = 1, qTϕ 1m = 1, p ≥ 0, qϕ ≥ 0,
nϕ∑
ϕ=1

πϕΩ(ϕ)qϕ ≥ −c̄1m,

−ΥT (ϕ)p ≥ p̄(ϕ)1m, ϕ ∈ {1, . . . , nϕ}.
(14)

Recall that the elements of the matrices Ω(ϕ) and Υ(ϕ)
are Ωi,j(ϕ) = cF

τi
+ 1{j≤i}Iϕ

j and Υi,j(ϕ) = 1{j≤i}Iϕ
j ,

respectively. Here, qϕ is the mixed strategy for the attacker
with type ϕ and p̄(ϕ) is its average payoff, while p is the
mixed strategy of the defender and c̄ is its average cost.

Proposition 2: Assume that the condition of Theorem 1
holds, and thus a MTD exists. A MTD strategy can then be
computed by solving the linear program,

min
p,qϕ,c̄,p̄(ϕ)

pT γ + c̄−
nϕ∑
ϕ=1

πϕp̄(ϕ)

s.t. pT 1m = 1, qTϕ 1m = 1, p ≥ 0, qϕ ≥ 0,

γ +

nϕ∑
ϕ=1

πϕΥ(ϕ)qϕ ≥ −c̄1m,

−ΥT (ϕ)p ≥ p̄(ϕ)1m, ϕ ∈ {1, . . . , nϕ},

(15)

where the lth element of the m-dimensional vector γ is cF
τl

.
Proof: Due to the special structure of Ω(ϕ), we note that

the lth element of Ω(ϕ)qϕ equals cF
τl
+
∑l

j=1 qϕ,jI
ϕ
j , such that

Ω(ϕ)qϕ = γ+Υ(ϕ)qϕ. Inserting that in the objective function
and the constraints of (14) leads to the optimization problem
in (15), where we further used that

∑nϕ

ϕ=1 πϕ = 1.
The optimization problem in (15) is a convex linear program
and therefore, we are guaranteed to find the global optimum.
This has an advantage over directly solving (14), where we
may get stuck in a local optimum.

Remark 7: Note that the computational complexity of (15)
does not depend on the complexity of the system, for which
we determine the MTD, because the number of optimization
variables and constraints only depend on m and nϕ. However,
determining the maximum attacker payoff to setup the matrix
game in Table II for each attacker type depends on the
complexity of the system, such as the number of inputs,
outputs and states, and the expected attacker payoff fϕ(a).

B. Special case: nϕ = 1

Next, we provide a closed-form solution to Problem 2, when
the defender faces only one attacker type, i.e. nϕ = 1, which is
the problem we mentioned in Remark 5. For ease of notation,
we will omit the superscript for the attacker type.

For nϕ = 1 the matrix representation of the Bayesian Nash
equilibrium definition in (6) simplifies to the definition of the
Nash equilibrium

(p∗)TΩq∗ ≤ pTΩq∗ ∀p ∈ ∆p,

(p∗)TΥq∗ ≥ (p∗)TΥq ∀q ∈ ∆q.
(16)

Let Q denote the support of the attacker’s mixed strategy,
i.e., if i ∈ Q then the attacker chooses Ii with a nonzero
probability qi > 0 and if i ̸∈ Q then qi = 0. The support for
the mixed strategy of the defender is defined in a similar way
and is denoted by P with probabilities pi. In the following,
we investigate one mixed strategy for the defender and one for
the attacker and show how the support of the best response of
the attacker, respectively defender, has to look like. We then
use this to define a mixed strategy Nash equilibrium, which
represents a MTD.

Lemma 4: If the attacker fixes i, 1 < i < m, and uses the
mixed strategy

qj =


cF
Ij

(
1

τj−1
− 1

τj

)
, if j ∈ {i+ 1, . . . ,m},

1−
∑m

l=i+1 ql, if j = i,

0, otherwise,

, (17)
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where

0 ≤ qi < max

(
1,

cF

Ii

(
1

τi−1
− 1

τi

))
, (18)

then P ⊆ {i, . . . ,m} needs to hold for the support of the
defender’s best response.

Proof: First, note that qj > 0 for j ∈ {i + 1, . . . ,m},
since τj > τi if j > i. Further, if qi ∈ [0, 1) we see that
the mixed strategy q given by (17) is a proper probability
distribution.

