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Abstract—We consider the problem of resource allocation,
pricing and application caching for latency sensitive task of-
floading in serverless edge computing. We model the interaction
between a profit-maximizing operator and cost-minimizing Wire-
less Devices (WDs) as a Stackelberg game where the operator is
the leader and decides the price, resource allocation and set of
applications to cache, while the WDs are the followers and decide
whether to offload their tasks. We first show that the game has a
Subgame Perfect Equilibrium (SPE), but computing it, is NP-hard.
Importantly, we show that an SPE, which maximizes the opera-
tor’s revenue, results in minimal energy consumption among the
WDs. For computing an approximate SPE, we propose a linear
time approximation algorithm with bounded approximation ratio
for resource allocation and pricing, and we propose an efficient
heuristic based on the utility density of individual applications for
the joint optimization of caching, resource allocation and pricing.
Our results show that the proposed algorithm outperforms state-
of-the-art methods by up to an order of magnitude both in terms
of revenue and total energy savings and has small computational
overhead. An interesting feature of our results is that the utility of
the operator is maximized by a solution that maximizes the WDs’
energy savings through computation offloading, which makes it a
promising candidate for energy efficient edge cloud deployments.

Index Terms—Edge computing, Function as a service, Stack-
elberg game, Combinatorial optimization, Convex optimization

I. INTRODUCTION

Serverless computing (also called Function as a Service
(FaaS)) is transforming the cloud computing landscape by
offering a paradigm shift in the way applications are developed
and deployed [1]–[3]. It eliminates the need for users to
manage the server infrastructure, enabling them to focus solely
on writing code to implement business logic [4], [5]. Its ease
of use combined with the pay-as-you-go billing model make
serverless computing a particularly appealing service model
from a user perspective. At the same time, it allows the cloud
operator more freedom in managing its communication and
computing resources for serving the user demand.

Serverless computing at the edge could provide low-latency
access to computing resources on-demand to mobile Wireless
Devices (WDs), enabling task offloading for computation-
ally intensive applications without advance reservation of
resources, thereby saving battery power [6]–[8]. Nonetheless,
from the operator’s perspective, the inherent capacity con-
straints in edge computing make the adoption of serverless

computing at the edge challenging compared to centralized
clouds [9], as communication, storage and computing re-
sources have to be orchestrated for meeting application latency
requirements, and at the same time, the operator’s financial
interests have to be catered for.

The orchestration of wireless and compute resources at the
edge have been extensively studied in recent years [10]–[14].
Nonetheless, the management of storage and the availability of
executable code at the edge servers, which are prerequisites for
serverless computing, received less attention. Existing works
focus mainly on minimizing the total cost of the WDs in terms
of delay, energy consumption, or their combination [15]–[18],
but they do not consider the financial interests of the edge
operator: the operator’s objective is arguably the maximization
of its profit, while the minimization of the total cost of the
WDs and their latency constraints should rather be considered
a possibly conflicting secondary objective or a constraint.

Indeed, storage, computing and communication resource
allocation and pricing are mutually dependent. The availability
of code determines whether a WD is able to offload, the
compute and communication resources determine whether
offloading would meet the latency requirements, and the price
determines whether it is worthwhile to offload. The decisions
of the WDs in turn determine the revenue of the operator
and hence its decision what applications to make available.
Optimal pricing and resource management is thus inherently
challenging and at the same time fundamental for realizing a
serverless edge ecosystem.

In this work, we address this challenging problem. We
model the interaction between a profit-maximizing operator
that performs storage management, resource allocation and
pricing, and cost-minimizing autonomous WDs that can of-
fload their computation subject to code availability and latency
requirements as a Stackelberg game. Based on the model, we
propose a pricing scheme that maximizes the operator’s rev-
enue and simultaneously incentivizes the WDs to make energy
optimal decisions. Our main contributions are as follows;
• we propose a Stackelberg game to model the interaction

between the operator and latency sensitive WDs,
• we show that a Subgame Perfect Equilibrium (SPE) exists

in the proposed Stackelberg game,
• we show that the joint optimization of pricing and the

allocation of wireless and computational resources is a
convex problem for given set of offloading WDs, and
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the solution results in an equilibrium that minimizes the
energy consumption the WDs,

• we show that computing an optimal set of offloading
WDs is NP-hard, and we propose a linear complexity
approximation algorithm,

• we show that computing the optimal set of applications to
cache is NP-hard and we propose an efficient algorithm
for computing an approximate solution

• we provide numerical results based on simulations that
show that our proposed algorithm is efficient for the joint
optimization of caching, resource allocation and pricing,
and it outperforms state-of-the-art algorithms.

The rest of the paper is organized as follows. We present the
system model and the problem formulation in Section II. We
show the best response of the WDs and the the existence
of equilibria in Section III. We address optimal resource
allocation and pricing for a fixed set of offloaders in Section IV
and we propose an approximation algorithm to compute a near
optimal set of offloaders in Section V. We address the problem
of caching in Section VI, and we show numerical results in
Section VII. We discuss related work in Section VIII, and
Section IX concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multi-access edge computing system that
consists of an edge server with storage capacity S managed
by an operator, and a set N = {1, 2, . . . , N} of WDs that
can offload their computational tasks for execution at the
edge server through a wireless link. WD i ∈ N wants to
execute a task of type φi ∈ J , where J denotes the set of
applications (i.e. set of task types). The applications are the
software images required for the execution of the tasks. The
computational task of WD i is characterized by the size Di

of the input data in terms of bytes, by the expected number
Lj of instructions (I) per byte required to perform the task for
j = φi, and by the completion time requirement τ̄ li defined by
the WD.

The edge operator can decide to cache a subset X ⊆ J of
applications subject to its storage capacity constraint∑

j∈X
sj ≤ S, (1)

where sj is the memory size of the application image. If
the application that WD intends to use is cached by the
operator (φi ∈ X ) then WD i can decide whether to offload
the computation to the edge server. We denote by ai the
offloading decision of WD i; ai = 1 corresponds to offloading
and ai = 0 to local computing. If WD i offloads then it
is charged a price of πi ≥ 0 and is given a portion of the
finite processing capacity F and finite bandwidth capacity W
by the edge operator. The price and the resource allocation
are decided by the operator before the WDs decide whether
or not to offload. Fig. 1 illustrates a system with |J | = 6
applications and N = 7 WDs. We next present our model of
local computing and computation offloading, followed by the
problem formulation.

A. Local Computing

If WD i chooses not to offload, the task needs to be
executed using local computing resources (i.e., local CPU).
We denote by f li the local processing power (measured in
Giga Instructions per Second (GIPS)) of WD i and we use it
to express the local processing time as

τ li =
LφiDi

f li
. (2)

We consider that f li is chosen such that local computing
completes upon the task completion deadline τ li of the task
of WD i, i.e., τ li = τ̄ li . Thus, the task completion deadline
τ̄ li will influence the decision of the WD whether or not to
offload. This assumption is reasonable, as dynamic voltage
and frequency scaling is widely used for reducing the energy
consumption of battery powered WDs while meeting perfor-
mance needs [19]–[21].

B. Computation Offloading

If WD i decides to offload, it has to transmit Di amount
of data over the wireless channel to the edge server via an
Access Point (AP), and then processing is performed at the
edge server. We denote by wi the bandwidth allocated to WD
i by the edge operator and, we make the common assumption
of a Gaussian channel [11]. We can then express the upload
time of WD i using the Shannon formula [22],

τui (pi, wi) =
Di

wi log2(1 + pihi
σ̄2
i

)
, (3)

where hi is the channel coefficient from WD i to the AP,
pi is the transmit power of the WD i, and σ̄2

i is the noise
power at the AP. We consider that the transmit power is
bounded by the maximum transmit power p̄i, i.e. pi ≤ p̄i.
This model of the transmission rate corresponds to Orthogonol
Frequency Division Multiple Access (OFDMA), adopted in 5G
and WiFi6 [23], [24], which allocates resource blocks (also
called resource units) to WDs for data transmission and avoids
intra-cell interference despite simultaneous transmissions from
multiple WDs by using non-overlapping subcarriers.1 [25].
Similar to previous works [15], [26], [27], we make the
common assumption that the time needed to transmit the
results of the computation from the edge server to the WD
is negligible, because for many applications (e.g., object
detection, recognition and tracking) the size of the output is
significantly smaller than the size of the input data.

