
Dynamic Time-of-use Pricing for Serverless Edge
Computing with Generalized Hidden Parameter

Markov Decision Processes
Feridun Tütüncüoğlu†, Ayoub Ben-Ameur‡, György Dán†, Andrea Araldo‡, Tijani Chahed‡

†Division of Network and Systems Engineering, KTH Royal Institute of Technology, Sweden
‡SAMOVAR, Telecom SudParis, Institut Polytechnique de Paris, France

Abstract—The commercial adoption of Edge Computing (EC)
will require pricing schemes that cater to the financial interests
of the operators and of the users. Pricing in EC is particularly
challenging as it has to take into account the limited amount of
edge resources as well as the stochasticity of user workloads due
to location-specific workload characteristics and differences in
user activity. We formulate the problem of maximizing the rev-
enue of a serverless edge operator through dynamically pricing
compute and memory resources under time varying workloads
as a sequential decision making problem under uncertainty. We
provide analytical results for the optimal pricing strategy in
a Markovian setting in steady state. For the general case, we
propose a novel Generalized Hidden Parameter Markov Decision
Process (GHP-MDP) formulation of the revenue maximization
problem, and we propose a dual Bayesian neural network
approximator as a solution. The key novelty of the proposed
solution is that it can be pre-trained on synthetic traces and
adapts fast to previously unseen workload characteristics. We
use simulations based on synthetic and real traffic traces to show
that the proposed solution is sample-efficient thanks to effective
transfer learning, and it outperforms state-of-the-art learning
approaches in terms of revenue and learning rate by up to 50%
on real traces.

Index Terms—Serverless edge computing, dynamic pricing,
resource management, queuing theory, transfer learning.

I. INTRODUCTION

Edge computing (EC) is expected to bring computational
resources close to the network edge, e.g., co-located with
base stations, and will allow Wireless Devices (WDs) to
offload latency sensitive computational tasks on-demand. EC
is expected to be a key enabler of new services, such as
augmented reality [1] and cooperative driving, services that
would be too resource intensive to be executed locally or ones
that require information from multiple sources.

Despite its potential, EC is rather far from commercial
deployment [2]. Existing edge deployments consist of cloud
resources deployed at the periphery of the core network (not as
far as base stations) and are targeted at corporate users, as a lo-
calized version of cloud computing [3]. The slow deployment
is partly due to the lack of a versatile programming abstraction
and due to the lack of an appropriate business model, including
appropriate pricing schemes.

A promising abstraction for edge computing could be
serverless computing, which allows the execution of functions,
relieving the users from managing virtual machines, compute
and memory resources [4]. Serverless computing has found

adoption in cloud computing (CC), but the static pricing
models that made it popular would not suit edge deployments
for several reasons. First, compared to CC, where resources
are practically unlimited [5], edge nodes have scarce resources.
Hence, some WDs may not get the resources they request
immediately, and they may leave the edge service area before
they would get served. Moreover, cloud nodes benefit from
statistical multiplexing due to requests coming from a broad
geographical region [6]. This is not true in EC, hence demand
for compute resources is more dynamic.

While practically all the big CC providers offer static,
usage-based pricing, serving dynamic demands with con-
strained resources requires EC pricing to be dynamic, fulfilling
two main criteria. First, pricing should be adaptive, i.e., it
should learn how to maximize revenue given information about
the workload and the available resources. Adaptation should be
fast, at the time scale of the workload dynamics. Second, pric-
ing should be transparent to users, so that users can incorporate
pricing information in the long term decisions whether to rely
on EC for executing their tasks. Finding a pricing scheme
that is adaptive, transparent and computationally efficient is,
however, extremely challenging. In this paper, we address this
challenge and make the following main contributions:

• We formulate the problem of maximizing the revenue of
a serverless edge operator as a sequential decision making
problem under uncertainty. In our formulation, prices are
piecewise constant over time and can be non-linear functions
of the requested resources, unlike in existing works [7], [8].

• We propose a steady state approximation of the problem,
and provide analytical results for the optimal pricing strategy
under mild assumptions. These analytical results provide a
lower bound for the revenue achievable by the operator, and
at the same time they serve as a good heuristic.

• We provide a novel Generalized Hidden Parameter Markov
Decision Process (GHP-MDP) formulation of the problem,
and use it to propose a learning scheme based on a dual
Bayesian Neural Network (BNN) approximator for fast and
accurate transfer learning. The proposed Hidden Parameter
Edge (HiPE) pricing algorithm learns latent variables that
capture the parameters of the problem instance, and uses
these for parameterizing two BNNs used for training a state-
of-the-art Reinforcement Learning (RL) algorithm. Our ap-

Notation Definition

tai Arrival time of user i to the edge area
Di Dwell time of user i
tdi Departure time of user i from the edge area
toi Time instant at which user i starts offloading
oi Offloading decision of user i
T a
i,k Active time of user i during pricing period Tk

T a
i Total active time of user i
αi Task generation rate of user i

F , M Set of CPU capacity and memory allocations
F , M Edge CPU and memory capacity

τv(fv), τv Execution time and delay bound of function v
Vi Set of functions of user i
Λ(t) User arrival intensity at time t
nv Average number of invocations of function v

fv , mv Requested CPU capacity and memory for function v
Tk Pricing period k, Tk = [tk, tk+1)
∆ Length of pricing periods

πf
k (f) Price of requested CPU f during Tk

πCPU
k , πMEM

k Unit cost of CPU and of memory
πm
k (m) Price of requested memory m during Tk

πr
k Price paid per function invocation during Tk

C
πk
i Expected unit task offloading cost of user i
Ci Reservation cost of user i
C

πk
i,Σ Total cost of offloading of user i

Table I: Frequently used notations.

proach accelerates learning an optimal policy, thus it allows
higher average revenue without resorting to assumptions
regarding the workload and the edge cell dynamics.

• Extensive simulations on synthetic and real traces show
that HiPE outperforms state-of-the-art solutions in terms of
revenue by up to 50% as well as consumer surplus.
The rest of the paper is organized as follows. We describe

the system model and the problem formulation in Section II.
In Section III, we provide analytical results under simplifying
assumptions. In Section IV we propose a GHP-MDP formu-
lation of the problem and a dual BNN approximator based
solution for the pricing problem. We provide numerical results
in Section V. In Section VI, we review related work and we
conclude the paper in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a Multi-access Edge Computing (MEC) system
that provides Function as a Service (FaaS) (also known as
serverless) computing to a dynamic population of WDs.

A. User Model

WDs arrive to the system following a non-homogeneous
process with intensity Λ(t) as shown in Fig. 1. WD i remains
in the edge service area for Di amount of time, which we refer
to as the dwell time of WD i. We denote by tai and tdi = tai+Di

the arrival and departure times of WD i, respectively. WD i
generates tasks at rate αi > 0 while it is in the MEC service
area. Following the FaaS model, each task of user i involves
the execution of a set Vi = {v1, v2, . . . , vVi

} of functions
according to a possibly loopy task graph, and we denote by
nv the average number of invocations of function v ∈ Vi.