Next, we look at the possible best responses of the defender
to this strategy. The average cost of the defender is given by

pTΩq = pT γ + pTΥq

= pT1:i−1γ̃ + pTi:mγ̂ + pT
[
Υ11 Υ12

Υ21 Υ22

]
q

= pT1:i−1γ̃ + pTi:mγ̂ +
[
pT1:i−1 pTi:m

] [ 0
Υ22qi:m

]
= pT1:i−1γ̃ + pTi:mγ̂ + pTi:mΥ22qi:m,

where γ̃T = [ cF
τ1
, . . . , cF

τi−1
], γ̂T = [ cF

τi
, . . . , cF

τm
], and

Υ22 =


Ii 0 · · · 0
Ii Ii+1 · · · 0
...

...
. . .

...
Ii Ii+1 · · · Im

 .

With that we can determine that

Υ22qi:m =


qiIi∑i+1
j=i qjIj

...∑m
j=i qjIj

 =


qiIi

qiIi + cF
τi

− cF
τi+1

...
qiIi + cF

τi
− cF

τm

 ,

where we used (17) for the values of qj for j > i. This leads
to the following average cost of the defender

pTΩq = pT1:i−1γ̃ + pTi:mγ̂ + pTi:mΥ22qi:m

= pT1:i−1γ̃ + pTi:mγ̂ +
(
qiIi +

cF

τi

) m∑
j=i

pj − pTi:mγ̂

= pT1:i−1γ̃ +
(
qiIi +

cF

τi

) m∑
j=i

pj .

Now assume P ⊆ {i, . . . ,m}, then p1:i−1 = 0 and
∑m

j=i pj =

1, such that the average cost turns into pTΩq = qiIi + cF
τi

,
which shows us that the defender is indifferent among its
action, as it obtains the same average cost no matter how the
distribution pi:m is chosen.

Now let P ̸⊆ {i, . . . ,m}, then
∑m

j=i pj = 1 − pT1:i−11i−1,
such that the average cost becomes

pTΩq = qiIi +
cF

τi
+ pT1:i−1

(
γ̃ −

(
qiIi +

cF

τi

)
1i−1

)
.

The defender chooses P ̸⊆ {i, . . . ,m} if, and only if,

qiIi +
cF

τi
+ pT1:i−1

(
γ̃ −

(
qiIi +

cF

τi

)
1i−1

)
≤ qiIi +

cF

τi

⇔ pT1:i−1

(
γ̃ −

(
qiIi +

cF

τi

)
1i−1

)
≤ 0.

Since the elements of both p1:i−1 and γ̃ are positive and cF
τ1

>
cF
τ2

> . . . > cF
τi−1

, we obtain the following necessary condition
for choosing P ̸⊆ {i, . . . ,m},

cF

τi−1
≤ qiIi +

cF

τi
.

Therefore, if
cF

τi−1
> qiIi +

cF

τi
,

then pT1:i−1

(
γ̃ −

(
qiIi + cF

τi

)
1i−1

)
> 0 and the defender

chooses P ⊆ {i, . . . ,m} to minimize its cost. Reformulating
this inequality gives us the upper bound

qi <
cF

Ii

(
1

τi−1
− 1

τi

)
.

Note that if τi−1 is strictly dominated by τi, this upper bound
is larger than 1 and therefore automatically fulfilled, if qi ∈
[0, 1). However, if τi−1 is not strictly dominated by τi then
both

cF

τi−1
>

cF

τi
and

cF

τi−1
≤ cF

τi
+ Ii

hold, which means there exists ρi ∈ (0, 1] such that
cF

τi−1
=

cF

τi
+ ρiIi

holds and we can determine ρi as

ρi =
cF

Ii

(
1

τi−1
− 1

τi

)
.

Hence, if q is chosen according to (17) such that qi fulfills
(18), the defender chooses P ⊆ {i, . . . ,m}.

Lemma 4 shows us the support of best responses for the
defender to the attack strategy (17), however, it still leaves the
open question how to choose i such that (18) is fulfilled.

Lemma 5: There exists a unique index i = i∗ ∈ (1,m− 1)
so that (17) is a proper probability distribution and (18) holds
if 1−

∑m
j=2

cF
Ij

(
1

τj−1
− 1

τj

)
< 0 and cF

Im

(
1

τm−1
− 1

τm

)
< 1.