We denote by fi the allocated computing power of the edge
server (measured in GIPS) and we express the processing time
at the edge server as

τei (fi) =
LφiDi

fi
. (4)

1The communication model could be extended to account for interference
among WDs. Doing so would make the analysis more involved, but would
not affect the validity of Lemma 1 and Theorem 1.
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Fig. 1: Figure shows a system with J = {A,B,C,D,E, F}
and |N | = 7. The operator chooses applications X =
{B,C,E} to cache. The dotted arrows show that WDs choose
to offload to the edge server to reduce their computation costs.
The WDs without arrow choose to execute their task locally.

C. WD Cost Model

Computation and offloading incur energy consumption and
monetary cost at the WDs. In case of local computing the cost
is the energy consumed by the WD for executing the task,

C0
i = τ li (f

l
i )

2κliγi, (5)

where κli is the energy efficiency parameter of the WD with
unit J per Hz per GI2 and γi is the unit local energy cost with
unit of $ per J. γi is determined by the cost of electricity and
by the cost of charging the battery of WD i, e.g., in terms
of time, etc. and serves as the conversion factor from energy
consumption to its monetary cost. We make the reasonable
assumption that γi is known to WD i and thus C0

i can be
computed.

In case of offloading, we define the offloading cost as the
sum of the energy consumption cost for transmitting the input
data and the price that is to be paid, i.e.,

C1
i (pi, ρρρi, a−i) = τui (pi, wi)piβiγi + πi, (6)

where a−i denotes the offloading decisions of WDs i′ ∈
N \ {i}, βi denotes the transmit antenna power efficiency
parameter of WD i. Let us define the vector ρρρi = [fi , wi]
of resources allocated to WD i, then the cost of WD i is

Ci(ai, pi, ρρρi, a−i) = (1− ai)C0
i + aiC

1
i (pi, ρρρi, a−i). (7)

We consider that the WDs have a preference for saving the
state of charge of their batteries, thus in case of a tie between
local computing cost and offloading cost the WD would choose
to offload. The local cost of a WD represents its valuation
of task execution, and its formulation is consistent with the
modeling approach used formerly in cloud computing [28],
[29]. In economic terms, this valuation corresponds to the
reservation price, which is the highest price that a customer
would pay for a particular product or service [30], [31].

D. Problem Formulation

We consider that the WDs and the operator are rational,
strategic entities. The objective of WD i is to minimize its

cost subject to its completion time requirement, the constraint
on the maximum transmission power, and the caching decision
of the operator. Thus, WD i aims to solve

min
pi, ai

Ci(ai, pi, ρρρi, a−i), (8)

s.t. ai(τ
u
i (pi, wi) + τei (fi)) ≤ τ li , (9)

ai = 0, φi /∈ X , (10)
pi ≤ p̄i, (11)

where the first constraint ensures that WD i does not offload
if τui (pi, wi) + τei (fi) > τ li , i.e., if the completion time
when offloading, exceeds the task completion deadline, the
second constraint ensures that the WD can only offload if its
application is cached by the operator, thus offloading will not
result in cold start of the application, and the last constraint
ensures that the transmit power remains within the limit of the
maximum transmit power. We refer ai ∈ Ai = {0, 1} as the
action set of WD i denoting local computing and offloading
respectively.

Aligned with FaaS pricing models used today, we consider
that the income of the operator depends on the price it sets
for offloading and on whether or not WDs offload. Thus the
operator’s utility from the offloading WDs is

UX (aaa,ρρρ,πππ) =
∑
i∈N

ai1φi∈Xπi. (12)

where 1φi∈X is the indicator function, and we refer to the col-
lection aaa = (ai)i∈N as the offloading decision of the WDs. We
refer to the collection ρρρ = (ρρρi)i∈N as the resource allocation
decision, and to the collection πππ = (πi)i∈N ∈ [0, π̄]N as the
pricing decision, where π̄ ∈ R is a sufficiently large constant
that serves as an upper bound on the price.

We consider that the operator aims at maximizing its utility,
by choosing resource allocation ρρρ, prices πππ, and caching
decision X , i.e., the operator wants to solve

max
πππ,ρρρ,X⊆J

UX (aaa,ρρρ,πππ), (13)

s.t.
∑
i∈N

fi ≤ F,
∑
i∈N

wi ≤W,
∑
j∈X

sj ≤ S. (14)

The resulting problem is a multiple-follower single leader
Stackelberg game, where the operator is the leader and the
WDs are the followers. We refer to the problem as the Joint
Pricing, Caching and Resource Allocation Game (PICRA). We
are interested in the existence of Stackelberg equilibria and the
complexity of computing equilibria, under complete informa-
tion, i.e., the system parameters and utilities are known. While
this assumption may seem strong, it enables us to analyze the
structure of the game and formulate an approach for computing
an equilibrium. Moreover, analyzing the complete information
case serves as an initial step for subsequent analysis under
incomplete information [10], [12], [32], [33]. We start with
solving the problem faced by the WDs, and we then turn to
solving the problem faced by the operator.
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N Set of WDs

J Set of applications

ji Application used by WD i

Di Size of input data [MB]

Lj Expected complexity of app j [I/B]

τ̄ li Completion time requirement of WD i [s]

τ li Local computing time of WD i [s]

ai Offloading decision of WD i

X Set of cached applications

sj Memory size of application j [GB]

S Storage capacity of the operator [GB]

F Computing capacity of the operator [GIPS]

W Bandwidth capacity of the operator [Hz]

πi Price of the EC service [$]

pi Transmit power of the WD i [W]

p̄i Maximum transmit power of WD i [W]

hi Channel coefficient from WD i to AP

σ̄2
i Noise power at the AP [W]

fi Allocated computing capacity to WD i by MEC [GIPS]

γi Cost of electricity [$ / J]

κli Energy efficiency parameter of WD i [J/Hz/GI2]

βi Transmit antenna power efficiency of WD i

TABLE I: Summary of frequently used notations.

III. WD BEST RESPONSE CHARACTERIZATION AND
EXISTENCE OF EQUILIBRIA

We start the analysis with characterizing the best response
of the WDs for given caching decision X , pricing πππ and
resource allocation ρρρ, announced by the operator. For caching
decision X , we denote by NX = {∀i ∈ N|φi ∈ X} the set of
WDs whose applications are cached by the operator, i.e., the
potential offloaders, and we define NX = |NX |. We first show
that the best response of the WDs has a threshold structure and
can be computed efficiently.

Lemma 1. Consider a WD i ∈ NX . If τei (fi) > τ li then
a∗i = 0. Otherwise let p∗i be such that τui (pi, wi)+τ

e
i (fi) = τ li .

Then if p∗i > p̄i, a∗i = 0, otherwise

a∗i =

{
1, πi ≤ Ti,
0, else,

(15)

where Ti = LφiDiγi(f
l
iκ
l
i − p∗i βi( 1

f li
− 1

fi
)).