User i requests CPU allocation fv and memory allocation
mv for function v ∈ Vi, which determine the processing

Figure 1: Example of a serverless edge service with time-
dependent arrival rate Λ(t) and piecewise constant price πk.
Three WDs arrive in pricing periods T1 and T2: WD 3 receives
service immediately upon arrival at price π1, while WD 2
decides not to offload at price π1. WD 1 has to wait for
receiving service, at price π2.

power (in Hz) and memory capacity (in GB) allocated for
the function, respectively. The expected execution time τv(fv)
of function v ∈ Vi is a convex non-increasing function
of the computing power fv allocated to it [9]. This model
generalizes the relation τv(fv) = E[Lv]

fv
widely used in

edge computing, where E[Lv] is the average computational
complexity of the function measured in CPU cycles. Tasks
have finite expected execution time, i.e., τi(fVi) ∈ (0,∞),
where fVi = (fv1 , fv2 , . . . , fvVi

) denotes the vector of all
CPU allocations given to the tasks in Vi. Moreover, WD i
has a constraint τv(fv) ≤ τv on the average execution time
of its functions v ∈ Vi, determined based on the delay
bound τ i ∈ (0,∞) of its task. We include in τv(fv) the
potential impact of storage access latency [10], [11]. For
ease of exposition, we assume that communication delays
are measured by the edge operator and WDs determine τv
considering the communication delays.

B. Edge Resources, Pricing and Offloading

We consider that the operator maintains an edge cloud with
CPU capacity F and memory M in the service area [12].
Aligned with common FaaS offerings (e.g. AWS Lambda,
Google Cloud Functions), we consider that the operator offers
a set of CPU allocations F = {f(1), f(2), . . . , f}, in ascending
order, allowing WDs to select the most appropriate allocation
for their tasks’ functions [13]. In addition, to ensure that the
WDs’ tasks can be executed, the operator provides a set of
memory allocations M = {m(1),m(2), . . . ,m}, in ascending
order. Naturally, f ≤ F and m ≤M .

Similar to existing FaaS pricing models, we consider that
pricing is based on the execution time, on the amount of
resources used, and on the number of function invocations.

2

The operator sets the prices periodically, at time instants
t0, t1 = t0+∆, . . .; the price is constant during pricing period
Tk = [tk, tk+1) to make the cost of using the edge service
more predictable for the users than under user specific pricing
schemes considered in previous works [14], [15].

Contrary to existing FaaS pricing models, we consider
a general, non-linear pricing model. The price of compute
capacity for CPU allocation f during pricing period Tk is
πf
k (f) = fγkπCPU

k and the price of memory allocation is
πm
k (m) = mγkπMEM

k , where πCPU
k and πMEM

k are the
unit cost of compute capacity (CPU allocation) and memory,
respectively, and γk ≥ 1 is the price exponent. Observe
that for γk = 1 the price is linear in the allocation, as in
current FaaS offerings, while for γk > 1 it is nonlinear.
We denote by πr

k the price paid per function invocation
during pricing period Tk, and we use the shorthand notation
πk = (πCPU

k , πMEM
k , πr

k, γk,).
If WD i arrives during pricing period Tk then it will be

charged based on the price πk throughout its dwell time Di,
should it decide to offload, even if the dwell time overlaps with
subsequent pricing periods. Thus, its expected unit cost for
offloading a task will be determined by the functions Vi that
constitute its task and by their average number of invocations
nv , v ∈ Vi, by its choice of (fv)v∈Vi

and (mv)v∈Vi
, and by

the price πk, and can be expressed as

Cπk
i ((fv)v∈Vi

, (mv)v∈Vi
) =∑

v∈Vi

nv

(
πr
k + τv(fv)(π

f
k (fv) + πm

k (mv))
)
. (1)

Let us denote by Ci the reservation cost of WD i, i.e., its
valuation for offloading its task. We make the reasonable
assumption that Ci is unknown to the operator, and we model
it as a random variable with distribution C. WD i decides to
offload if its expected unit cost does not exceed its reservation
price, i.e.,

Cπk
i ((fv)v∈Vi

, (mv)v∈Vi
) ≤ Ci, (2)

otherwise WD i executes the computations locally or discards
its tasks. We denote by oi ∈ {0, 1} the decision of WD i.

Due to edge resource constraints, even if WD i decides to
offload, it may not be able to do so immediately, but it may
have to wait in a FIFO queue until resources become available.
A waiting WD does not offload, hence it does not have to
pay for offloading, and if its dwell time Di expires during
the waiting phase, the WD will leave the system without ever
offloading. We denote by toi the time instant when WD i can
start offloading, hence tai ≤ toi ≤ tdi if oi = 1, and we define
toi = tdi if oi = 0. We can use these to define the active time of
WD i during pricing period Tk as T a

i,k = max{min(tdi , tk+1)−
max(toi , tk), 0} and its total active time T a

i = tdi − toi . The
active time, the task arrival rate and the unit task offloading
cost together determine the expected cost of offloading

Cπk

i,Σ((fv)v∈Vi , (mv)v∈Vi)

= T a
i αiC

πk
i ((fv)v∈Vi

, (mv)v∈Vi
). (3)

C. Problem Formulation

We consider that the WDs and the operator are profit
maximizing entities. The goal of WD i is to minimize its cost
of offloading subject to the latency constraints

(
τv(fv)

)
v∈Vi

of the functions v ∈ Vi of its task, i.e.,

max
oi,(mv,fv)v∈Vi

oi · (Ci − Cπk
i ((fv)v∈Vi , (mv)v∈Vi)) (4)

s.t oi · τv(fv) ≤ τv,∀v ∈ Vi. (5)

Hence, WD i chooses the CPU allocation (fv)v∈Vi and
memory allocation (mv)v∈Vi

that minimize its cost (1).
In pricing period Tk the operator collects revenue from the

WDs that offload in the period. Recall, however, that the price
π′

k that WD i is charged depends on the pricing period T ′
k ∋

tai when it arrived. We can thus express the revenue of the
operator in pricing period Tk for a pricing policy θ as

ρθk =

k∑
k′=0

∑
i∈Nk′

T a
i,kαiC

πk′
i ((fv)v∈Vi , (mv)v∈Vi), (6)

where Nk = {i|tai ∈ Tk} is the set of users that arrived in
pricing period Tk and T a

i,k is the active time of user i in
pricing period Tk. Observe that ρθk is a random variable, as
Cπk

i depends on the workload due to tasks of WD i, which
is not known by the operator a priori.