Proof: From (17), we obtain that qi = 1 −∑m
j=i+1

cF
Ij

(
1

τj−1
− 1

τj

)
, which is strictly decreasing as i

decreases. Since cF
Im

(
1

τm−1
− 1

τm

)
< 1 holds, we know

that qi ∈ (0, 1) for i = m − 1. Further, since
1−

∑m
j=2

cF
Ij

(
1

τj−1
− 1

τj

)
< 0 we know that qi < 0 for i = 1.

Hence, there exists an i = i∗ > 1 such that qi ≥ 0 while for
i < i∗ we have qi < 0, such that the mixed strategy in (17) is
not a proper probability distribution and therefore not a valid
strategy. For i = i∗ we can, therefore, show that

1−
m∑

l=i∗

cF

Il

(
1

τl−1
− 1

τl

)
< 0

⇔ 1−
m∑

l=i∗+1

cF

Il

(
1

τl−1
− 1

τl

)
− cF

Ii∗

(
1

τi∗−1
− 1

τi∗

)
< 0

⇔ qi∗ − cF

Ii∗

(
1

τi∗−1
− 1

τi∗

)
< 0

⇔ qi∗ <
cF

Ii∗

(
1

τi∗−1
− 1

τi∗

)
.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3328754

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



12 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2024

Hence, (18) holds for i = i∗. Now assume we choose i = j >
i∗ such that qi ∈ [0, 1) if i = j and also qi ≥ 0 if i = j − 1.
Then we obtain that

1−
m∑
l=j

cF

Il

(
1

τl−1
− 1

τl

)
≥ 0

⇔ 1−
m∑

l=j+1

cF

Il

(
1

τl−1
− 1

τl

)
− cF

Ij

(
1

τj−1
− 1

τj

)
≥ 0

⇔ qj −
cF

Ij

(
1

τj−1
− 1

τj

)
≥ 0

⇔ qj ≥
cF

Ij

(
1

τj−1
− 1

τj

)
.

Hence, (18) does not hold for any i ̸= i∗. Therefore, i = i∗ is
the smallest index for which q∗i ∈ [0, 1) and the unique index
for which (18) holds.

Similar to Lemma 4 we can find a mixed strategy p with
support P = {i, i+ 1, . . . ,m} such that the best response of
the attacker has support Q ⊆ {i, i+ 1, . . . ,m}.

Lemma 6: If the defender uses the mixed strategy

pj =


1− Ii

Ii+1
, if j = i,

Ii

Ij
− Ii

Ij+1
, if j ∈ {i+ 1, . . . ,m− 1},

Ii

Im
, if j = m,

0, otherwise,

(19)

then the support of the attacker’s best response needs to satisfy
Q ⊆ {i, i+ 1, . . . ,m}.

Proof: First note that since Ij > Ii if j > i, we
see that each pi ∈ (0, 1). Furthermore, we can verify that∑m

j=1 pj = 1. Hence, the mixed strategy described by (19) is
a proper probability distribution.

Next, we look at the possible best responses of the attacker
to this strategy. The average cost of the attacker is

pTΥq = pT
[
Υ11 Υ12

Υ21 Υ22

]
q

= pTi:mΥ21q1:i−1 + pTi:mΥ22qi:m

=

i−1∑
j=1

qjIj + pTi:mΥ22qi:m,

where we used that Υ12 = 0 and Υ21 =
1i−1[I1, I2, . . . , Ii−1]. Due to the chosen p, we obtain
that pTi:mΥ22 = 1Tm−i+1Ii, which results in the following
average cost

pTΥq =

i−1∑
j=1

qjIj + Ii
m∑
l=i

ql

=

i−1∑
j=1

qjIj + Ii

1−
i−1∑
j=1

qj


= Ii +

i−1∑
j=1

qj(Ij − Ii) ≤ Ii.

The upper bound comes from the fact that Ij < Ii if j ∈
{1, . . . , i − 1} (see Assumption 8). Hence, we see that the

best response of the attacker to the defender’s strategy p is
any mixed strategy q with support Q ⊆ {i, i+ 1, . . . ,m}.

One notable difference between the results given in
Lemma 4 and Lemma 6 is that the defender’s mixed strategy
p given by (19) is valid for all i, while q given by (17) has
the additional constraint (18). However, Lemma 5 shows us
that under a certain condition there exists a unique index i for
which (18) holds. Next, we show that for a specific choice
of i the strategies (17) and (19) form a mixed strategy Nash
equilibrium.