Proof. Observe that if τei (fi) > τ li , then WD i cannot
complete the task on time if it offloads, thus to complete the
task before the deadline it has to perform local computing, i.e.,
the optimal offloading decision is a∗i = 0. Otherwise, WD i
should choose a transmit power that minimizes its cost while
ensuring timely completion. Observe that the uploading time
τui (pi, wi) is a strictly monotonically decreasing function of
pi, and C1

i (pi, ρρρi, a−i) is a strictly monotonically increasing
function of pi. Thus, i minimizes its cost by choosing a
transmit power p∗i that yields τui (p∗i , wi) + τei (fi) = τ li .
Now, if p∗i > p̄i then offloading is not feasible. Otherwise,

if p∗i ≤ p̄i then the optimal decision is to offload if and only
if C1

i (ai, ρρρi, a−i) ≤ C0
i , i.e.,

a∗i =

{
1, τui (p∗i , wi)p

∗
i βiγi + πi ≤ τ li (f li )2κliγi,

0, else.
(16)

Since, the optimal transmit power yields τui (p∗i , wi)+τei (fi) =
τ li , we can substitute τui (p∗i , wi) = τ li−τei (fi), (2) and (4) into
(16), and obtain (15), which proves the result.

We know by Lemma 1 that the operator can compute the
WDs’ best replies for a given strategy ρρρ,πππ,X . Given the best
response of the WDs, we next show the existence of a SPE,
defined as follows.

Definition 1 (Subgame Perfect Equilibrium (SPE) [34]). Let
(ρρρ∗,πππ∗,X ∗) be a solution of (13)-(14), and let aaa∗ be a
solution of (8)-(11). Then the point (ρρρ∗,πππ∗,X ∗, aaa∗) is an SPE
of the PICRA game if for any feasible (ρρρ,πππ,X , aaa) point the
following holds,

UX∗(aaa
∗, ρρρ∗,πππ∗) ≥ UX (aaa∗, ρρρ,πππ), (17)

Ci(a
∗
i , p
∗
i , ρρρ
∗
i , a
∗
−i) ≤ Ci(ai, pi, ρρρ∗i , a∗−i), (18)

∀{ai, pi} ∈ Ai × [0, p̄i],∀i ∈ N .

We now prove the existence of SPE.

Theorem 1. The PICRA game possesses a SPE.

Proof. By Lemma 1, for given (ρρρ,πππ,X ), the best response
aaa∗ is unique and can be computed efficiently. Then, by the
extreme value theorem [35], there exists a solution to problem
(13)-(14), and this solution is by definition an SPE. This proves
the result.

Observe that the operator could use Theorem 1 for computing
an SPE. Thus, we turn to the analysis of the complexity of
computing an SPE.

IV. OPTIMAL RESOURCE ALLOCATION AND PRICING FOR
A FIXED SET OF OFFLOADERS

We start by considering a feasible caching decision X of the
operator, i.e,

∑
j∈X sj ≤ S, and a set N o

X = {i ∈ NX | ai =
1} of offloaders. We are interested in computing the optimal
resource allocation and pricing, i.e., one that results in the
optimal utility UN

o
X
X for given caching decision X and set of

offloaders N o
X .

For given set of caching decision X and set of offloaders
N o
X , the optimal utility UN

o
X
X of the operator is the solution to

max
(πi,ρρρi)i∈NoX

∑
i∈NoX

πi, (19)

s.t.
∑
i∈NoX

fi ≤ F,
∑
i∈NoX

wi ≤W, (20)

fi ≥ f li , wi ≥ 0, ∀i ∈ N o
X , (21)

p∗i ≤ p̄i,∀i ∈ N o
X , (22)

τui (p∗i , wi)p
∗
i βiγi + πi ≤ C0

i ,∀i ∈ N o
X , (23)

where (21), (22), (23) are necessary constraints for WDs to
be able to offload, consistent with (8)-(11).
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Our first result characterizes the optimal pricing strategy πππ∗

of the operator, i.e., πππ∗ = (π∗i )i∈NX .

Proposition 1. Consider that problem (19)-(23) is feasible for
N o
X , i.e., there is a resource allocation ρρρ and price πππ such that

WDs i ∈ N o
X can offload. Then the operator’s optimal pricing

strategy is π∗i = C0
i − τui (p∗i , w

∗
i )p∗i βiγi for i ∈ N o

X where
(f∗i , w

∗
i )i∈NoX = ρρρ∗(N o

X ) is the solution of

min
(ρρρi)i∈NoX

∑
i∈NoX

τui (p∗i , wi)p
∗
i βiγi, (24)

s.t.
∑
i∈NoX

fi ≤ F,
∑
i∈NoX

wi ≤W, (25)

fi ≥ f li , wi ≥ 0,∀i ∈ N o
X , (26)

p∗i ≤ p̄i,∀i ∈ N o
X , (27)

τui (p∗i , wi)p
∗
i βiγi ≤ C0

i ,∀i ∈ N o
X . (28)

Proof. Observe that in the optimal solution of problem (19)−
(23) , the constraint (23) is always active. Hence, the optimal
price satisfies π∗i = C0

i −τui (p∗i , w
∗
i )p∗i βiγi. Next, observe that

the original problem (19)-(23) is equivalent to

max
(ρρρi)i∈NoX

∑
i∈NoX

C0
i − τui (p∗i , wi)p

∗
i βiγi, (29)

s.t.
∑
i∈NoX

fi ≤ F,
∑
i∈NoX

wi ≤W, (30)

fi ≥ f li , wi ≥ 0,∀i ∈ N o
X , (31)

p∗i ≤ p̄i,∀i ∈ N o
X , (32)

τui (p∗i , wi)p
∗
i βiγi ≤ C0

i ,∀i ∈ N o
X . (33)

Observe that
∑
i∈NoX

C0
i is constant and hence, the solution

set of (29)-(33) is the same as that of (24)-(28), which proves
the result.

Importantly, Proposition 1 implies that computing the op-
timal price requires computation of the resource allocation
(f∗i , w

∗
i )i∈NoX that minimizes the total transmission energy

cost. We next show that problem (24) − (28) is convex, thus
an optimal strategy can be computed using numerical solvers
for a given set of offloaders [36].

Theorem 2. Problem (24)-(28) is a convex problem.

Before providing the proof of the theorem, we present two
auxiliary results.

Lemma 2. The optimal transmit power is p∗i =
σ̄2
i

hi
(2

(Lφiwi(
1

fl
i

− 1
fi

))−1

− 1). p∗i is a convex and monotonically
decreasing function of (fi, wi) for W ≥ wi ≥ 0 and
F ≥ fi ≥ f li .

Proof. We provide the proof in the Appendix.

Lemma 2 shows that the optimal transmit power of the WD
is a convex function of the allocated resources. We now use
this result to show that the offloading energy cost is a convex
function of the computing and wireless capacity allocation.

Lemma 3. τui (p∗i , wi)p
∗
i is a convex monotonically decreasing

function of (fi, wi) for W ≥ wi ≥ 0 and F ≥ fi ≥ f li .

Proof. We provide the proof in the Appendix.

Proof of Theorem 2. The convexity of constraints (27), (28)
and of the objective function (24) follow from Lemma 2 and
Lemma 3. The capacity constraints in (20) are convex and
compact. This proves the convexity of the problem.

Thus, if (24) − (28) is feasible then it can be solved in
polynomial time, e.g., using interior point methods [36]. Using
numerical solvers is, however, computationally not feasible if
decisions are to be taken in real time. In what follows, we thus
propose a closed-form approximate solution that can obtain a
good solution at minimal computational effort.

Proposition 2. Let N o
j be the set of offloaders that execute

application j ∈ J , and let Lφi = L. Assume that Lwi
(

1
f li
−

1
fi

)
→∞ and fi > f li , and consider that the constraints (27)

and (28) are not binding, corresponding to the high capacity
case. Then the optimal solution is

w∗i = W

√
Hi∑

k∈Noj

√
Hk

f∗i = F
f li∑

k∈Noj
f lk
,∀i ∈ N o

j (34)

where Hi =
σ̄2
iDiβiγi log(2)

hi
.

