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Abstract—Edge computing (EC) is expected to provide low
latency access to computing and storage resources to autonomous
Wireless Devices (WDs). Pricing and resource allocation in
EC thus have to cope with stochastic workloads, on the one
hand offering resources at a price that is attractive to WDs,
one the other hand ensuring revenue to the edge operator. In
this paper, we formulate the strategic interaction between an
edge operator and WDs as a Bayesian Stackelberg Markov
game. We characterize the optimal strategy of the WDs that
minimizes their costs. We then show that the operator’s problem
can be formulated as a Markov Decision Process and propose
a model-based reinforcement learning approach, based on a
novel approximation of the workload dynamics at the edge
cell environment. The proposed approximation leverages two
Bayesian Neural Networks (BNNs) to facilitate efficient policy
learning, and enables sample efficient transfer learning from
simulated environments to a real edge environment. Our extensive
simulation results demonstrate the superiority of our approach
in terms of sample efficiency, outperforming state-of-the-art
methods 30 times in terms of learning rate and by 50% in terms
of operator revenue.

Index Terms—Edge computing, Markov decision process,
Bayesian neural networks

I. INTRODUCTION

Edge Computing (EC) brings computational resources close
to the network edge, facilitating on-demand offloading of
latency sensitive and computationally intensive tasks from
Wireless Devices (WDs). The commercial deployment of
edge computing faces technological and financial challenges,
however. First, memory, computing and storage resources are
constrained compared to cloud offerings, which is problematic
considering the ambition to serve a varying amount of latency
sensitive tasks. Second, EC requires a pricing model that can
adapt to varying demand, is transparent to the WDs, and is
easy to deploy. Third, the parameters’ of the WDs and their
workloads may not be shared with the edge operator due to
privacy concerns and to keep communication overhead low [1].

Addressing these challenges requires efficient resource man-
agement algorithms that enable the deployment of com-
mercially viable adaptive pricing schemes under information
asymmetry. A common approach in the literature to address
the above problem is to formulate an optimization problem
and to develop algorithmic solutions. This approach becomes
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either computationally infeasible or it has to be based on
assumption that are difficult to uphold in practice [1]–[3].
Another approach is to follow a game theoretic treatment, e.g.,
formulating the problem as an auction [4] or as a Stackelberg
game [5], but these approaches do not scale well either.

The alternative approach is to formulate the problem as
sequential decision making problem under uncertainity and
use model-free reinforcement learning, where a policy is learnt
through interactions with the environment, which typically
requires many interactions for convergence, i.e., it has low
sample efficiency [6], [7]. Hence, how to provide an efficient
solution for pricing and resource allocation under stochastic
workloads and information asymmetry is an open problem.

In this work, we address this problem by proposing a
model-based learning approach. Our approach is based on
training Bayesian Neural Network (BNN) approximators of the
environment, and then training a resource allocation and pric-
ing policy through interaction with the BNN approximators,
without the need for sampling from the real edge environment
to explore new policies. As our results show, this approach has
high sample efficiency and at the same time it ensures high
average revenue over time periods of practical interest.

The rest of the paper is organized as follows. We describe
the system model and the problem formulation in Section II.
We characterize the WDs’s best response in Section III.
In Section IV, we propose an MDP formulation, and we
present our proposed model-based Reinforcement Learning
(RL) solution in Section V. We provide numerical results in
Section VI. We discuss the related work in Section VII. We
conclude the paper in Section VIII.

II. SYSTEM MODEL

We consider an EC system that consists of an edge server
with storage capacity S (in Bytes), compute capacity F (in
Instructions per Second (IPS)) and communication capacity
W (in Hz). The EC system provides Function as a Service
(FaaS) (also known as serverless computing) to a dynamic
population of WDs. There is a set J of applications, and the
edge operator can cache a subset X ⊆ J of the applications,
e.g., the software images required for the execution of the
tasks. The set X of cached applications has to satisfy the
storage capacity constraint

∑
j∈X sj ≤ S where sj is the size

of application image j.