Theorem 2: Let i = i∗ ∈ [1,m − 1] be the smallest
index for which q∗i ∈ [0, 1) in (18) holds such that q∗ is a
proper probability distribution. The mixed strategies p∗ and
q∗ given by (19) and (17), respectively, form a mixed strategy
Nash equilibrium such that p∗ is a MTD if, and only if,
cF
Im

(
1

τm−1
− 1

τm

)
≤ 1.

Proof: We begin by noting that if cF
Im

(
1

τm−1
− 1

τm

)
>

1, then qm > 1 such that (17) is not a proper probability
distribution. Next, we show that if cF

Im

(
1

τm−1
− 1

τm

)
≤ 1 then

i∗ ∈ [1,m − 1] such that qi∗ ∈ [0, 1) exists. For this, we
need to consider three different cases. In the first case, we
assume that 1−

∑m
j=2

cF
Ij

(
1

τj−1
− 1

τj

)
< 0 and cF

Im
( 1
τm−1

−
1
τm

) < 1. Then Lemma 5 shows us that a unique i∗ ∈ (1,m−
1) exists, for which (18) holds and i∗ is also the smallest
index for which qi ∈ [0, 1). In the second case, we assume
that 1−

∑m
j=2

cF
Ij

(
1

τj−1
− 1

τj

)
≥ 0 and cF

Im
( 1
τm−1

− 1
τm

) < 1.
Then i∗ = 1 guarantees that qi ∈ [0, 1). Furthermore, i∗ = 1 is
also the smallest index in this case for which qi ∈ [0, 1). In the
third case, we assume that cF

Im
( 1
τm−1

− 1
τm

) = 1, which shows
us that i∗ = m−1 is the smallest index in this case for which
qi ∈ [0, 1). Hence, there exists a unique index i∗ ∈ [1,m−1],
which is the smallest index such that qi ∈ [0, 1) if, and only,
if cF

Im

(
1

τm−1
− 1

τm

)
≤ 1.

Next, if we use q∗ with i = i∗, we see that the support
of the defender’s best response needs to fulfil P ⊆ {i∗, i∗ +
1, . . . ,m}, which is fulfilled when p∗ is used. Therefore, p∗

is a best response to q∗.
Finally, if we use p∗ with i = i∗, we see that the support

of the defender’s best response needs to fulfill Q ⊆ {i∗, i∗ +
1, . . . ,m}, which is fulfilled when q∗ is used. Therefore, q∗ is
a best response to p∗. Hence, p∗ and q∗ form a mixed strategy
Nash equilibrium and p∗ is a MTD according to Definition 1.

Theorem 2 presents one optimal solution to the optimization
problem (15) when nϕ = 1. Our numerical experiments
in Section VII-B show that the optimal solution obtained
by solving (15) coincides with the equilibrium proposed in
Theorem 2.

Remark 8: Note that if cF
Im

( 1
τm−1

− 1
τm

) = 1, then we have
i∗ = m − 1 and qi∗ = 0 such that the attacker plays a pure
strategy. This means there are at least two Nash equilibria, one
given by p∗ and Im, and one given by τm and Im. In this
case, our matrix game is degenerate but there still exists an
MTD according to Definition 1.

Remark 9: As already mentioned in Remark 3, it is often
reasonable to include an attacker type that has zero payoff for
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all trajectories a such that the defender does also consider the
case without an attacker when choosing the threshold. For the
closed-form solution presented in this section, we are able to
replace Ij by π1Ij to take the attacker type with zero payoff
into account, where π1 ∈ (0, 1] is the probability that the
attack is happening. Interestingly, this modification does not
change the defender’s equilibrium strategy (19). However, it
does lead to a larger i∗ in Lemma 5 (see Section VII-B). This
is consistent with our intuition since the attack will be less
likely to happen and the defender focuses on increasing the
mean time between false alarms by choosing larger thresholds.

VII. NUMERICAL EVALUATION

For the numerical evaluation, we look at a four-tank sys-
tem [31], which we linearize around the input voltage of 6V
and discretize with a sampling time of 0.5 s. We further assume
that w(k) ∼ N (0, 0.1I4) and v(k) ∼ N (0, 0.01I2) and an
LQG controller is used, where the LQR cost matrix for the
states is I4 and the cost matrix for the controller input is I2,
i.e., the controller input u(k) = −Kx(k) minimizes the cost
function

∑∞
k=0 x(k)

Tx(k) + u(k)Tu(k). The attack length is
chosen to be N = 1000 time steps. For anomaly detection, a
χ2 detector is used such that

yD(k + 1) = r(k)T r(k).