The operator’s objective is to maximize its expected mean
revenue by finding a policy

θ∗ = argmax
θ∈Θ

lim
K→∞

1

K

K∑
k=1

E[ρθk], (7)

where Θ is the set of causal pricing policies. Observe that the
operator’s problem is a sequential decision making problem
under uncertainty, where the uncertainty is due to the random-
ness of the arrivals, departures, reservation costs and resource
requirements of the WDs. In what follows we first characterize
the WDs’ best response and provide analytical results under
simplifying assumptions. We then propose a pricing policy
based on a semi-parametric approach for the general case.

III. ANALYTICAL RESULTS

To obtain insight into the structure of optimal policies, we
start with characterizing the best response of the users for a
given pricing policy. We then turn to the analysis of pricing
policies.

A. WD Best Response Characterization

We first make a simple but important observation about the
memory allocations for the functions.

Observation 1. The execution time τv(fv) is independent of
the memory allocation mv , while the cost (1) is monotonically
increasing in mv . Hence for WD i it is optimal to request
the least amount of memory m∗

v that allows function v to be
executed.

Nonetheless, the dependence of the cost on the amount of fv
makes the optimal choice of the CPU allocation non-trivial.

3

Lemma 1. Assume a non-linear pricing model with
πk = (πCPU , πMEM , πr, γ), for some γ ≥ 1. Let
Cπk

i (fv,mv) be the unit cost of a single function v. Then,
the CPU allocation that minimizes the unit cost Cπk

i (fv,mv)
of WD i for function v ∈ Vi is

f∗
v =

{
argminf∈{f̃−

v ,f̃+
v } C

πk
i (f,m∗

v) if f̃−
v ≥

E[Lv]
τv

argminf∈F{ f | f ≥
E[Lv]
τv
} otherwise,

(8)

where f̃−
v , f̃+

v are the two adjacent values in F , such that

f̃−
v ≤

f∗
v =

m∗
v

(
πMEM

(γ−1)πCPU

) 1
γ

if γ > 1,

f if γ = 1,

 ≤ f̃+
v . (9)

Proof. We prove the statement by linear relaxation of the
discrete variable fv . For simplicity, we use the same notation
fv and let fv ∈ [f(1), f]. Recall that the WD’s objective is
to minimize its unit task offloading cost (1) if it chooses to
offload (i.e., if oi = 1). Under the considered pricing model,
the unit cost (1) becomes

Cπk
i ((fv)v∈Vi

, (m∗
v)v∈Vi

)

=
∑
v∈Vi

nv

(
πr
k +

E[Lv]

fv
(fγ

v π
CPU + (m∗

v)
γπMEM)

)
.

(10)

Observe that ∂2C
πk
i ((fv)v∈Vi

,(m∗
v)v∈Vi

)

∂fv∂fv′
= 0 for any

v ̸= v′ and v, v′ ∈ Vi, i.e., the Hessian matrix of
Cπk

i ((fv)v∈Vi
, (m∗

v)v∈Vi
) is diagonal.

For γ = 1 the optimal allocation is trivial to compute and
f∗
v = f,∀v ∈ Vi. For γ ≥ 2, the eigenvalues of the Hessian

matrix of Cπk
i ((fv)v∈Vi , (m

∗
v)v∈Vi) are non-negative, hence

Cπk
i ((fv)v∈Vi

, (m∗
v)v∈Vi

) is jointly convex [16] in (fv)v∈Vi
.

The optimal f∗
v can thus be obtained by setting the partial

derivatives to zero, leading to f∗
v = m∗

v

(
πMEM

(γ−1)πCPU

) 1
γ

.
For 1 < γ < 2, the cost is not jointly convex but we

observe that f∗
v = m∗

v

(
πMEM

(γ−1)πCPU

) 1
γ

is optimal, as it is

the only value at which ∂C
πk
i ((fv)v∈Vi

,(m∗
v)v∈Vi

)

∂fv
= 0 and

∂2C
πk
i ((fv)v∈Vi

,(m∗
v)v∈Vi

)

∂f2
v

> 0.

Considering the latency constraint τ̄v ≥ E[Lv]
fv

for function v,
the smallest CPU allocation that can be chosen is fv = E[Lv]

τ̄v
.

Since ∂C
πk
i (·)
∂fv

is continuous, and the only value at which it is
zero is f∗

v , the cost Cπk
i (·) is monotone for fv > f∗

v and for
fv < f∗

v . This ensures that the value in set F that minimizes
the cost Cπk

i (·) is either f̃−
v or f̃+

v , which leads to (8).

The above lemma shows that the best response of the WDs
can be computed efficiently.

B. Optimal Pricing and Reward in Steady State

We now turn to the analysis of the optimal price, under as-
sumptions that allow analytical tractability. We will propose a
solution that does not rely on these assumptions in Section IV.

Assumption 1. WD arrivals follow a homogeneous Poisson
process with intensity Λ. Dwell times Di are exponentially
distributed with mean 1/µ.

Assumption 2. Each WD has a single function, i.e., |Vi| =
1. Available CPU and memory allocations are F = {f∗}
and M = {m∗}, respectively. Thus, each WD requests CPU
frequency f∗ and memory m∗.

Assumption 3. Let c = ⌊F/f∗⌋. Then M ≥ c ·m∗, i.e., the
edge system is not memory constrained.

Under Assumptions 1 to 3 we can define the system state
to be Na + Nw, i.e., the total number of WDs offloading
or waiting. We can then model the evolution of the system
state using a continuous time Markov chain [17], [18]. We
consider a system in steady state, and we denote by PA(π)
the probability that an arriving WD accepts price π, which
depends on the distribution C of reservation costs.

We are interested in computing the expected revenue E[ρθk]
of the operator (see (6)), which depends on the probability
Ps(π) that a WD that accepts the offered price π actually
receives service before departing, to be computed next.

Lemma 2. Let PA(π) > 0. A user that arrives to the system
receives service with probability

Ps(π) = PA(π)
(c−1∑

l=0

l + 1− c

l + 1
pl+cµ

1− e−
ΛPA(π)

µ

ΛPA(π)

)
, (11)

where

pl = e
−ΛPA(π)

µ

(ΛPA(π)

µ

)l
1

l!
. (12)

Proof. We are to compute the probability of acquiring service
in an M/M/c queue with reneging and balking, for exponen-
tially distributed reneging time. Our proof is a generalization
of the analysis for the M/M/1 queue provided in [19]–[21].

For the analysis, observe that total number Na + Nw of
WDs in the system can be modeled by an M/M/∞ queue
with arrival rate ΛPA(π) and service intensity lµ, where l is
the position occupied by the WD. The steady state probability
pl that Na +Nw = l is thus given by (12) [22], [23].

Focusing on the M/M/c queue, let twi denote the waiting
time of WD i, i.e., the time between its entrance into the edge
service area and the instant in which it gets the requested re-
sources and can start to offload. We can then express the prob-
ability of receiving service as Ps(π) = PA(π)·P[twi ≤ Di].
To compute this, let Pz denote the probability that a user in the
zth position in the system does not leave the system before any
user in front of it leaves the system. We focus on the case z > c
as users z ≤ c already receive service. Let Dz be the dwell
time of the zth user, then the probability that no user leaves
within time y is P[min{D1, . . . , Dz−1} > y] = e−µ(z−1)y ,

4

due to the independence of the dwell times and the memoryless
property. Hence, we can write

Pz = P[Dz > min{D1, . . . , Dz−1}]

=

∫ ∞

0

∫ dz

0

µ2(z − 1)e−µdze−µ(z−1)ydy d(dz) =
z − 1

z
.