A. User Model

We denote by Ti the arrival time of WD i to the EC system,
and by ϕi ∈ J the type of WD i ∈ N+, i.e., the application
it would like to execute. The computational task of WD i is
characterized by the amount of input data di, by the average
number of instructions (I) per byte Lϕi required to perform the
task, and by the completion time requirement τ li. We assume
that di ∼ Dϕi

is an i.i.d. random variable, known to WD
i. We consider that the arrivals of WDs of type j ∈ J can
be modeled by a homogeneous process Bj with rate Λj . The
arrival processes for different types of WDs are independent.

If application ϕi, which WD i intends to use, is cached
by the operator (ϕi ∈ X ) then WD i can decide whether to
offload the computation to the edge server. We denote by oi the
offloading decision of WD i: oi = 1 corresponds to offloading
and oi = 0 to local computing. If WD i chooses not to offload
or its application is not cached by the operator, then it departs
the edge system and performs its task locally. In what follows
we define the cost model of WD i with and without offloading.

1) Local Computing: If WD i chooses not to offload, the
task needs to be executed using local computing resources
(i.e., local CPU). We denote by f l

i the local processing power
(in IPS) of WD i and we use it to express the local processing
time

τ li =
Lϕi

di
f l
i

. (1)

We consider that f l
i is chosen such that local computing

completes upon the task completion deadline τ li of the task
of WD i, i.e., τ li = τ li. Thus, the task completion deadline
τ li will influence the decision of the WD whether or not to
offload. This assumption is reasonable, as dynamic voltage and
frequency scaling are widely used for reducing the energy con-
sumption of battery powered WDs while meeting performance
needs [8].

2) Computation Offloading: If WD i decides to offload, it
has to transmit di amount of data wirelessly to the edge server
via an Access Point (AP), and then processing is performed
at the edge server. We denote by wi the Bandwidth (BW)
allocated to WD i by the edge operator. Assuming a Gaussian
channel [1], we can express the upload time of WD i by,

τui (pi, wi) =
di

wi log2(1 +
pihi

σ2
i
)
, (2)

where hi is the channel coefficient from WD i to the AP, pi
is the transmit power of the WD i, and σ2

i is the noise power
at the AP. We consider that the transmit power is bounded
by the maximum transmit power pi, i.e. pi ≤ pi. This model
of the transmission rate corresponds to Orthogonal Frequency-
division Multiple Access (OFDMA), adopted in 5G and WiFi6,
which avoids intra-cell interference by using non-overlapping
subcarriers for data transmission [9]. Similar to previous works
[10], we make the common assumption that the time needed
to transmit the results of the computation from the edge server
to the WD is negligible, because for many applications (e.g.,

object detection, recognition and etc.) the size of the output is
significantly smaller than the size of the input data.

We denote by fi the computing power of the edge server
(measured in IPS) allocated to the task of WD i and we express
the processing time at the edge server as

τi(fi) =
Lϕidi
fi

. (3)

If WD i decides to offload then the allocated compute and
communication capacity (fi and wi) will be reserved for the
WD from [Ti, Ti + τui (pi, wi) + τi(fi)], i.e., until WD i is
done with offloading. Hence, the total bandwidth and compute
allocation at any point in time cannot exceed W and F ,
respectively.

3) WD Cost Model: Computation and offloading incur
energy consumption and monetary cost to the WDs. In case
of local computing, the cost is the energy consumed by the
WD for executing the task,

C0
i = τ li (f

l
i )

2κiγi, (4)

where κi is the energy efficiency parameter of WD i (measured
in J per Hz per I2) and γi is the unit local energy cost
(measured in $ per J). γi is determined by the cost of electricity
and by the cost of charging the battery of WD i, e.g., in
terms of time, etc. and serves as the conversion factor from
energy consumption to monetary cost. We make the reasonable
assumption that γi is known to WD i and thus C0

i can be
computed.