Proof. Since the problem (24)-(28) is convex, any feasible
allocation ρρρ∗ that satisfies the Karush-Kuhn-Tucker (KKT)
conditions will be optimal if Slater’s condition holds. To obtain
the KKT conditions, consider the Lagrangian dual [36]

L(ρρρ,λλλ) =

|Noj |∑
k=1

τuk (p∗k, wk)p∗kβkγk + λ1(
∑
i∈Noj

fi − F )

+ λ2(
∑
i∈Noj

wi −W ) +

|Noj |∑
i=1

λi+2(τui (p∗i , wi)p
∗
i βiγi − C0

i )

+

|Noj |∑
i=1

λi+|Noj |+2(p∗i − p̄i),

(35)

and denote by λλλ∗ the KKT multipliers in the optimal solution.
Recall from Lemma 3 that the objective function is monoton-
ically decreasing in (fi, wi),∀i ∈ N o

j , thereby the capacity
constraints in (20) will always be binding in the optimal solu-
tion, i.e. f∗i = F−

∑
i′∈Noj \{i}

f li′ , w
∗
i = W−

∑
i′∈Noj \{i}

wi′ ,
λ∗1, λ

∗
2 > 0. Since we consider the high capacity case where

constraints (27) and (28) are not binding, the KKT multipliers
λ∗k = 0, for k > 2 in order to satisfy complementary slackness
conditions. Next, we show that the stationary conditions can
be expressed as

∂τui (p∗i , w
∗
i )p∗i βiγi

∂wi
+ λ∗2 = 0,

∂τui (p∗i , w
∗
i )p∗i βiγi

∂fi
+ λ∗1 = 0.

(36)

Observe that the term A in (70) is approximately 1 in the
high capacity case, and the expression A − 1 − log(2)A

LwiK
is

approximately −(LwiK)−2 in (71). These approximations are
indeed valid for LwiK >> 1 and fi > f li . We then obtain the
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expressions in (34), which satisfy the primal feasibility condi-
tions, where we use the notation Hi =

σ̄2
iDi log(2)βiγi

hi
. Observe

that λ∗2 = −∂τ
u
1 (p∗1 ,w

∗
1 )p∗1

∂w1
≥ 0 and λ∗1 = −∂τ

u
1 (p∗1 ,w

∗
1 )p∗1

∂f1
≥ 0

by Lemma 3, hence satisfying dual feasibility. Finally, comple-
mentary slackness conditions are satisfied since λ∗1 ≥ 0, λ∗2 ≥
0 and λ∗k = 0, k > 2. Thus, we found the primal and dual
optimal points ρρρ∗,λλλ∗ that satisfy the KKT conditions.

Proposition 2 shows that under high capacity conditions a
closed form approximate solution could be used to further
decrease the computation time. Unfortunately, (24)−(28) need
not be feasible in general, i.e., there may be a set N o

X such
that some i ∈ N o

X cannot offload, in which case the optimal
utility U

NoX
X = 0. We thus turn to computing the optimal set

of offloaders.

V. CHOOSING AN OPTIMAL SET OF OFFLOADERS

In this section we show how to choose the set of offloaders
that maximizes the operator’s utility for given caching deci-
sion, i.e., we address the problem

max
NoX⊆NX

max
(ρρρi)i∈NoX

∑
i∈NoX

C0
i − τui (p∗i , wi)p

∗
i βiγi, (37)

s.t.
∑
i∈NoX

fi ≤ F,
∑
i∈NoX

wi ≤W, (38)

fi ≥ f li , wi ≥ 0,∀i ∈ N o
X , (39)

p∗i ≤ p̄i,∀i ∈ N o
X , (40)

τui (p∗i , wi)p
∗
i βiγi ≤ C0

i ,∀i ∈ N o
X . (41)

Recall that for given N o
X , the inner maximization problem

is computable by Theorem 2 and Proposition 1. Thus the
optimization problem (37)-(41) is a set function maximization
problem over the ground set NX , and can be equivalently
written as,

U
N∗X
X = max

NoX⊆NX
U
NoX
X . (42)

A. Complexity Analysis

Our first result in this section shows that problem (37)-(41)
is NP-hard.

Proposition 3. Problem (37)-(41) is NP-hard.

Proof. Before providing the proof we first introduce some
notation. We write the optimal utility as a difference of the
total local cost of the set of offloaders N o

X and the total energy
consumption cost due to transmitting data to the edge server,

U
NoX
X =

∑
i∈NoX

C0
i −

∑
i∈NoX

E
NoX
i , (43)

where we denote by E
NoX
i = τui (p∗i , w

∗
i )p∗i βiγi the trans-

mission energy consumption cost at the optimal resource
allocation (f∗i , w

∗
i ) = ρρρ∗i (N o

X ), and we denote by E(N o
X ) =∑

i∈NoX
E
NoX
i the total transmission energy cost for the set N o

X
of offloaders.

In what follows we prove the result through reduction from
the partition problem, which is known to be NP-hard.

Problem 1 (Partition Problem). Given positive integers
b1, b2, . . . , bk is there a vector z = [z1, z2, . . . , zk] with
zi = {0, 1},∀i, 1 ≤ i ≤ k such that

∑k
i=1 bizi = A where∑k

i=1 bi = 2A?

Given an instance of the partition problem, we let NX = k,
and let the corresponding set of WDs be NX . Let us set
f li = bi, Lφi = Di = σ̄2

i = hi = γi = βi = κli = 1,
this implies C0

i = bi. We set F = A + 0.99, which allows
a set of offloaders N o

X with
∑
i∈NoX

f li ≤ A + 0.99. Since
bi’s are positive integers, the set of offloaders have at most∑
i∈NoX

f li = A. From (34) we calculate w∗i = W
|NoX |

for any

N o
X ⊆ NX . Similarly, from (34), f∗i = (A+0.99)bi∑

i∈NoX
bi

. For the

reduction to work, we need to ensure that the total energy
consumption E(N o

X ) < 1 for any feasible N o
X . With this,

operator would always choose N o
X with maximal

∑
i∈NoX

C0
i

from (43) since bi ≥ 1 by the partition problem up to∑
i∈NoX

f li = A. We first set a suboptimal resource allocation
for the WDs and satisfy E(N o

X ) < 1. If a suboptimal
allocation satisfies this inequality, so does the optimal one.
We set w′i = W

k ≤ w∗i and f ′i = (A+0.99)bi
A ≤ f∗i since∑

i∈NoX
bi ≤ A in any feasible solution of any N o

X ⊆ NX .
Next, we set the transmission power as

p′i = (2

1

w′
i
( 1
bi
− 1
f′
i
)

− 1), ∀i ∈ NX , (44)

thus the transmission energy cost becomes

E′i = (
1

bi
− 1

f ′i
)(2

1

w′
i
( 1
bi
− 1
f′
i
)

− 1). (45)

Assume a hypothetical case that all bi = 1 and k = 2A.
Then there has to be a set N o

X with
∑
i∈NoX

C0
i = A. In

this scenario, f ′i will be the lowest by its definition, thus the
energy consumption cost will be the highest from Lemma 3.
Observe that the only unknown variable in (45) is W , thus
one can find W such that E′(N †X ) =

∑
i∈N †X

E′i < 1 and

|N †X | = A. This ensures that any set of offloaders in the N o
X

has E′(N o
X ) < 1. After setting W , we calculate p′i, ∀i ∈ NX

and set p̄ > maxi p
′
i. Observe that by construction, if the

answer to the partition problem is YES, then the solution set
of our problem is N ∗X and gives

∑
i∈N∗X

bi = A and z∗i = bi
such that i ∈ N ∗X , if the answer is NO then our problem has
solution

∑
i∈N∗X

bi < A. This concludes the proof.