Recall that WDs in positions 1 . . . c are those who are currently
being able to offload. We next express the probability that a
WD that arrives at position l > c to the system receives service
during its dwell time,

P c
l =

l∏
z=c+1

Pz =

l∏
z=c+1

z − 1

z
=

c

l
. (13)

Thus, if a WD accepts price π, the probability that it will be
able to offload before it leaves is

P[twi ≤ Di] =

c−1∑
l=0

pl +

∞∑
l=c

P c
l+1pl (14)

=

c−1∑
l=0

l + 1− c

l + 1
pl + cµ

1− e−
PA(π)Λ

µ

PA(π)Λ
, (15)

since if a WD arrives in state l < c it will get service
directly, otherwise it receives service with probability P c

l+1

for l ≥ c. (15) follows using algebraic manipulations and
using the convergence of the infinite series.

Using Ps(π) we can express the active time T a
i of offloading

users, which we then use for computing the expected revenue
of the operator in a pricing period

Lemma 3. Let PA(π) > 0 and assume the queue is in steady
state. Then the expected revenue in a pricing period of length
∆ is

E[ρθk] = ∆αn
(c−1∑

l=0

(l − c)pl + c
)

(L

f∗

(
πf (f∗) + πm(m∗)

)
+ πr

)
, (16)

where α = E[αi], n = E[nv] and L = E[Lv] are the mean
task generation intensity, the mean number of function invo-
cations and the mean computational complexity, respectively.

Proof. Under Assumptions 1 and 2, the expected active time
conditional on receiving service is

E
[
T a
i |twi ≤ Di,π

]
=

N busy

ΛPs(π)
=

∑c−1
l=0 (l − c)pl + c

ΛPs(π)
, (17)

where N busy is the average number of users in service (able
to offload) and (17) follows from Little’s Theorem. We can
then rewrite the expected revenue (6) as

E[ρθk] = E
[∑
i∈Nk

αiC
π
i (f

∗,m∗)T a
i

∣∣∣twi ≤ Di,π
]

= ΛPs(π)∆αn
(L

f∗

(
πf (f∗) + πm(m∗)

)
+ πr

)
E
[
T a
i

∣∣∣twi ≤ Di,π
]
. (18)

By substituting (17) to (18), we obtain (16). This concludes
the proof.

We now use the above for characterizing the optimal price and
the achievable revenue for linear pricing.

Proposition 1. Consider linear pricing, i.e.,
π = (πCPU , πMEM , πr, 1), and let the reservation
cost Ci be uniformly distributed on (0, b), for b > 0. Then the
expected revenue E[ρθk] is jointly concave in (πCPU ,πMEM ,
πr).

Proof. We provide a proof sketch for brevity. For uni-
formly distributed reservation cost on (0, b) we obtain

PA(π) = 1 − n · πr+ L
f∗ (f∗πCPU+m∗πMEM)

b . We sub-
stitute this into (16) and use Sylvester’s criterion to show
concavity [16], as follows. The first and second order principal
minors of the resulting Hessian matrix are non-positive. In
addition, the third order principal of the Hessian matrix is
the determinant, which is always non-positive, and hence all
principal minors are non-positive. Thus, the Hessian matrix is
negative semi-definite, and E[ρθk] is jointly concave.

The joint concavity of the expected revenue would enable the
operator to use a gradient-based iterative algorithm for finding
an optimal price, assuming all parameters are known. We next
provide a good initial guess for the optimal price and use it
for obtaining a lower bound on the expected revenue.

Proposition 2. Consider linear pricing π = (π, π, π, 1), and
uniform reservation cost distribution. Let

π∗ = b
L(eρ+1)− 1

Bρ
, (19)

where B = n
(

L
f∗

(
f∗+m∗)+1

)
, L(.) is the Lambert function,

and ρ = Λ
cµ . Then the expected revenue satisfies

max
π

E[ρθk] ≥ c · E[ρθ
∗

k |F = f∗,Λ = Λ/c], (20)

where E[ρθ∗

k |F = f∗,Λ = Λ/c] is the expected revenue in a
system with price π∗, F = f∗ and arrival rate Λ/c.

Proof. We show the result by showing that (19) is the optimal
price for c = F

f∗ = 1. For price π and c = 1 the expected
revenue (16), using (12), becomes

E[ρθk] = ∆αn
(
1− e

−ΛPA(π)

µ

)(L

f∗

(
f∗ +m∗

)
+ 1

)
π.

For uniformly distributed reservation cost the probability that
a user accepts the price offer is PA(π) = 1− Bπ

b where B =

5

n
(

L
f∗

(
f∗+m∗)+1

)
. To express the price that maximizes the

expected revenue we use the first order optimality condition

∂E[ρθk]
∂π

= ∆αB

[
1− e−ρ(1−Bπ

b) ρBπ

b
− e−ρ(1−Bπ

b)

]
= 0,

whose solution is (19).
Consider now that the operator creates c virtual queues, one

per f∗ amount of resource, announces price (19), and assigns
arriving users with probability f∗/F to one of the queues. This
policy is suboptimal, but it provides the expected revenue (20),
which is a lower bound to the optimal expected revenue.

The above results provide insight into optimal pricing if
parameters are known or can be estimated and the system
is in or near steady state. Furthermore, they serve as a good
heuristic even if Assumptions 1, 2 and 3 do not hold (see
Section V). In the next section, we abandon Assumptions 1,
2 and 3 and we introduce a data-driven approach that learns
to adapt pricing based on the workload dynamics.

IV. DATA-DRIVEN OPTIMIZATION

Recall that problem (7) faced by the operator is a sequential
decision making problem under uncertainty. A straightforward
approach would be to formulate the problem as a Markov
Decision Process (MDP) and use model-free RL for solving
it. This approach may work for a single edge deployment with
a stationary workload, but a new policy would have to be
learned for each edge deployment and learning an optimal
policy requires a long exploration phase, which is detrimental
for the achievable revenue.

A. Generalized Hidden Parameter MDP Formulation

To overcome this problem, we propose to follow a semi-
parametric approach, formulating the operator’s problem as a
GHP-MDP. A GHP-MDP is a tuple ⟨S,A,W, T,R, γ̃, PW ⟩,
where S ⊆ RNs

and A ⊆ RNa

where Ns, Na ∈ N+,
and γ̃ ∈ (0, 1) are the state space, the action space and
the discount factor, respectively, as in a MDP. The tran-
sition function sk+1 ∼ T (sk+1|sk, ak, wt

g) and the reward
rk ∼ R(sk, ak, w

r
g) are, however, parameterized by wt

g and
wr

g , which are drawn from prior PW and is not observable. A
GHP-MDP defines a class of problems; a particular problem
instance (a MDP) is obtained once the parameters wt

g, w
r
g are

drawn. A GHP-MDP is different from a Partially Observable
MDP (POMDP) as the state is observable, but the environment
dynamics and reward are parameterized and the learning agent
has to estimate the parameter based on interaction with the
environment, while maximizing its reward.