In case of offloading, we define the offloading cost as the
sum of the energy consumption cost for transmitting the input
data and the price that is to be paid, i.e.,

C1
i (pi, fi, wi) = τui (pi, wi)piβiγi + πϕi

Lϕi
di, (5)

where βi denotes the transmit antenna power efficiency pa-
rameter of WD i. Then the cost of WD i is

Ci(pi, fi, wi, oi) = (1− oi)C
0
i + oiC

1
i (pi, fi, wi). (6)

We consider that the WDs have a preference for saving
the state of charge of their batteries, thus in case of a tie
between local computing cost and offloading cost the WD
would choose to offload. The local cost associated with a WD
reflects its valuation of task execution, and its formulation
aligns with the modeling approach previously employed in
cloud computing [11]. In economic terms, this valuation is
akin to the concept of the reservation price, which represents
the maximum price a customer would be willing to pay for a
specific product or service [12].

B. Problem Formulation

We consider that the WDs and the operator are rational,
strategic entities. The objective of WD i is to minimize its
cost subject to its completion time requirement, the constraint



on the maximum transmission power, and the caching decision
of the operator. Thus, WD i aims to solve

min
pi, oi

Ci(pi, fi, wi, oi) (7)

s.t. oi(τ
u
i (pi, wi) + τi(fi)) ≤ τ li , (8)

1ϕi∈X − oi ≥ 0, (9)
pi ≤ pi, (10)

where the first constraint ensures that WD i does not offload
if τui (pi, wi) + τi(fi) > τ li , i.e., if the completion time
when offloading exceeds the completion deadline, the second
constraint ensures that WD i offloads only if application ϕi

is cached by the operator and 1(.) is the indicator function,
and the last constraint ensures that the transmit power does
not exceed the maximum transmit power.

Aligned with FaaS pricing models used today, we consider
that the income of the operator depends on the price it sets
for offloading and on whether or not WDs decide to offload.
We model the interaction as follows. Upon arrival of WD
i, the operator offers compute resources fi, communication
resources wi and offloading price πϕi to the WD. Thus the
income that the operator gets from WD i is

Ui,X = oiLϕi
diπϕi

. (11)

We consider that the operator allocates resources subject to
utilization upon arrival i and the capacity, i.e., FΣ

i + fi ≤ F
and WΣ

i +wi ≤W where we denote by FΣ
i =

∑
i∈No

i
fi the

sum of compute power allocations at time Ti, and by WΣ
i =∑

i∈No
i
wi the sum of BW allocations at time Ti, and let N o

i

be the set of offloaders at time Ti.
We consider that the operator aims at maximizing its utility

by choosing a resource allocation and pricing policy θX for
cached applications X , i.e., the operator wants to solve

θ∗X = argmax
θX∈ΘX

EθX

[ ∞∑
i=0

ζiUi,X

]
, (12)

where ζ = e−β/Λ is the discount factor for Λ =
∑

j∈J Λj

and some β > 0. This form of discounting is a reasonable ap-
proximation of discounting in continuous time, and is accurate
for β << 1 and Λ >> 0 since βi/Λ ≈ βTi.

We make the reasonable assumption that the WDs’ pa-
rameters are private information, hence the operator cannot
compute the offloading decision of WD i for given resource
allocation and pricing (fi, wi, πϕi), but it has to learn the
behavior of the WDs. The resulting problem can be modeled as
a Bayesian Stackelberg Markov game with short-run players,
i.e., a dynamic game where the operator (the leader) repeatedly
engages in strategic interaction with one of |J | types of
players, and the stage games affect subsequent stage games
through the evolution of a state (the allocated resources). In
what follows we analyze this game and propose a scalable
solution through model-based RL.

III. USER BEST RESPONSE CHARACTERIZATION

We start the analysis with characterizing the best response
of WD i in a stage game, i.e., for given caching decision X ,
pricing πϕi

and resource allocation fi, wi, announced by the
operator. We first show that the best response has a threshold
structure and can be computed efficiently by the WD.

Lemma 1. Consider a WD i that arrives to the edge cell
where its application is cached by the operator, i.e., ϕi ∈ X .
If τi(fi) > τ li , then o∗i = 0. Otherwise, let p∗i be such that
τui (pi, wi) + τi(fi) = τ li . Then if p∗i > pi, o

∗
i = 0, otherwise,

o∗i =

{
1, πϕi

≤ πi,
0, else,

(13)

where πi = f l
iκiγi − p∗i βiγi(

1
f l
i

− 1
fi
).