The NP-hardness of the problem implies that an optimal set
of offloaders cannot be computed efficiently. Thus, we are
interested in designing an approximation algorithms that can
compute a near optimal solution efficiently.

B. Singleton Greedy Maximization

Before we describe our proposed algorithm, let us recall the
definition of monotonicity and submodularity of set functions.
These two properties of set functions are widely relied upon
in the design of approximation algorithms.

Definition 2 (Monotonicity). Let Ω be a finite set and V :
Ω→ R a set function. V is monotone if for any Ω† ⊂ Ω and
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i ∈ Ω \ Ω† we have V (Ω† ∪ {i}) ≥ V (Ω†). That is, adding
a new element to any feasible input of the function does not
decrease its value.

Definition 3 (Submodularity). Let Ω be a finite set. The set
function V : 2Ω → R, where 2Ω denotes the power set of Ω,
is submodular if for every Ω† ⊆ Ω′ and ω ∈ Ω\Ω′ it satisfies

V (Ω† ∪ {ω})− V (Ω†) ≥ V (Ω′ ∪ {ω})− V (Ω′). (46)

Monotonicity and submodularity are known to allow efficient
approximation algorithms [37], but the utility of the operator
is neither monotone (see Proposition 6 in the Appendix) nor
submodular in general (see Proposition 7 in the Appendix).
Nonetheless, as we show next, the operator’s utility is sub-
modular in the high capacity region.

Lemma 4. Under high capacity conditions, the utility function
U
NoX
X is submodular, and can be expressed as

U
NoX
X =

∑
i∈NoX

C0
i − τui

(
p∗i ,

W
√
Hi∑

j∈NoX

√
Hj

)
p∗i βiγi, (47)

where p∗i =
(

2

∑
j∈NoX

√
Hj

LW
√
Hi(

1
fl
i

−

∑
j∈NoX

fl
j

Ffl
i

)

− 1
)
σ̄2
i

hi
.

Proof. As shown in Proposition 1, for all i ∈ N o
X , the optimal

price is π∗i = C0
i − τui (p∗i , w

∗
i )p∗i βiγi, the optimal utility will

be

U
NoX
X =

∑
i∈NoX

C0
i − τui (p∗i , w

∗
i )p∗i βiγi =

∑
i∈NoX

C0
i −

LDi

( 1

f li
− 1

f∗i

)(
2

(Lw∗i ( 1

fl
i

− 1
f∗
i

))−1

− 1
) σ̄2

i βiγi
hi

. (48)

To show submodularity we need to show that

U
NoX∪{i

′}
X + U

NoX∪{j}
X ≥ UN

o
X∪{i

′,j}
X + U

NoX
X . (49)

We show (49) holds, by showing that inequality holds for the
each individual WD using (48). For WD i′ and j local cost
at the both sides of the inequality (49) cancel out. Observe
from (34) that w∗i and f∗i decreases as number of offloaders
increases, hence, for WD i′ and WD j, EN

o
X∪i

′

i′ ≤ EN
o
X∪{i

′,j}
i′

and E
NoX∪i

′

j ≤ E
NoX∪{i

′,j}
j hold since transmission energy

cost is monotonically decreasing function of (fi, wi) from
Lemma 3. Thus for only WD i′ and WD j inequality (49)
holds.

We next define F l =
∑
k∈NoX

f lk, and WH =
∑
k∈NoX

√
Hk

for notational simplicity. Next, we need to show that the
inequality (49) holds for any WD i ∈ N o

X . For a WD i, (49)
can be expressed as(
F − (F l + f li′)

)(
2

Ffli (W
H+
√
H
i′ )

LW
√
Hi(F−(Fl+fl

i′
))

)
+(

F − (F l + f lj)
)(

2

Ffli (W
H+
√
Hj)

LW
√
Hi(F−(Fl+fl

j
))

)
≤
(
F − (F l + f lj + f li′)

)(
2

Ffli (W
H+
√
Hj+
√
H
i′ )

LW
√
Hi(F−(Fl+fl

j
+fl
i′

))

)
+(

F − F l
)(

2
FfliW

H

LW
√
Hi(F−Fl)

)
, (50)

after substituting f∗i , w
∗
i from (34) and applying algebraic

manipulations.

Next we define g(x) = (F − x)2
FfliW

H

LW
√
Hi(F−x) , which is

convex for x ≤ F . By the definition of convexity we know
that

g(x′+z)+g(x′+y) ≤ g(x′+y+z)+g(x′), x′, y, z > 0, (51)

thus

g(F l + f li′) + g(F l + f lj) ≤ g(F l + f li′ + f lj) + g(F l), (52)

holds. To conclude the proof, let us define the functions

v(x, y) = (F − x)2
Ffli (W

H+y)

LW
√
Hi(F−x) and,

χ(y, z) = v(F l + f li′ + f lj , y + z)+

v(F l, 0)− v(F l + f li′ , y)− v(F l + f lj , z). (53)

Notice that showing χ(y, z) ≥ 0 is equivalent to showing (50)
holds. Thus if we show that ∂χ(y,z)

∂y ≥ 0 and ∂χ(y,z)
∂z ≥ 0

for any y, z ≥ 0, this would imply that χ(y, z) ≥ 0 since
χ(0, 0) ≥ 0 from (52). The partial derivatives are

∂χ(y, z)

∂y
=
Ff li log(2)

LW
√
Hi

(
2

Ffli (W
H+y+z)

LW
√
Hi(F−(Fl+fl

i′
+fl
j
))

− 2

Ffli (W
H+y)

LW
√
Hi(F−(Fl+fl

i′
))

)
, (54)

∂χ(y, z)

∂z
=
Ff li log(2)

LW
√
Hi

(
2

Ffli (W
H+y+z)

LW
√
Hi(F−(Fl+fl

i′
+fl
j
))

− 2

Ffli (W
H+z)

LW
√
Hi(F−(Fl+fl

j
))

)
. (55)

Observe that ∂χ(y,z)
∂y ≥ 0, ∂χ(y,z)

∂z ≥ 0 for any y, z ≥ 0,
hence (50) holds for any i ∈ N o

X . We already showed that
inequality holds for WD i′ and j. Thus, (49) holds as well.
This concludes the proof.

Lemma 4 shows that the utility function is submodular and
monotone under certain conditions, and thus existing ap-
proximation algorithms for monotone submodular functions
can guarantee an approximation ratio bound of 1

2 , e.g., by
always adding an element based on marginal gain [38] with
O(N 2

X ) time complexity. In what follows we propose an
approximation algorithm with lower computational complexity
called Singleton Greedy Maximization (SGM). The algorithm
greedily adds WD i∗ to the set of offloaders with the highest
singleton utility, i.e., obtained when only WD i∗ offloads.
Then since the utility is not monotone with respect to set of
offloaders, the algorithm checks for the increase of the utility
after the addition of WD i∗ in Line 4. It then removes the WD
i∗ from the ground set and keeps iterating until the ground set
becomes empty. A flow chart of the proposed SGM algorithm
is shown in Fig. 2. The flow chart also marks the steps in
the proposed algorithm that have been made possible by our
analytical results.