We argue that this semi-parametric approach is a powerful
abstraction for the considered problem, combining adaptive-
ness with transferability, leveraging the intuition that the state
transition and the reward in the underlying queuing system
can be approximated by a family of functions, parameterized
by the latent variables wt

g, w
r
g . In fact, the considered problem

can be modeled as a GHP-MDP, as we show next.

Algorithm 1 Hidden Parameter Edge (HiPE) pricing algorithm

1: Compute weights of the BNNs Wt,Wr using Gtra

2: Draw wt
g′ , wr

g′ ∼ PW for the new environment
3: Randomly initialize policy π̂g′

4: Initialize model, replay and fictional buffers Dg′ ,Df
g′

5: for n from 1 to NT do
6: while tupd episodes are not terminated do
7: Take action a← π̂g′(s)
8: Dg′ ← (s, a, r, s′, wt

g′ , wr
g′)

9: end while
10: if T̂g′ and R̂g′ is inaccurate then
11: TRAIN-BNN(Dg′ ,Wt,Wr, wt

g′ , wr
g′)

12: end if
13: if n% tupd == 0 then
14: FICTIONAL-TRAIN(Df

g′ ,Wt,Wr, wt
g′ , wr

g′)
15: end if
16: end for
17:
18: procedure TRAIN-BNN(Dg′ ,Wt,Wr, wt

g′ , wr
g′)

19: for k from 0 to Nu do
20: Update wt

g′ using Dg′

21: Update wr
g′ using Dg′

22: Update Wt,Wr using Dg′

23: end for
24: end procedure
25:
26: procedure FICTIONAL-TRAIN(Df

g′ ,Wt,Wr, wt
g′ , wr

g′)
27: for t from 0 to Nf episodes do
28: Take action a← π̂g′(s)
29: Estimate next state ŝ′ ← T̂ (s, a, wt

g′)

30: Estimate reward r̂ ← R̂(s, a, wr
g′)

31: Store Df
g′ ← (s, a, r̂, ŝ′)

32: if n% tu == 0 then
33: Update π̂g′ using Df

g′

34: end if
35: end for
36: end procedure

Proposition 3. Under Assumptions 1, 2 and 3
problem (7) is a GHP-MDP, with state (Na + Nw),
action ak = (πCPU

k , πMEM
k , πr

k, γk), reward
Rπk

k =
∑

i∈Nk
Cπk

i,Σ((fv)v∈Vi , (mv)v∈Vi) and latent
parameter w = f(Di,Λ(t), αi, Ci, c).

Proof. The system with the considered state representation is
Markovian due to Assumptions 1, 2 and 3. The transition
function depends on the state, the action, and the system
parameters (Di,Λ(t), αi, Ci, c) [22]. Nonetheless, the reward
ρθk defined in (6) during pricing period Tk does not only
depend on the state and the action, but also on past actions,
and is hence not Markovian.
To provide a Markovian formulation, we can define the

6

Pre-Training Stage Fine Tuning Stage Fictional Policy Learning

....
....

....

....

....

....

....

....
....

....

....

....

....

....
....

....

....

....

....

....

....
....

....

....

....

....

Learn Learn

Dataset

Tune Learn

Collect Dataset

Environment

....

....

....

Train policy using model
free RL alg.

Approximation of
Environment

Figure 2: The workflow of HiPE showing Pre-Training, Fine Tuning and Fictional Policy Learning stages from left to right.

revenue from the WDs accepted during pricing period Tk as

Rπk

k =
∑
i∈Nk

Cπk

i,Σ((fv)v∈Vi , (mv)v∈Vi). (21)

Observe that Rπk

k only depends on the state, the ac-
tion and the system parameters. Furthermore, maximizing
limK→∞

1
K

∑K
k=1 E[R

πk

k] is equivalent to solving (7). Hence
problem (7) is a GHP-MDP.

B. Hidden Parameter Edge (HiPE) Pricing Algorithm

In what follows we propose a data-driven solution that
leverages the above GHP-MDP formulation, called Hidden
Parameter Edge Pricing Algorithm (HiPE). HiPE relies on two
BNN approximators: one to approximate the state transition
function and one to approximate the reward,

ŝk+1 ∼ T̂BNN (sk, ak, w
t
g) + ϵt (22)

r̂k ∼ R̂BNN (sk, ak, w
r
g) + ϵr (23)

ϵt, ϵr ∼ N (0, σ2
n), (24)

where T̂BNN (s, a, wt
g) and R̂BNN (s, a, wr

g) are the function
approximators (c.f. Fig. 2) and ϵt, ϵr are additive Gaussian
noise that improve the ability of the BNNs to approximate
the stochasticity of the transition and reward functions, re-
spectively [24]. Note that the functions that approximate
the state transition distribution (22) and the reward (23) are
parameterized by environment instance specific latent variables
wt

g and wr
g , respectively. The latent variables wt

g and wr
g

serve as low dimensional representations of the dynamics of
environment g. Importantly, we allow the latent variables wt

g

and wr
g used for the two approximators to be different, which

allows us to learn potentially different latent embeddings for
the transition and for the reward.

Our approach is different from HiP-MDP formulations [25]–
[27], where the reward function is assumed to be known
(and hence need not be approximated), and from the solution
in [28], where the policy is learnt using trajectory sampling

combined with cross-entropy minimization, introducing ex-
tra computational complexity. Instead, we propose a novel
approach for computing a policy based on the GHP-MDP
formulation via model-free deep RL based on the two BNN
approximators.

Alg. 1 shows the procedure for learning a policy using the
proposed approach. Learning makes use of a set Gtra of pre-
training problem instances, which can be simulated problem
instances. For every problem instance g ∈ Gtra, we collect
a replay buffer Dg with the observed transitions and rewards
(s, a, s′, r). Using the global replay buffer D =

⋃
g∈Gtra

Dg , the
BNN parameters Wt,Wr and the environment specific latent
embeddings wt

g, w
r
g, ∀g ∈ Gtra are learned (Line 1 in Alg. 1).