Proof. Observe that if τi(fi) > τ li , then WD i cannot complete
the task on time if it offloads, thus to complete the task
before the deadline it has to perform local computing, i.e.,
the optimal offloading decision is o∗i = 0. Otherwise, WD i
should choose a transmit power that minimizes its cost while
ensuring timely completion. Observe that the uploading time
τui (pi, wi) is a strictly monotonically decreasing function of
pi, and C1

i (pi, fi, wi) is a strictly monotonically increasing
function of pi. Thus, WD i minimizes its cost by choosing
a transmit power p∗i that yields τui (pi, wi) + τi(fi) = τ li .
Now, if p∗i > pi then offloading is not feasible. Otherwise,
if p∗i ≤ pi then the optimal decision is to offload if and only
if C1

i (pi, fi, wi) ≤ C0
i , i.e.,

o∗i =

{
1, τui (p

∗
i , wi)p

∗
i βiγi + πϕi

Lϕi
di ≤ τ li (f

l
i )

2κiγi,
0, else.

(14)
Since, the optimal transmit power yields τui (p

∗
i , wi)+τi(fi) =

τ li , we can substitute τui (p
∗
i , wi) = τ li −τi(fi), (1) and (3) into

(14), and obtain (13), which proves the result.

Lemma 1 shows that for a given action (fi, wi, πϕi
) of the

operator, WD i can compute its optimal action o∗i efficiently.
The lemma further shows that the optimal transmit power p∗i
yields a completion time that is equal to the task completion
deadline, which intuitively aligns with the trade-off between
faster transmission rates and increased energy consumption
associated with increased transmit power.

IV. Markov Decision Process (MDP) FORMULATION FOR A
FIXED CACHING DECISION

Given the best response of the WDs, we now focus on the
maximization of the operator’s revenue. Observe that, given
the WDs’ best response and a belief about the distribution
of WD types and parameters, the operator’s problem can
be modeled as a sequential decision making problem under
uncertainty. We indeed first show that the operator’s problem
can be formulated as a MDP. A continuous state MDP is
defined as a tuple ⟨S,A, R,P, ζ,P0⟩ where S is the state
space, A is the set of actions, As is the set of actions available
in state s [13], Ri(si, ai) is the instantaneous reward at time



step i as a function of the state si ∈ S and the action ai ∈ Asi .
P is the state transitions that describes the state transition
probability densities p[si+1|si, ai],∀si ∈ S,∀ai ∈ A. Finally,
P0 is the probability density function of the initial state.

Before formulating problem (12) as an MDP, we introduce
some notation. Let Ho

i = (i′, Ti′ , ϕi′ , fi′ , wi′ , πϕi′ )i′∈No
i

be
the collection of the parameters of the WDs that offload at
time Ti. We denote by T d

i = Ti + τui (p
∗
i , wi) + τi(fi) the

departure time of WD i if it offloads. Furthermore, we let N
o

be the maximum number of offloaders that the edge server can
serve concurrently.

Next, we show that problem (12) can be formulated as an
MDP, by considering the system state at the arrival epochs of
the WDs, as follows.

Theorem 1. Let si = (ϕi, di, F
Σ
i ,WΣ

i , Ti,Ho
i ), let ai =

(fi, wi, πϕi), let Ri(si, ai) = Oi(ϕi, di, ai)Lϕidiπϕi where
Oi(ϕi, di, ai) ∈ {0, 1} is a Bernoulli random variable. Then
problem (12) is an MDP.

Proof. Based on the state definition si, the state space S :
|J | × R+ × [0, F ] × [0,W ] × RN

o

× [0, F ]N
o

× [0,W ]N
o

,
and the action space is A : [0, F ]× [0,W ]×R. Observe from
Lemma 1 that the optimal offloading decision is computed
based on the given action ai and the parameters of the WD
i. However, the only WD parameters known by the operator
upon the arrival are Lϕi

and di. Thus, the reward due to
arrival i becomes Ri(si, ai) = Oi(ϕi, di, ai)Lϕidiπϕi . Next,
we need to show that the probability of a state transition
from si to state si+1 when taking action ai can be fully
described by si and ai, i.e., that the state transitions have
the Markov property. Let N d