SGM is computationally very efficient, and at the same
time it allows an approximation ratio bound. As we show in
Proposition 6 and Proposition 7, the considered problem is nei-
ther submodular nor monotone in general. An approximation
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Algorithm 1 SGM

Require: X ,NX return USGMX ,N SGM
X

1: N SGM
X = ∅

2: for 1 : NX do
3: i∗ = argmaxi∈NX U

i
X

4: N SGM
X = argmaxNoX∈{NSGMX ,NSGMX ∪{i∗}} U

NoX
X

5: NX = NX \ {i∗}
6: end for
7: USGMX = U

NSGMX
X

Compute optimal
singleton utility 

 (Line 3)

Lemma 1

Theorem 1

NO

YES

Remove the
WD from the
set of WDs

(Line 5)

Add the WD
to the set of
offloaders

YESNO Return the set of
offloaders and the

utility (Line 7)

Theorem 2

Iterate over the
number of WDs

 (Line 2)

Increase in utility?
(Line 4)

Is the set empty?

Fig. 2: Flow chart of the proposed SGM algorithm.

ratio bound for this kind of set maximization problems is not
known in general. Nonetheless, in what follows, we develop
an approximation ratio bound based on two properties of the
total transmission energy cost function E(.), introduced in the
next two lemmas.

Lemma 5. Let N o
X be such that Problem (24) − (28) has a

feasible solution. Then

E(N o
X ) ≥

∑
i∈NoX

E({i}). (56)

Proof. Observe that for any N o
X 3 i the transmission energy

consumption cost EN
o
X

i is minimal when N o
X = {i}, since in

this case the optimal solution for the operator is to allocate
f∗i = F,w∗i = W , i.e. WD i gets the full capacity. The
statement then follows from E(N o

X ) =
∑
i∈NoX

E
NoX
i , which

concludes the proof.

Lemma 6. Let N o
X ⊆ NX , then

U
NoX
X ≤

∑
i∈NoX

U iX . (57)

Proof. We will first use the decomposition of the utility in the
form of (43). Then we write out (57) as,∑

i∈NoX

C0
i −

∑
i∈NoX

E
NoX
i ≤

∑
i∈NoX

C0
i −

∑
i∈NoX

E(i), (58)

∑
i∈NoX

E(i) ≤
∑
i∈NoX

E
NoX
i = E(N o

X ), (59)

holds from Lemma 5 if N o
X admits a feasible solution. If N o

X
does not admit a feasible solution then U

NoX
X = 0, and (57)

holds trivially since U iX ≥ 0,∀i ∈ NX . This concludes the
proof.

Lemma 6 shows the intuitive result that the sum of the utility
of WDs offloading individually is higher than when all WDs
offload simultaneously. Based on this result, we are now ready
to derive a bound on the approximation ratio of SGM.

Theorem 3. Let N ∗X be the optimal set of offloaders for given
caching decision X , and let N SGM

X be the set of offloaders

computed by SGM. Then,U
N∗X
X
N∗X
≤ UN

SGM
X
X , i.e.; SGM is a 1

N∗X
-

approximation algorithm.

Proof. By using Lemma 6 we write the upper bound of the
optimal utility,

U
N∗X
X ≤

∑
i∈N∗X

U iX ≤ N∗XU i
∗

X , (60)

U
N∗X
X
N∗X

≤ U i
∗

X ≤ U
NSGMX
X , (61)

where i∗ = argmaxi∈NX U
i
X . In the first iteration of the

algorithm, the WD with maximal singleton utility i.e., i∗, is
chosen by the algorithm. Thus, i∗ ∈ NSGM

X provided that
there is i ∈ NX such that U iX > 0. In the rest of the
iterations if the algorithm chooses a new WD j 6= i∗ that
implies U i

∗

X ≤ U i
∗,j
X thanks to Line 4. Thus, justifies (61).

This concludes the proof.

Importantly, Theorem 3 provides a bound on the worst case
performance of the proposed SGM algorithm.

VI. OPTIMAL CACHING POLICY

In this section, we address the problem of choosing an
optimal set of applications to cache, i.e.,

max
X⊆J

U
N∗X
X s.t.

∑
j∈X

sj ≤ S. (62)

Choosing an optimal set of applications is NP-hard, a result
that can be shown using the same approach as in Proposition
3 by setting φi /∈ ∪i′∈NX \{i}φi′ ,∀i ∈ NX i.e., all WDs want
to execute different applications, and by setting si = bi, and
setting F and W high enough such that E(N ) < 1. We
next show that despite the non-monotonicity of the utility
function with respect to the addition of new WDs to the set of
offloaders, the utility of the operator is a monotone function
with respect to the addition of new applications to the cached
set.

Proposition 4. Let X ⊆ J and j ∈ J \ X . Then

U
N∗X∪{j}
X∪{j} ≥ U

N∗X
X . (63)

Proof. We will prove the statement by contradiction. Let UN
∗
X
X

be the optimal utility for caching decision X . Let U
N∗X∪{x}
X∪{x}

be the optimal utility for caching decision X ∪ {x}. Assume
that UN

∗
X
X > U

N∗X∪{x}
X∪{x} , thus N ∗X 6= N ∗X∪{x}. It is clear that
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Algorithm 2 SRM

Require: J ,N return USRM ,N ∗X
1: X = ∅
2: while

∑
j∈X sj ≤ S ∧ J 6= ∅ do

3: j∗ = argmaxj∈J
USGMj

sj
4: if S ≥

∑
j∈X∪{j∗} sj then

5: X = X ∪ {j∗}
6: end if
7: J = J \ {j∗}
8: end while
9: USRM = USGMX . Compute using SGM

N ∗X ⊆ NX ⊆ NX∪{x}. If N ∗X gives higher utility compared
to N ∗X∪{x}, then the operator would choose N ∗X instead of

N ∗X∪{x} when set X ∪{x} is cached. Hence, U
N∗X∪{x}
X∪{x} cannot

be optimal, which is a contradiction. This concludes the proof.

At the same time, the operator’s utility with respect to the
addition of a new application need not be submodular in
general.

Proposition 5. Let X ⊆ X ′ and j ∈ J \ X ′, then

U∗X∪{j} − U
∗
X Q U∗X ′∪{j} − U

∗
X ′ , (64)

i.e., the optimal utility U∗X need not be submodular with
respect to the set of cached applications.

Proof. The proof is based on a counterexample and is given
in the Appendix.

Thus, the problem (62) is a monotone non-submodular
set function maximization problem subject to a knapsack
constraint, imposed by the cache capacity constraint. Recently
proposed solutions for such problems provide approximation
guarantees, but at the price of high computational cost [39],
we thus propose a fast heuristic called Singleton Revenue Max-
imization (SRM), which uses SGM for pricing and resource
allocation. The algorithm first calculates the utility of each
individual application j ∈ J using SGM. Then, it selects the
application j∗ with the highest utility to storage size ratio (Line
3) and adds it to the to caching decision set if storage capacity
allows (Line 4-6). The algorithm then removes the application
j∗ from the ground set J (Line 7). The algorithm stops when
all applications have been considered or if the storage capacity
is exceeded. Fig. 3 shows the flow chart of the proposed SRM
algorithm, including the interaction between SGM and SRM.

VII. NUMERICAL RESULTS

We used extensive simulations to evaluate the performance
of the proposed algorithm in terms of operator utility, sim-
ulation time, total energy saving and consumption through
task offloading, the number of offloaders in SPE and provide
a sensitivity analysis of the proposed algorithm to faults in
wireless communication.

For the evaluation we consider a system with up to N = 200
WDs, and up to |J | = 50 applications. The storage capacity

YES

Find the app with highest
density
(Line 3)

Remove the app
from the set of apps

(Line 7)

Do not add it
to the cached

set

Add it to the
cached set

(Line 5)

YES NO

SGM

Return the
computed

utility

NOIs the condition in
Line 2 satisfied?

Violation of the
storage constraint?

(Line 4)

Fig. 3: Flow chart of the proposed SRM algorithm.