A. Bayesian Nash equilibrium

In this part, we solve the optimization problem (15) to
find the equilibrium moving target defense for the defender.
Note that we choose the defender’s set of actions, the attacker
type payoff functions and the factor cF in the defender’s
objective function for illustrative purposes of the presented
MTD framework. In practice, the defender needs to choose cF
according to its cost for false alarm and the payoff functions
of the attacker types could be the result of a risk assessment
as discussed in Section II-E.

The defender considers six thresholds, which correspond to
the following average times between false alarms,

τ ∈ {10, 102, 103, 104, 105, 106}. (20)

These values are chosen to cover a wide range of average
times between false alarms. Further, we use cF = 43200 as
the cost factor for false alarms.

The defender faces nϕ = 5 attacker types. We further
assume that the attack starts at

¯
k = 0. The first attacker type

is an attacker with zero payoff, i.e., f1(a) = 0 for all a. This
type represents the case where there is actually no attacker
present in the system and the defender only has to consider
the cost induced by the false alarms. For the other attacker
types, we use the average value of the plant’s state at the end
of the attack, i.e., x̄ = E{x(N)}, to define the payoff. For
attacker type ϕ ∈ {2, . . . , 5}, we use fϕ(a) = |x̄ϕ−1|2 as the
payoff function. Thus, attacker type 2 attacks the water level
in tank 1, attacker type 3 attacks the water level in tank 2 and
so on. Since a χ2 detector is used, we can use the results of
Proposition 3 in [15] to determine the attack impact for each
attacker type for a given τ .

Equilibrium mixed strategy of defender

=[0.6 0.1 0.1 0.1 0.1]

=[0 0.25 0.25 0.25 0.25]

=[0 0.49 0.49 0.01 0.01]

Fig. 2. The plot shows the MTD of the defender for three different
priors of an attack happening, where the horizontal axis are the defender
actions and the vertical axis shows the probability of choosing the
respective action.

Equilibrium mixed strategy of attacker type 2 to type 5

=[0.6 0.1 0.1 0.1 0.1]

=[0 0.25 0.25 0.25 0.25]

=[0 0.49 0.49 0.01 0.01]

Fig. 3. For three different priors, the equilibrium mixed strategies of
attacker type 2 to type 5 are shown in each of the subfigures. The
horizontal axis shows the attacker actions while the vertical axis shows
the probability of choosing the respective action.

We consider three different scenarios that differ in terms of
their priors πϕ. In the first scenario, the operator assumes that it
is more likely that there is no attack than that there is an attack,
and thus π1 = 0.6 and πϕ = 0.1 for ϕ ∈ {2, . . . , 5}. In the
second scenario, the operator assumes that there is always an
attack but we want to investigate how the defender’s strategy
changes when the attacks are still equally likely, i.e., π1 = 0
and πϕ = 0.25 for ϕ ∈ {2, . . . , 5}. In the third scenario, there
is also always an attack but this time the attacker is assumed
to most likely attack the first and second state of the plant,
i.e., π1 = 0, π2 = π3 = 0.49, and π4 = π5 = 0.01.

Figure 2 shows the equilibrium MTD of the defender for
the three different scenarios. Figure 3 shows the equilibrium
mixed strategies for attacker type 2 to attacker type 5. Using
Lemma 3, we can determine that for the first two scenarios
the defender’s actions τ1 and τ2 are strictly dominated and,
therefore, will not be used in the Bayesian Nash equilibrium.
In the third scenario, only τ1 is strictly dominated and τ2 is
used in the Bayesian Nash equilibrium. This means that the
cost for an attack that is stealthy for τ1 is negligible compared
to the cost for false alarms. Further, this also means none of the
attacker types will use the attack action corresponding to these
thresholds in the respective scenarios, because the attacker
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wants to maximize its payoff. Hence, p∗1 = q∗ϕ,1 = 0 for all ϕ
and these values are not depicted in Figure 2 and Figure 3
for the sake of simplicity. Furthermore, since the attacker
type 1 obtains always zero payoff it does not influence the
objective value of the optimization problem in (15). Therefore,
we can arbitrarily choose q∗1,1:6 = 1

616 as the equilibrium
mixed strategy of attacker type 1 for all three scenarios. This
is not shown in the figures for the sake of simplicity.