i = {i′ ∈ N o
i |T d

i′ ≤ Ti+1} be
the set of departed WDs between time (Ti, Ti+1]. As the
operator takes action on every arrival, the amount of used
computation and communication resources can be expressed as
FΣ
i+1 = FΣ

i −
∑

i′∈Nd
i
fi′+Oi(ϕi, di, ai)fi and WΣ

i+1 = WΣ
i −∑

i′∈Nd
i
wi′ + Oi(ϕi, di, ai)wi, respectively. The probability

of transitioning from (FΣ
i ,WΣ

i ,Ho
i ) to (FΣ

i+1,W
Σ
i+1,Ho

i+1)
when taking action ai can be expressed as

P[FΣ
i+1,W

Σ
i+1,Ho

i+1|FΣ
i ,WΣ

i ,Ho
i , ai, Ti+1] = (15)

P[Oi(ϕi, di, ai) = oi|di, ϕi, ai,Ho
i ]∏

k∈Nd
i

P[T d
k ≤ Ti+1|Tk]

∏
k∈No

i \Nd
i

P[T d
k > Ti+1|Tk].

Thus, the transition probability from si to si+1 when taking
action ai is

p[si+1|si, ai] = P[FΣ
i+1,W

Σ
i+1,Ho

i+1|FΣ
i ,WΣ

i ,Ho
i , ai, Ti+1]

P[ϕi+1|Ho
i ]p[di+1|ϕi+1]p(Ti+1). (16)

Clearly, (16) shows that the state transitions have the Markov
property, hence (12) is an MDP.

Since (12) is a MDP, an optimal policy could be computed
using a model free (MF) RL approach. Nonetheless, this
approach is impractical due to the large state space of the
resulting MDP. To overcome this issue, in what follows we

propose an approach that learns an approximate model of the
system dynamics for improving sample efficiency.

V. Approximate Dynamic Resource Allocation and Pricing
(ADRAP)

Our proposed ADRAP algorithm is based on a novel model-
based RL approach. Existing model-based RL approaches
learn an approximate state transition probability function
p̂[si+1|si, ai] and an approximate reward function R̂i(si, ai),
and use these for training a policy θ through simulated inter-
actions, which is then deployed in the real environment [14].
Nonetheless, in the considered problem the state transition
probabilities cannot be approximated easily due to the aleatoric
uncertainty caused by the WDs’ workloads.

A. Environment Model

We propose to approximate the distribution of five quantities
to decribe the system dynamics: the interarrival time distribu-
tion, the type ϕi of the next WD, the amount of data Di, the
task completion time τ li as a function of the action fi, wi and
the offloading decision Oi(ϕi, di, ai) of a WD as a function
of the allocation fi, wi and the offered πϕi .

Recall that the arrival process Bj is assumed to be homoge-
neous and the input size Di is i.i.d, hence the corresponding
samples can be generated directly using inverse transform
sampling based on the empirical CDFs of the collected data.
The completion time and the decision to offload depend,
however, on the decision of the operator. To deal with the
dependence of these random variables on fi, wi and the πϕi

,
we propose to use two BNNs as approximators. We approx-
imate the completion time τ̂i = fτ (x

τ
i , zi;Wτ ) + ϵτi where

fτ (x
τ
i , zi;Wτ ) is the output of a BNN trained to estimate the

task completion time τ̂i for given input xτ
i = [ϕi, di, fi, wi],

and zi is a random disturbance with prior zi ∼ N (0,Γz),
lastly, ϵτi ∼ N (0, σ̃τ ) is Gaussian noise. Similarly, we ap-
proximate the offloading decision P[Oi(ϕi, di, ai) = 1] =
1
Nd

∑Nd

k=1 fo(x
o
i , zk;Wo) + ϵok, where fo(x

o
i , zi;Wo) is the

output of a BNN trained to estimate the offloading probability
for given input xo

i = (ϕi, di, fi, wi, πi), and ϵok ∼ N (0, σ̃o)
is Gaussian noise. For brevity, we omit the derivation of the
posterior and of the energy function, and refer to [14]–[16]
for details.