Lj Unif(100, 500) I/B

sj Unif(1, 2.5) GB

F 200 GIPS

W 200 MHz

S 10 GB

p̄i Unif(100, 1000) mW

f li Unif(0.5, 3) GIPS

Di Unif(5, 50) MB

σ̄2
i Unif(0.1, 1)

hi Unif(0.1, 1)

κli Unif(10−22, 10−19) J/Hz/GI2

βi Unif(10−3, 1)

γi 0.1 $/J

TABLE II: Overview of the simulation parameters.

is S = 10 GB, and the computational complexity Lj is drawn
from a uniform distribution on [100, 500] I/B and size of the
application sj is drawn from a uniform distribution on [1, 2.5]
GB. The computational capacity of the edge server is F = 200
GIPS, and total channel bandwidth W = 200 MHz. The task
type φi of WD i is chosen uniform at random from the set J .
The maximum transmission power p̄i is drawn from a uniform
distribution on [100, 1000] mW, f li is drawn from a uniform
distribution on [0.5, 3] GIPS, Di is drawn from a uniform
distribution on [5, 50] MB. The channel noise variance σ̄2

i and
the channel gain hi is uniformly distributed on [0.1, 1] and
[0.1, 1], respectively. The energy efficiency parameter κli and
the unit energy cost parameter βi are drawn from a uniform
distribution on [10−22, 10−19] J/Hz/GI2 , and on [10−3, 1],
respectively. We set γi = 0.1 $/J, ∀i ∈ N . These choices
of parameters are similar to those used in works [17], [32].
The results shown are the averages of at least 200 simulations,
together with 95% confidence intervals, which are within 1%
of the mean. The simulations were conducted using Matlab on
a desktop computer with Intel i9 and on a server with AMD
EPYC 7543P CPU.

We consider five baselines for the evaluation. The first
baseline is exhaustive search over the set of offloaders and
computes the optimal resource allocation and pricing. The
second baseline is called Random Greedy Selection (RGS);
it randomly chooses a set of WDs, calculates the optimal
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Fig. 4: Relative error in resource allocation vector and utility
for 200 randomly generated problem instances, obtained using
a numerical method and using the proposed approximation.
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Fig. 5: Utility vs. number of WDs, |J | = 1.

utility and returns it if it is positive, else chooses another
set of WDs. The third baseline is called Marginal Greedy
Maximization (MGM), and is based on the greedy algorithm
proposed in [40]. MGM computes the marginal utility of each
WD, and adds the WD with the highest marginal gain to the
set of offloaders if doing so increases the utility. The last
two baselines are approaches that are widely used in previous
works [10], [32]. The first, Equal Sharing (ES) allocates
resources equally among offloading WDs. The second, Load
Proportional (LP) allocation, allocates resources to all WDs
proportionally to their task complexity LφiDi.

For computing the optimal set of cached applications we
use three baselines. The first baseline is Popularity Based
Caching (PBC), which selects the set of applications with
the highest number of WDs |{φi ∈ X |}| while satisfying
the storage constraint. The second baseline is Utility Based
Caching (UBC), which chooses the set of applications with
highest

∑
i∈NX LφiDi. The third baseline is Random Selection

(RS), which chooses a random set of applications satisfying
the storage constraint.

A. Validation of the Approximate Resource Allocation

We first evaluate the accuracy of the proposed approxima-
tion in (34). Fig. 4 shows the mean absolute relative error
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Fig. 6: Simulation time [s] vs. number of WDs, |J | = 1.
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Fig. 7: Utility vs. number of WDs, |J | = 20.

of the resource allocation vector and of the utility computed
using the proposed approximation and using the interior point
method. To create high capacity conditions, we set W to
2 GHz, p̄i is drawn uniformly from [1, 2] W, βi is drawn
uniformly from [10−8, 10−6], Lφi is drawn uniformly from
[1500, 2000] and κli is drawn uniformly from [10−20, 10−19]
J/Hz/GI2 so that the constraints (27) and (28) are not binding
for all WDs. The figure shows that under these conditions the
approximation is very accurate.

B. Choosing Optimal Set of Offloaders

Fig. 5 and Fig. 6 show the utility as a function of the number
of WDs and the simulation time as a function of number of
the WDs for a single cached application, respectively. The
figures show that for a small number of WDs (N ≤ 10),
the utilized approximation algorithms for joint pricing and
resource management, namely MGM and SGM, performs
close to the optimal solution with a much lower simulation
time. In contrast, for N > 10, the proposed SGM performs
close to MGM at a much lower computational cost. For
high number of users, MGM becomes practically infeasible
as the operator would have to solve problem (13)-(14) in
real time. This highlights the significance of the proposed
SGM algorithm. As the number of WDs increases the only
algorithm that provides high utility at low computational cost
is SGM. It is interesting to note that RGS is computationally
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Fig. 8: Utility vs. number of applications, N = 50.

0 50 100 150 200

Number of WDs (N)

0

2

4

6

8

10

12

14

N
u

m
b

e
r 

o
f 

O
ff

lo
a
d

e
rs

Fig. 9: Number of offloaders vs. number of WDs, |J | = 20.

more expensive than SGM, as finding a set of offloaders
that gives a positive utility becomes harder as the number
of WDs increase. As RGS could be considered as one of
the most light weight solution, SGM can still be computed
faster and the computation time difference increases above
80 WDs, which shows that our proposed approach strikes a
good balance time complexity and the achieved utility. Lastly,
the poor performance of ES and LP justifies the importance
of joint optimization of resource allocation and pricing for
maximizing the utility.

C. Operator’s Profit

Fig. 7 shows the operator’s utility as a function of the
number of WDs for |J | = 20. The figure shows that
SRM, which jointly optimizes caching, resource allocation
and pricing, outperforms ES-UBC, LP-UBC and ES-PBC, LP-
PBC, by up to an order of magnitude particularly for high
number of WDs. More importantly, SRM outperforms UBC-
SGM and PBC-SGM, i.e. the baselines that use the proposed
SGM to compute optimal resource allocation and pricing,
showing that joint caching and pricing provides significant
benefits compared to pricing-unaware caching.

Fig. 8 shows the utility as a function of the number
of applications for N = 50. The utility obtained by the
algorithms that use SGM for pricing and resource allocation
decreases monotonically in J , as the number of WDs per
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Fig. 10: Number of offloaders vs. number of applications, N =
50.
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Fig. 11: Energy saving vs. number of WDs, |J | = 20.

application decreases. On the contrary, the utility obtained
by the algorithms that use ES or LP for resource allocation
increases, as for a few WDs per application they get closer
to the optimal allocation. Importantly, the proposed SRM
algorithm is almost insensitive to the increase in the number of
applications and its performance advantage increases as with
the number of applications.

D. Energy Optimal Resource Allocation, Pricing and Number
of Offloaders in SPE

Fig. 9 and Fig. 10 show the number of offloaders as a
function of number of WDs and number of applications,
respectively. The figures show the superior utility of SRM
compared to the baselines is correlated with that it allows more
WDs to offload, owing to that it computes the optimal resource
allocation and pricing. Finally, Fig. 11 and Fig. 12 show the
total energy saving, defined as

∑
i∈NoX

C0
i

γi
− τui (p∗i , wi)p

∗
i βi,

through task offloading as a function of the number of WDs
and as a function of the number of applications. The figures
show that SRM achieves the highest total energy saving.
Consequently, the objective of the operator to maximize its
utility combined with the objective of the WDs to minimize
their cost leads to an energy efficient solution for WDs.
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Fig. 12: Energy saving vs. number of applications, N = 50.
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Fig. 13: Total energy consumption vs. number of WDs, |J | =
20.