Observe that the BNN weights Wt and Wr are learnt using
D, while the latent embeddings wt

g, w
r
g are learned based on

Dg . This ensures that the BNN weights capture the general
dynamics of the environment, and the latent embeddings wt

g

and wr
g capture the environment specific parameters. We refer

this stage as the Pre-Training stage (see Fig. 2).
Upon deployment in a new environment instance g′, the

algorithm aims at determining the latent embeddings wt
g′ and

wr
g′ , based on a few observations (s, a, s′, r) ∈ Dg′ taken

during tupd episodes using a random policy π̂g′(.) (lines 6-9).
For learning wt

g′ and wr
g′ , the algorithm initializes the latent

embeddings randomly, then it minimizes the α-divergence [29]
of the observed transitions and rewards (s, a, s′, r) ∈ Dg′ and
the ones predicted by T̂BNN (s, a, wt

g′) and R̂BNN (s, a, wr
g′),

respectively, which were trained in the Pre-Training phase.
We refer to this stage as the Fine Tuning stage (see Fig. 2)
(lines 10-12).

Finally, HiPE uses T̂BNN (s, a, wt
g′) and R̂BNN (s, a, wr

g′)
parameterized by wt

g′ and wr
g′ for generating fictional transi-

tions and rewards, which are collected in a replay buffer Df
g′ .

The fictional transitions and rewards serve as the environment
on which the RL agent π̂g′ is trained using a model free RL
algorithm (lines 13-15). We refer to this stage as the Fictional

7

0

1000

2000

3000

4000

5000

6000
D

ai
ly

 A
v.

 R
ev

en
ue

 (U
S

D
ol

la
rs

) 60 Days

SAC
Prop-2
Online Knapsack
BO

0 1000 2000 3000 4000 5000
Av Dwell Time (s)

0

1000

2000

3000

4000

5000

6000

D
ai

ly
 A

v.
 R

ev
en

ue
 (U

S
D

ol
la

rs
) 180 Days

SAC
Prop-2
Online Knapsack
BO

Figure 3: Average daily revenue (US Dollars) vs. average
dwell time under homogeneous resource allocation.

Policy Learning stage. The learnt policy π̂g′ is then directly
used in the environment g′.

V. NUMERICAL RESULTS

We use simulations on synthetic and on measured traces for
evaluating the performance of the steady state approximation
and of the proposed HiPE algorithm.

A. Evaluation methodology

For the evaluation, we consider an EC system with compute
capacity F = 120 GHz and memory capacity M = 300 GB
as in [30], [31]. This is equivalent to having a small cluster of
about 10 compact edge servers [32]. The edge operator offers
CPU allocations F = {1, 1.3, 1.6, ..., 4} GHz, and memory
allocations M = {1, 1.2, 1.4, ..., 3} GB. We consider that
the memory requirements of task m∗

vi ,∀vi ∈ Vi for all i are
chosen uniformly at random from M.

The number of functions |Vi| of each user i is drawn
from a discrete uniform distribution on {1, . . . , 4}, and the
average number of invocations nv is uniformly distributed
on [1, 3]. The average computation complexity Lv is expo-
nentially distributed with mean 0.01 GCycles, and we use
typical computation density values of 30 KCycles/bit [33,
Table II], for which offloading may be more convenient than
local computing [34, Fig. 4]. The maximum number of users
active in a cell is 120. Delay bounds τv are distributed
uniformly at random in [5, 10] ms (corresponding to, e.g.,
augmented reality applications [1]), and the reservation cost
Ci is drawn either from a uniform distribution on [0, 0.001]$
or from a truncated Gaussian distribution on [0, 0.001]$, which
are typical costs for Amazon serverless offerings.

0

1000

2000

3000

4000

5000

6000

D
ai

ly
 A

v.
 R

ev
en

ue
 (U

S
D

ol
la

rs
) 60 Days

HiPE
SAC-4
SAC-3
Prop-2
Online Knapsack

0 1000 2000 3000 4000 5000
Av. Dwell Time (s)

0

1000

2000

3000

4000

5000

6000

D
ai

ly
 A

v.
 R

ev
en

ue
 (U

S
D

ol
la

rs
) 180 Days

HiPE
SAC-4
SAC-3
Prop-2
Online Knapsack

Figure 4: Average daily revenue (US Dollars) vs. average
dwell time under heterogeneous resource allocation.

We use synthetic and measured traces of user arrivals for
the evaluation. For synthetic traces, we use two dwell time dis-
tributions: deterministic and exponential. For measured traces,
we choose 3 cells from the Greater Shanghai metropolitan
area traces [35]–[37]: i) Cell #1 is in the city center with
high load, ii) Cell #2 is in a suburban area with medium load
and iii) Cell #3 is in a rural area with low load.

We consider three variants of the pricing model: (i) uni-
variate pricing (πCPU

k = πMEM
k = πr

k = πk, γk = 1), (ii)
multivariate linear pricing (πCPU

k , πMEM
k , πr

k, γk = 1) and
(iii) non-linear pricing (πCPU

k , πMEM
k , πr

k, γk ≥ 1). We set
the length of the pricing periods to ∆ = 1 hour.

For the GHP-MDP we use sk = (ρCPU, ρMEM, k) ∈ S ⊆
[0, 1]2 × N+ as the state, where ρCPU and ρMEM are the CPU
and memory utilization, respectively, and k is the index of
pricing period Tk in a day (as the length of pricing period Tk is
1 hour, we have k ∈ {0, 1, 2, . . . , 23}). The choice of the state
is motivated by that ρCPU and ρMEM capture the congestion on
computation and memory resources, which in turn determine
the reward in a pricing period Tk. The use of the time index
of the period in a day is motivated by the periodicity of user
arrivals observed in real data. We found this to be a concise
state representation that allows fast convergence. We define
the action to be ak = (πCPU

k , πMEM
k , πr

k, γk) ∈ A ⊆ R4
+,

and the reward R(sk, ak, w
r
g) as the revenue collected during

the pricing period.
To approximate the transition and reward dynamics for an

environment instance g, we used a 2-layer Bayesian neural
network architecture; each layer contains 25 neurons with
Gaussian priors on the weights. We used the BNN hyper-
parameters reported in [25], except the learning rate, which

8

0

500

1000

1500

2000

2500
D

ai
ly

 A
v.

 R
ev

en
ue

 (U
S

D
ol

la
rs

)
Uniform

HiPE
SAC-4
Online Knapsack
Prop-2

EXP DET CELL #1 CELL #2 CELL #3
0

500

1000

1500

2000

2500

D
ai

ly
 A

v.
 R

ev
en

ue
 (U

S
D

ol
la

rs
)

Gaussian

HiPE
SAC-4
Online Knapsack
Prop-2

Figure 5: Average daily revenue for two synthetic dwell time
distributions (E[Di] = 1800 sec.) and trace-based distribu-
tions, and for two reservation cost distributions (Uniform and
truncated Gaussian) for 60 days of training.

we set to 0.0005 for both BNNs. For pre-training the BNNs,
we collected ∼ 400.000 transition samples from synthetic
traces with exponentially distributed dwell times with mean
{180, 720, 1200, 1800, 2400, 3600, 5400}. We used R5 for the
latent parameter space. Increasing the dimension of the latent
variables increases the computational complexity, whereas
choosing low dimensionality results in limited representation
of the environment instances g, which negatively affects
transferability. We learn the latent parameters wt

g and wr
g and

the network weights by minimizing the α-divergence using
ADAM with α = 1 [24].