B. Model-based RL

Our proposed algorithm is presented in Algorithm 1. We
first choose a low dimensional state representation si =
(ϕi, di, F

Σ
i ,WΣ

i ) for our approximate MDP model. Initially
(Line 2) we employ a random policy to take Ntra transition
samples from the environment, which constitute the training
data D. The training data D are subsequently used for training
the BNN approximators (Line 3) using stochastic gradient
descent. We then use the BNN approximators with a model-
free RL algorithm (Line 4) for learning policy θ∗, which the
operator employs in the real environment.



Algorithm 1: ADRAP Algorithm

1: Initialize the training buffer D and a random policy θ
2: D ← ENV-INTERACT(Ntra)
3: Wr,Wτ ← TRAIN-BNN(D)
4: θ∗ ←FICTIONAL-TRAIN(Wo,Wτ , Ntra)
5:
6: procedure FICTIONAL-TRAIN(Wo,Wτ , Ntra)
7: for i ≤ Ntra do
8: Ti ∼ B̂ϕi

▷ Generate arrival time from the
estimated arrival process

9: Di ∼ D̂ϕi ▷ Sample from the estimated input
size distribution

10: si = (ϕi, di, F
Σ
i ,WΣ

i ) ▷ WD i arrives
11: Take action θ(si)→ ai = (fi, wi, πϕi

)
12: Ri(si, ai) = 0
13: Po(ϕi, di, ai) =

1
Nd

∑Nd

k=1 fo(x
o
i , zk;Wo) + ϵok

14: if Po(ϕi, di, ai) ≥ U(0, 1) then
15: FΣ

i+1 = FΣ
i + fi, WΣ

i+1 = WΣ
i + wi

16: Ri(si, ai) = Lϕi
diπϕi

17: τ̂i = fτ (x
τ
i , zi;Wτ ) + ϵτi

18: end if
19: // Handle departures
20: Update θ based on (si, ai) using a MF approach
21: end for
22: end procedure

VI. NUMERICAL RESULTS

We used extensive simulations to evaluate the performance
of the proposed ADRAP algorithm.

We consider an edge system with storage capacity S =
256 GB, and compute capacity F = 10000 GIPS, corre-
sponding to small compute cluster. The bandwidth is W =
100 MHz, which is typical in sub-6 GHz 5G deployments.
The operator caches 3 applications, and we consider four
workload scenarios that differ in the arrival intensities of the
types of WDs. We refer to these as Cells #1 to #4. The task
complexities, data sizes and inter-arrival time distributions at
the cells are shown in Table I.

The operator allocates fi ∈ [200, 1000] GIPS and wi ∈
[0.1, 20] MHz to a WD, while the price πϕi ∈ [10−6, 10−3] $/I.
The maximum transmission power pi of the WDs is drawn
from a uniform distribution on [0.1, 1] W and f l

i is uniform
on [1, 10] GIPS. The channel channel gain hi and the noise
variance σ2

i are uniformly distributed on [0.3, 1] and [0.1, 1],
respectively. The energy efficiency parameter κi and the unit
energy cost parameter βi are 10−2 J/Hz/I2, and on 10−3, re-
spectively. We set γi = 10−2 $/J. These choices of parameters
are similar to those used in [17].

The hyperparameters and output activation functions of the
BNNs are shown in Table II. In order to train the BNNs we
have collected 10000 transition samples for Cells #2,#3,#4
and 30000 transition samples for Cell #1 as the arrival
intensity of App 0 in Cell #1 is relatively low. We used
the ADAM optimizer [18] to find with learning rates 0.005
and 0.03 and 600 training epochs for BNNs fo(., .;Wo) and

Cell j Lj [KI/GB] Dj [GB] Type [s]

#1

App 1 400 U(0.01, 0.1) Exp(2000)
App 2 100 U(0.2, 0.5) Exp(1000)
App 3 3 U(0.01, 0.1) Exp(20)

#2

App 1 400 U(0.01, 0.1) Exp(200)
App 2 100 U(0.2, 0.5) Exp(1000)
App 3 3 U(0.01, 0.1) Exp(20)

#3

App 1 40 U(0.01, 0.1) Exp(200)
App 2 10 U(0.2, 0.5) Exp(1000)
App 3 3 U(0.01, 0.1) Exp(20)