From Figure 2, we can observe that the defender chooses
τ6 with the highest probability in the MTD, while the attacker
puts most of the probability weight on the attacks with a lower
payoff than the payoff corresponding to τ6. Since the attack
will not receive any payoff if it is detected, this observation
is reasonable and also shows that the proposed moving target
defense is effectively limiting the attacker payoff. This can
be observed especially in the third scenario, where attacker
type 2 and type 3 are more likely than attacker type 4 and
type 5. In addition to that, the payoffs of attacker type 2 and
type 3 are larger than for type 4 and type 5. Hence, a larger
attacker payoff is more likely than in the second scenario.
Therefore, in the third scenario the defender chooses τ2 with a
non-zero probability to force the attacker to remain undetected
and receive a lower payoff. So we see that in this case having
more false alarms outweighs the cost of having an undetectable
attack.

We can also observe from Figure 2 that the defender has the
same MTD for the first two scenarios. A reason for this is that
in (15) the defender’s constraints will not be affected by the
attacker type with zero payoff. Hence, the constraint set for
choosing p is the same in the first and second scenario due to
the uniform prior across attacker types 2 to 5. For the different
attacker types, it is interesting to see that although the defender
has the same MTD in the first and second scenario, the attacker
types’ mixed strategies do change. We, further, observe that
the mixed strategies q∗2 and q∗3 for attacker type 2 and type
3, respectively, are very close and the mixed strategies q∗4 and
q∗5 are close as well, in all three investigated scenarios. For
example, ∥q∗2 − q∗3∥∞ for the first, second, and third scenario
is 0.0672, 0.0199, and 0.0131, respectively, while ∥q∗4 −q∗5∥∞
for the first, second, and third scenario is 0.0039, 0.0024, and
0.0053, respectively.

Finally, we look at an interesting property of the MTD
obtained by solving (15). The MTD strategy in the first and
second scenario, where all attacker types with a nonzero
impact have the same prior, is

p∗ =
[
0 0 0.25 0.15 0.1 0.5

]T
(21)

while in the third scenario the MTD is

p∗ =
[
0 0.3333 0.1667 0.1 0.0667 0.3333

]T
. (22)

Interestingly, both (21) and (22) have the structure of the
proposed MTD in Theorem 2, although Theorem 2 is only
for the case where the defender faces one specific attacker
type. This can be explained with the structure of the payoff
for each attacker type. We determine that Iϕ

j = αϕJD(τj) for
ϕ ∈ {2, . . . , 5} (Proposition 3 of [15]). Hence, the payoff is
the detector threshold times an attacker type specific constant

αϕ. Therefore, we have that

Iϕ
i

Iϕ
j

=
JD(τi)

JD(τj)
.

Since this ratio is independent of the attacker type ϕ, the
closed-form solution of the defender’s equilibrium MTD for
each of the attacker types is the same.

B. Closed-form solution

We finally evaluate the closed-form solution, where we only
consider one attacker type. The attacker that we consider uses
f(a) = ∥x̄∥2∞ as its attack objective, which can be seen as the
attacker type with the largest payoff among the four attacker
types with a non-zero payoff in the previous section.

We consider a defender that can choose from the six
different mean time between false alarms in (20). Lemma 3
with nϕ = 1 shows us that τ1 = 10 is strictly dominated
by the other strategies and is therefore not used in the Nash
equilibrium. Setting i = 2, i.e., using the set of all strictly
dominating strategies, we determine that q2 = 0.4748 < 1
such that the condition on i in Theorem 2 holds with i∗ = 2.
Using Theorem 2, we determine that

p∗ =
[
0 0.3333 0.1667 0.1 0.0667 0.3333

]T
(23)

and

q∗ =
[
0 0.4748 0.4857 0.0364 0.0029 0.0002

]T
.
(24)

These strategies are also obtained with the optimization prob-
lem (15). So we see that our closed-form solution coincides
with the solution of the linear program when nϕ = 1.
Furthermore, the MTD (23) coincides with (22), while (24)
does not coincide with any of the attacker type distributions
obtained in the previous section.