During the Fictional Policy Learning stage, we used Soft
Actor-Critic (SAC) to learn the policy (Line 26− 36) and we
used tupd = 25 days to tune the BNNs (weigths and latent
variables) in the unseen environment, where we assume one
episode is 1 day, and applied Nf = 60 days of fictional
updates. We used the default hyper-parameters in the stable
baselines library for SAC [38]. Tuning the BNN weights in
the Fine Tuning Stage took on the order of minutes on an i9-
10900K Intel processor, which is negligible compared to the
training time of the BNNs in the Pre-Training Stage, which
was in the order of hours.

We use four baselines for comparison. The first baseline is
the pricing scheme for the online Knapsack problem proposed
in [15], which is a user-specific pricing scheme based on
the instantaneous system load. The second baseline is using
Bayesian Optimization (BO) for each time index of a day, as
proposed in [39], where we assign an agent to each time index
of a day, and each agent maximizes the expected revenue using

0 20 40 60 80 100 120 140 160 180
Days

0

500

1000

1500

2000

2500

3000

D
ai

ly
 A

v.
 R

ev
en

ue
 (U

S
D

ol
la

rs
)

Fi
ct

io
na

l u
pd

at
e

HiPE EXP
HiPE DET
SAC-4 EXP
SAC-4 DET

Figure 6: Learning curves of SAC and HiPE for synthetic
traces with exponential and deterministic dwell time distribu-
tions.

a Gaussian process approximation. The third baseline is based
on the bound in Proposition 2 where we use (19) as a starting
price and implement a gradient ascent algorithm (labeled as
Prop-2 in the figures). The fourth baseline is a model-free RL
agent using the SAC algorithm [40].

B. Operator Revenue

Fig. 3 shows the daily average revenue of the edge operator
as a function of average dwell time over a period of 60 and
180 days based on synthetic traces that satisfy Assumptions
1, 2, and 3 (homogeneous resource allocation): f = 2 GHz,
m = 1 GB, c = 10. We use the univariate pricing model and
uniform reservation cost distribution to evaluate the accuracy
of the analytical approximation (Proposition 2). We observe
that over 60 days the analytical approximation outperforms all
schemes, as it does not have to learn the system parameters.
Over 180 days it performs best for low average dwell times,
when the mixing times are short and the steady state approx-
imation is accurate, but it performs slightly worse than SAC
for long dwell times. The BO scheme, which learns a price for
each pricing period, fails to find an effective pricing policy.
We can also observe that the online knapsack algorithm does
not work well either; it consistently offers high prices with
increasing system load, resulting in the rejection of too many
WDs (see Sec. V-E). These results show that pricing based
on the steady state approximation works rather well when the
modeling assumptions are satisfied, but its advantage is mainly
due to that it does not have to learn the system parameters.
We now turn to more complex scenarios.

Fig. 4 shows the daily average revenue of the operator
as a function of the average dwell time for 60 days and
for 180 days, for heterogeneous resource allocation and for
traces that do not satisfy Assumptions 1, 2, 3. The figure
shows results for multivariate (SAC-3) and non-linear (SAC-
4) pricing using SAC (the numbers denote the dimension of
the action of the SAC), to assess the advantage of non-linear

9

0 20 40 60 80 100 120 140 160 180
Days

500

0

500

1000

1500

2000

2500

3000
D

ai
ly

 A
v.

 R
ev

en
ue

 (U
S

D
ol

la
rs

)

Fi
ct

io
na

l u
pd

at
e

HiPE Cell #1
HiPE Cell #2
HiPE Cell #3

SAC-4 Cell #1
SAC-4 Cell #2
SAC-4 Cell #3

Figure 7: Learning curves of SAC and HiPE for Cells #1, #2,
and #3.

pricing. The figure shows that the proposed HiPE pricing
scheme outperforms all baselines, with an increasing margin as
the average dwell time increases, providing up to 80% higher
revenue than SAC-4. Interestingly, over 60 days even the
analytical approximation outperforms SAC, even though it uses
univariate pricing and the average resource requirement of the
WDs, indicating that SAC suffers from slow learning, which is
detrimental to the average revenue, unlike the proposed HiPE
pricing algorithm. Comparing linear (SAC-3) and non-linear
(SAC-4) pricing we can observe that non-linear pricing is most
beneficial for moderate average dwell times, and allows up
to 50% higher revenue than linear pricing, as WDs tend to
request less resources and resource intensive functions can be
charged more aggressively. We can also observe that the online
knapsack algorithm exhibits consistently low revenue similar
to the case of homogeneous resource allocation.

C. Sensitivity Analysis

Fig. 5 shows the daily average revenue for synthetic traces
using exponentially and deterministically distributed dwell
times with mean E[Di] = 1800 sec, and for real traces based
on Cells #1, #2 and #3; reservation costs follow uniform and
truncated Gaussian distributions. The figure shows that even
though the HiPE algorithm was pre-trained on synthetic traces,
the data collected within the initial 25 days of the evaluation
is sufficient to fine-tune the BNNs for a previously unseen
environment, achieving superior performance compared to all
baselines. The figure shows subtle revenue differences among
the results obtained using different dwell time and reservation
cost distributions, indicating that the revenue is predominantly
influenced by the average dwell time. Comparing the perfor-
mance achieved on the real traces from Cell #1, #2 and
#3, we observe that the highest gain is achieved in Cell #1,
which has the highest load. This emphasises the difficulty of
learning an effective policy using a model-free approach in
such scenarios and highlights the advantages of the proposed
HiPE algorithm. Overall, Fig. 5 shows the robustness and

0

2000

4000

6000

8000

10000

12000

D
ai

ly
 U

se
r

Su
rp

lu
s

(U
S

D
ol

la
rs

)

HiPE
Online Knapsack

EXP DET CELL #1 CELL #2 CELL #3
0.0

0.1

0.2

0.3

0.4

0.5

Se
rv

ic
e

Pr
ob

ab
ili

ty
 (P

s
)

HiPE
Online Knapsack

Figure 8: Consumer surplus and Ps for two synthetic dwell
time distributions (E[Di] = 1800 sec.) and trace-based distri-
butions, for uniform reservation cost distribution.

adaptability of the proposed HiPE algorithm, which make it
well-suited for real-world environments.

D. Learning Curves

Fig. 6 and Fig. 7 show the daily average revenue achieved
using the HiPE and SAC-4 pricing schemes, for synthetic
traces with exponentially and deterministically distributed
dwell times and for real traces, respectively.

The figures show that HiPE learns significantly faster than
SAC; taking approximately 60 days to achieve the average
revenue that SAC achieves after 180 days of learning. The
learning curves also confirm that HiPE is most advantageous
under high traffic load (Cell #1), which has the highest
potential revenue. The ability of HiPE to learn fast makes
it particularly appealing for real deployments, and emphasises
the necessity to use transfer learning for pricing in EC.