#4

App 1 40 U(0.01, 0.1) Γ(10,20)
App 2 10 U(0.2, 0.5) Γ(100,10)
App 3 3 U(0.01, 0.1) Γ(20,1)

TABLE I: Workload parameters in the considered scenarios.

fτ (., .;Wτ ) respectively.
We consider three baselines for the evaluation. The first

baseline is Proximal Policy Optimization (PPO), a model-
free RL algorithm [19], with the state definition employed
in ADRAP. We do not provide results for PPO with state
definition given in Theorem 1 as it converges in the order
of years, which is clearly not feasible. The second baseline
is the pricing scheme for the Multi-Resource Online Knap-
sack (MROK) problem proposed in [11], which is a user-
specific pricing scheme based on the instantaneous system
load. The pricing scheme assumes one type of allocation of
the resources, as these showed the best performance. The third
baseline is a state of the art model based RL approach (Model
Based-PPO (MB-PPO)), where two BNNs are used to estimate
the next state and the reward for training the PPO policy. The
results shown are the averages of at least 10 simulations per
cell environment, together with 95% confidence intervals.

A. Operator Revenue

Fig. 1a and Fig. 1b show the operator’s average revenue as a
function of the number of arrivals (i.e., time), corresponding to
a time intervals of approximately 8 months. The results show
that ADRAP can well approximate the real environment model
already after ten thousand arrivals, and hence the average
revenue of ADRAP is about 50% higher than that of the
baselines and provide up to 30 times faster learning compared
to PPO. Among the baselines, MROK outperforms PPO and
MB-PPO in terms of learning rate and performance. This is
because MROK only chooses a price, hence its complexity
is lower than that of the learning-based solutions. Comparing
the results for different cells, we can observe that the revenue
obtained in Cell #2 is significantly higher than that in Cell #1
as the arrival rate of high complexity applications (App 1 and
2) is higher, allowing the operator to charge more. Similarly,
Cell #2 has higher revenue than Cell #3 and Cell #4 as the task
complexity of App 1 and 2 in these cells is 10 times lower.
This shows that the achievable revenue is to a large extent
determined by the task complexities and the arrival intensities
of the applications with high task complexity. On the contrary,
the revenue is insensitive to the inter-arrival time distribution
for given arrival rate (c.f. revenue in Cell #3 and Cell #4).



(a) Average revenue vs. number of
arrivals for Cells #1 and #2

(b) Average revenue vs. number
of arrivals for Cells #3 and #4

B. Operator’s Policy

Fig. 2 shows the policy computed using ADRAP per ap-
plication for cells #1,#2,#3,#4. The figure shows that the
operator offers a higher price to WDs offloading an application
with high computation and communication resource demands
(c.f. App 0 and 1 in Cell #1 and #2). Recall that the threshold
price πi shown in Lemma 1 is an increasing function of
di and Lϕi which makes WDs willing to offload for higher
prices. This shows that ADRAP can learn the reservation
costs (C0

i ) of the WDs and adjusts the price accordingly.
Similarly, the operator offers a high allocation of compute
resources to WDs that have an application type with high
compute resource demand to enable WDs to meet their task
completion deadlines τ li (c.f. compare App 0 and 2 in Cell
#1). Interestingly, the operator allocates more communication
resources to App 0 in Cell #2 than in Cell #1. This is
due to that the arrival intensity of App 0 is higher in Cell
#2 than in Cell #1, and the policy combines computation
and communication resources to balance the offloading cost
of the WDs. This also affects the allocations for App 2 for
Cell #2, as there is less communication resource left to be
allocated to App 2, and hence a higher compute allocations are
required. Similarly, we observe that when the arrival intensity
is higher, as in Cell #3 and Cell #4, the operator allocates
communication and computing resources more uniformly. This
implies that communication resource allocation is to a large
extent determined by the arrival intensity of the WDs.