Next, we evaluate the effect of the size m of the set of
average times between false alarms the defender can choose
from on the smallest index i in the support set of the defender
and its probability q∗i . We do so by considering values of m
from 1 to 100 and set τj = 10+ (j − 1)50, where j ∈ [1,m].
The goal here is to show how the index i changes as the size
of the set of τ varies. First, for a given m the Nash equilibrium
obtained from (15) coincides with the closed-form solution in
Theorem 2 for all investigated m. Now let us analyse how the
index i and with it q∗i changes as m increases. In Figure 4,
we see the index i of the mixed Nash equilibrium in the
upper plot and q∗i in the lower plot over m. Furthermore,
we analyse two different cases, one where the attacker is
always present and one where the prior of the attacker being
present is 0.2 and the prior of an attacker with zero payoff is
0.8 (see Remark 9). First, note the evolution of q∗i over m.
Every time i changes, i.e., the smallest τ used in the Nash
equilibrium changes for a given m, q∗i jumps from a value
close to zero back up to a larger value just to decrease to zero
again as m increases until the next jump. This is consistent
with q∗i = 1 −

∑m
l=i+1

cF
Il

(
1

τl−1
− 1

τl

)
, which is decreasing

as m increases. Take, for example, the interval m ∈ [2, 6]
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Fig. 4. The upper plot shows how the smallest index i = i∗, for
which (18) holds, changes when m increases. The lower plot shows
the trajectory of q∗

i in (17) over m. The solid lines represent the case
with an attacker always being present, while the dashed lines represent
the case where the chance of the attacker being present is 20%.

for the case where there is always an attacker (solid line in
Figure 4). In this interval i = 2 and we see that q∗i has its
maximum 1 at m = 2 and it decays to q∗i = 0.02456 at
m = 6. However, if we choose i = 2 for m = 7, then
q∗i = −0.0148 is smaller than zero and, therefore, using τ2
in the Nash equilibrium does not lead to a proper probability
distribution when m = 6. Hence, i needs to jump from 2
to 3 to guarantee that q∗ is a probability distribution with
q∗i ∈ [0, 1). Furthermore, if m = 100 then only the action
τ1 is strictly dominated. However, in the Nash equilibrium
the smallest τ used has index i = 3. Therefore, we see that
even if an action is not strictly dominated the action is not
necessarily used in the Nash equilibrium. With our results
in Theorem 2 we understand the reasons behind that in the
game presented here. Similar observations are made for the
case when the prior of the attacker with a non-zero payoff is
0.2 (dashed lines in Figure 4). Furthermore, we see since the
attacker is only present with a chance of 20% more strategies
of the defender are strictly dominated. This observation is in
line with our intuition, since the attack is less likely to happen
and the defender can choose larger thresholds to avoid false
alarms without fearing a larger impact.

VIII. CONCLUSIONS

In this paper, we presented a moving target defense strategy
against stealthy sensor attacks. To find the moving target de-
fense, we formulated a game where the defender periodically
switches the detector threshold at random and the attacker
has access to all sensor measurements. While the attacker
wants to maximize its payoff the defender wants to minimize
its cost consisting of the cost for false alarms and the cost
induced by the attacker’s payoff. However, the defender is
not certain about which attacker it faces and only knows
the prior of the attacker’s possible type. We analyzed one
period of this periodic switching game and showed that for
one period we can find a strategically equivalent matrix game.
For this matrix game, we use the Bayesian Nash equilibrium
to determine the equilibrium MTD strategy and presented a

necessary and sufficient condition for when a MTD for the
defender exists. Furthermore, we showed that the MTD can
be found by solving a linear program. For the case, where
the defender only faces one attacker/knows the attacker type
exactly, we presented a closed-form solution for the moving
target defense. In the numerical evaluation, we saw how the
thresholds used by the defender depend on the prior of an
attack happening. The mere threat by the defender of randomly
choosing a lower threshold with a low probability forces each
attacker type to choose attacks with a lower impact which are
stealthy for even small thresholds. The reason for that is that
the attacker will not be able to get a payoff when it is detected.

If we believe that the attacker might observe the defender’s
switching pattern before attacking, the attacker could have
a larger payoff. Therefore, one direction of future work is
not to investigate the Bayesian Nash equilibrium, but the
Bayesian Stackelberg equilibrium, where it is assumed that
the attacker observes the defender first. Another direction of
future work would be to investigate the repeated game setting.
Furthermore, an in-depth analysis of the optimal choice of the
set {τ1, . . . , τm} is also an avenue of future work. Finally,
applying the proposed MTD to more complex processes than
the four-tank system is another important step in validating
the applicability of the MTD.
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