E. Energy Consumption of the WDs

We also evaluate the energy efficiency of the proposed
solution from the WDs’ perspective. Fig. 13 shows the total
energy cost of the WDs as a function of the number of WDs.
The results in the figure are aligned with those in Fig. 11,
showing that the operator’s optimal strategy for maximizing
utility indeed leads to lower energy cost for the WDs. The
figure also shows that as the number of WDs increases, the
difference in terms of energy consumption between SRM
and the baselines increases, showing the superiority of the
proposed approach.

Fig. 14 shows the empirical CDF of the energy consumption
of the WDs for N = 20 and N = 40, with |J | = 20, across
500 randomly generated problem instances. Aligned with the
results shown in Fig. 13, the proposed SRM outperforms the
state-of-the-art methods, and the performance difference be-
comes more pronounced as the number of WDs increases (c.f.
the subfigures in Fig. 14). The figure also shows that compared
to local computing, SRM decreases the 99th percentile of the
energy consumption by 50% and by 33% and its median by
53% and by 39% for N = 20 and for N = 40, respectively.
We show corresponding results for SGM in the Appendix.
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Fig. 14: Emprical CDF of total energy consumption for N =
20 (top) and N = 40 (bottom) for |J | = 20.

F. Sensitivity to Communication Failure

Finally, we evaluate the sensitivity of the proposed solution
to communication failure due to channel outage. Channel
outages are inherent to wireless communication [41], [42],
and are often due to imperfect knowledge of the channel state
information by the transmitter due to, e.g., fading and mo-
bility [43]–[45]. An outage happens when the intended trans-
mission rate exceeds the instantaneous channel capacity [46],
and its probability can be up to 1% [47]. In what follows we
show results considering that WDs may experience channel
outage, and cannot perform offloading even if they would like
to, but this information is not known to the operator during
the optimization, leading to loss of revenue. We consider two
models of outage based on the model presented in [46]; in the
first model the outage probability of a WD is proportional to
its transmission rate, i.e. w∗i log2(1 +

p∗i hi
σ̄2
i

) [48]. In the second
model the outage probability is proportional to the amount of
transmitted data Di [49].

Figure 15 shows the utility as a function of the average
outage probability among offloading WDs for the proposed
SRM algorithm and for the baselines. The figure shows that
the utility of the operator decreases approximately linearly
with the average outage probability under both outage models,
both for SRM and for the baselines. We can observe a
slight difference between the shapes of the curves due to
the correlation between the outage of a WD and the revenue
it would give to the operator under different pricing and
resource allocation schemes, but based on the results we can
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Fig. 15: Utility vs. average outage probability for |N | = 24,
|J | = 20.

conclude that all algorithms exhibit graceful degradation under
communication failure.

VIII. RELATED WORK

A number of recent works deal with energy efficient compu-
tation offloading for a single mobile user and show the energy
reduction obtained by computation offloading [50]–[54]. [50]
introduces a system that facilitates energy-aware offloading
to the infrastructure. [51] conducted an investigation into
cloud computing with a focus on the utilization of bandwidth
and energy consumption. They presented the results obtained
from an experimental platform, specifically Amazon EC2. The
findings of the study indicate that cloud offloading can be
considered sustainable in terms of energy consumption. The
authors also propose an algorithm that aims to maximize
energy savings while minimizing the computational burden
associated with offloading. [52] proposes CPU frequency
scaling and transmission power adaptation to optimize the
energy consumption of the computation of a task. [53] presents
a dynamic offloading algorithm in order to achieve energy
savings under time constraints. In [54], experimental results
are used to show that battery power savings can be achieved
using computation offloading. Inspired by these works that
show the potential energy savings through offloading, we
consider a system level optimization problem of computation
offloading with an emphasis on the interaction between the
WDs and the operator.

Going beyond offloading by a single device, a num-
ber of works consider computation offloading for multiple
WDs [55]–[57]. [55] considers a model in which tasks arrive
simultaneously to the cloud through a single wireless link and
proposes a non-cooperative game among users that minimize
their own energy use. [56] considers a hierarchical MEC net-
work, where mobile users can make offloading decisions, and
can decide the uplink transmission power, perform cloud se-
lection, and route the tasks. A distributed offloading approach
is developed based on game theory, in which user equipment
collaborates with each other to minimize the network cost in
terms of energy consumption and latency. [57] models the
load-balancing problem as a stochastic congestion game in
which each users aims to minimize its task execution time.

Unlike these works that focus on the WDs’ costs only, our
problem formulation accounts for the financial incentives, i.e.,
the pricing of the operator and for service caching together
with the optimization problem faced by WDs, resulting in a
Stackelberg game formulation.

Related to our work are recent works that address the pricing
problem in edge computing [11], [58]–[60]. Authors in [11]
consider a Bayesian Stackelberg game in which the operator
is the leader, and the WDs are followers. The objective of the
operator is to maximize its revenue through pricing storage. In
contrast, the WDs minimize a combination of the price paid
and the delay. Different from ours, this work does not consider
the optimization of communication and computing resources.
Authors in [58] examine various models to optimize pricing for
the task offloading problem, but they do not optimize pricing
and resource allocation jointly; instead, they allocate compute
resources to WDs proportional to their payment, and do not
take into account communication resources. Authors in [59]
proposed an auction for resource allocation and offloading.
Resource allocation is based on bids from the WDs for a
portion of the available edge resources, but joint optimization
of pricing and resource allocation is not considered. Authors
in [60] consider the problem of offloading, pricing and risk
awareness in edge computing, modeled by a Stackelberg game
played between the WDs and the edge servers. Compared to
our work, the model does not consider the optimization of the
edge resources.

Most related to ours are recent works that consider appli-
cation caching and computation offloading [15]–[18]. In [15]
authors consider a computation offloading and service caching
problem with the objective of minimizing the total system
cost defined as the weighted sum of energy consumption
and completion time. Different from our work, they do not
consider the joint optimization of bandwidth and computing
resource allocation, as they do not consider bandwidth in
the proposed optimization problem. In [16], authors consider
computation offloading, resource allocation (wireless and com-
putation resources) and service caching. They formulate the
problem of total delay minimization subject to the capacity
of the operator without considering the energy consumption
of the WDs. Similarly, in [17], authors consider computation
offloading, wireless and computation resource allocation and
service caching and they formulate the problem of minimizing
the total weighted sum of the delay and the computation
energy cost of the WDs. The model was extended in [18] to
consider maximization of the users’ quality of service focusing
on a multi-edge server scenario, and a decentralized solution
was proposed.

Different from the above works, our paper is the first to
jointly consider service caching, wireless and computation
resource allocation, as well as the financial incentives of the
edge operator, specifically pricing. While previous works have
focused on minimization of the total cost, with various cost
definitions, they have not taken into account the operator’s
financial incentives in conjunction. On the contrary, our game-
theoretic model considers the interaction between WDs and the
profit maximizing operator in the form of a Stackelberg game.
Our results confirm that caching, pricing and the strategic
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interactions of the WDs need to be jointly considered for
maximizing the operator’s utility and for minimizing the WDs’
cost.

IX. CONCLUSION

In this work we have provided a game theoretic analysis of
pricing, caching, wireless and computation resource allocation
for edge computing. We modeled the interaction between WDs
and the operator as a Stackelberg game. We showed that the
operator’s utility maximization problem is NP-hard and we
proposed an efficient approximation based on a decomposition
of the problem and by characterizing the subproblems. Our
numerical results show that joint optimization of caching,
pricing and resource allocation provides significant advantages
compared to non-joint optimization, and our proposed algo-
rithm can indeed find a near optimal solution, outperforming
state of the art methods.

There are a number of interesting avenues of future work
concerning pricing and resource allocation in edge computing.
One example is the case of incomplete information, where the
operator has to learn the applications’ and the WDs’ utilities
and resource requirements in real time. Another direction is
the case of a dynamic population of users, where pricing
and resource allocation have to anticipate the effect of future
arrivals of WDs.
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