C. Consumer Surplus and Offloading Probability

Fig. 3 shows the offloading probability and the average
consumer surplus (C0

i − C1
i ) as a function of the number of

WDs that arrived. The figure shows that the policies computed
by ADRAP and by PPO converge to similar values, showing
the accuracy of the proposed approximation used in ADRAP.
Observe that MROK has higher consumer surplus compared
to ADRAP, which shows that it cannot adapt to the WDs’
reservation costs, i.e., it offers a lower price. The figure also
shows that MB-PPO cannot learn a good policy, owing to that
the BNNs cannot approximate the state transition probabilities.
The results for the offloading probability (Fig. 3a and Fig. 3b)
confirm these observations, as a low price would result in a
higher offloading probability.

Parameter fo(., .;Wo) fτ (., .;Wτ )
Hidden Layers 2 2

Number of Hidden Neurons 50 50
Hidden Layer Activation ReLu ReLu

Output Activation (tanh(5x) + 1)/2 Linear
Nd 50 50

Batch size Ntra/10 Ntra/10
σ̃o, σ̃τ 1 0.1

TABLE II: Hyperparameters for training the BNNs that esti-
mate the offloading probability and the task completion time.

(a) Operator’s policy per applica-
tion for Cell #1.

(b) Operator’s policy per applica-
tion for Cell #2.

(c) Operator’s policy per applica-
tion for Cell #3.

(d) Operator’s policy per applica-
tion for Cell #4.

Fig. 2: Operator’s policy per application for cells #1 to #4.

VII. RELATED WORK

The joint optimization of edge compute and communica-
tion resources and pricing has been considered in a handful
of recent works [4], [5], [20]. Authors in [4] proposed an
auction for resource allocation and offloading, where resource
allocation is based on bids from the WDs for a portion
of the available edge resources. In [5], authors model the
interaction of a revenu maximizing operator of EC and WDs as
a Stackelberg game, and assume that WDs request the optimal
amount of edge resources under a budget constraint. In [20],
authors use a game theoretic approach to model the strategic
interaction between users and the services. Unlike our work,
calculating the optimal price and resource allocation require
prior information about the traffic and workload characteristics
and WDs’ parameters, which could be unrealistic in practice.
These assumptions are usually made to have an analytically
tractable solution or a solution that could be computed effi-
ciently in real time. Different from these works, our solution
infers the dynamics of the traffic without assuming complete
information.

Most related to ours are recent works that consider pricing
under dynamic workload and incomplete information [6],
[7], [11], [21], but these work are different from our work in
two important ways. First, for the works [6], [7], the training
phase is very long, which makes the proposed approaches



(a) Probability of offloading Po

vs. number of arrivals for cells #1
and #2.

(b) Probability of offloading Po

vs. number of arrivals for cells #3
and #4

(c) Average consumer surplus vs.
number of arrivals for cells #1
and #2.

(d) Average consumer surplus vs.
number of arrivals for cells #3
and #4.

Fig. 3: Offloading probability (Po) and average consumer surplus vs. number of arrivals for cells #1 to #4, from left to right.

infeasible in practice, since training requires exploration of
prices, which can lead to revenue loss for a long period of time.
The pricing scheme proposed in [7] requires training on 104

servers, while the number of training epochs (i.e., days) is 400
in [6, Fig.1]. Second, authors in [11], [21] propose algorithms
for fast computation of the optimal pricing under dynamic
workload, these works do not consider resource optimization.
Unlike these works, we propose an approach for increasing the
sample efficiency through model-based learning, using BNNs
to approximate the edge environment dynamics, and eliminate
potential long-term revenue loss of the edge operator due to
slow learning of the optimal policy.

VIII. CONCLUSION

We have considered the joint optimization of pricing and
computing and communication resource allocation for task
offloading in EC under a dynamic workload. We showed
that the resulting sequential decision making problem can be
modeled as a MDP, and we proposed a sample efficient model-
based RL algorithm based on a novel approximation of the
environment dynamics using BNNs approximators. We used
simulations to show that our proposed approach can learn a
good policy several orders of magnitude faster than model-free
RL, and outperforms online learning in terms of the profit of
the edge operator. Interesting directions of future work include
exploring a multi-edge cell environment with diverse workload
characteristics and WDs. Our approach could possibly be
extended to transfer information among cells and would thus
allow faster training and increased operator revenue.
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