E. Consumer Surplus and Service Probability

Finally, we consider the consumer surplus, which corre-
spond to the added value of the edge service as perceived
by the WDs (the average of the difference of the reservation
cost and the actual cost of using the edge service) and the
probability Ps of a WD receiving service, i.e., the fraction of
WDs served. Fig. 8 shows the results obtained for synthetic
traces with exponentially and deterministically distributed
dwell times with mean E[Di] = 1800 seconds and for real
traces. The figure shows that the HiPE pricing algorithm
yields up to 5 times higher consumer surplus and up to 2
times higher probability of receiving service compared to the
baseline, online knapsack. This shows that the proposed HiPE
pricing algorithm is not only superior in terms of operator
revenue but it is also preferable from the perspective of WDs
in terms of the added value received. In technical terms,
our proposed approach effectively addresses admission control
through pricing and at the same time offers a favorable edge
service for users, combining adaptivity with transparency.

10

VI. RELATED WORK

Several approaches have been proposed for the network
operator to allocate its limited resources at the edge to different
tenants. Auctions [41]–[43] lack transparency, as the price at
which resources are allocated is not announced in advance,
but it is determined by the set of bids. Similar to our setting,
in [44] users queue if all EC resources utilized, and the
operator needs to find a trade off between accepting more
users, thus increasing revenue, and avoiding long waiting
times, affecting user Quality of Service (QoS). However, [44]
assumes that the operator uses admission control by suggesting
users to join or balk, for given prices. We instead explore
this trade-off by means of dynamic pricing, which can clearly
provide higher revenue than just admission control.

Pricing is often studied via game theory (Stackelberg [45]–
[48] or coalitional games [49]) where the network operator
sets prices and WDs take offloading decisions. In [45], [46],
[49] and [48] calculating the optimal price requires prior in-
formation about EC traffic characteristics, which is unrealistic.
More realistic is the setting of [50], where the operator has
incomplete information, i.e., it only knows the distribution of
WDs’ traffic characteristics. However, in reality, not even such
distributions are known, and they would vary over time. In [47]
pricing decisions are taken under the assumption that if too
many users use an edge server, it will fail and no one can
use it anymore. Linear pricing is learned via RL in [51] for
stationary traffic, which our proposed solution outperforms.

Recently proposed dynamic pricing schemes and data driven
approaches are based on learning and require no a-priori
knowledge about user traffic [7], [17], [52], but suffer from
three main limitations. First, the training phase is very long,
which makes these approaches infeasible in practice, since
training requires exploration of prices, which can lead to
revenue loss for a long period of time. The “Spot” pricing
proposed in [52] requires training on 104 servers, while the
number of training epochs (i.e., days) is 400 in [17, Fig.1]. The
number of training epochs are not reported for the RL agent
of [7] and the Multi-agent RL of [53] (which also performs
price discrimination). Second, pricing is linear, which we show
to result in reduced revenue in EC. Third, the RL algorithm
in [17] does not include the current occupancy of edge
resources into the state. Therefore, the algorithm essentially
learns a repetitive workload, whose dynamic is the same from
one day to another and cannot adapt to unseen workloads,
which our proposed approach is capable of.

Different from previous works, we solve the task offloading
and pricing problem under a dynamic workload considering a
non-linear pricing scheme. We propose two pricing policies,
one based on a steady state approximation, and one based on
a transfer learning approach that makes use of a novel GHP-
MDP formulation of the pricing problem. To the best of our
knowledge, ours is the first work to propose near-optimal non-
linear dynamic pricing schemes for edge offloading.

VII. CONCLUSION

In this work, we have considered the problem of pricing
in serverless EC under dynamic workloads. We formulated
the problem of maximizing the revenue of the operator as
a sequential decision making problem under uncertainty. We
showed that, under Markovian assumptions, a pricing policy
can be obtained analytically that serves as a lower bound for
the operator revenue. We then showed that the problem can be
cast as a GHP-MDP and proposed a dual BNN approximator
as a solution. The proposed solution is a form of transfer
learning; after pre-training on synthetic traces, it adapts fast
to previously unseen workloads. Our results show that the
proposed solution accelerates learning and achieves superior
performance compared to the state of the art, on par with
the steady state approximation, but without the need for prior
information about the parameters of the system. Furthermore,
our results show that non-linear pricing models could benefit
edge deployment, as they encourage users to request compu-
tational resources sparingly, and thereby effectively increasing
the number of concurrent users that can be served.

VIII. ACKNOWLEDGMENT

This work was partly funded by the Vinnova Center
for Trustworthy Edge Computing Systems and Applications
(TECoSA), the Swedish Research Council (project 2020-
03860), the European Action Scheme for the Mobility of
University Students (ERASMUS) and the French Embassy in
Sweden | French Institute of Sweden (SFVE-A program).

REFERENCES

[1] A. Ben-Ameur, A. Araldo, and F. Bronzino, “On the deployability of
augmented reality using embedded edge devices,” in Proc. of IEEE
CCNC, 2021.

[2] N. Mohan, L. Corneo, A. Zavodovski, S. Bayhan, W. Wong, and
J. Kangasharju, “Pruning edge research with latency shears,” in Proc.
of ACM HotNets, 2020.

[3] “Edge solutions,” in AT&T. [Online]. Available:
https://www.business.att.com/categories/att-edge-solutions.html

[4] R. Xie, Q. Tang, S. Qiao, H. Zhu, F. R. Yu, and T. Huang, “When
serverless computing meets edge computing: Architecture, challenges,
and open issues,” IEEE Wireless Communications, vol. 28, no. 5, pp.
126–133, 2021.

[5] W.-T. Tsai and G. Qi, “DICB: Dynamic intelligent customizable benign
pricing strategy for cloud computing,” in Proc. of IEEE International
Conference on Cloud Computing, 2012.

[6] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis,
“Efficient resource provisioning in compute clouds via vm multiplexing,”
in Proc. of International Conference on Autonomic Computing, 2010.

[7] F. Lyu, X. Cai, F. Wu, H. Lu, S. Duan, and J. Ren, “Dynamic pricing
scheme for edge computing services: A two-layer reinforcement learning
approach,” in Proc. of IEEE/ACM IWQoS, 2022.

[8] X. Wang, J. Ye, and J. C. S. Lui, “Decentralized scheduling and dynamic
pricing for edge computing: A mean field game approach,” IEEE/ACM
ToN, vol. 31, no. 3, pp. 965–978, 2023.

[9] K. Choi, R. Soma, and M. Pedram, “Off-chip latency-driven dynamic
voltage and frequency scaling for an mpeg decoding,” in Proc. of Annual
Design Automation Conference, 2004.

[10] F. Tütüncüoğlu and G. Dán, “Optimal service caching and pricing in
edge computing: a Bayesian Gaussian process bandit approach,” IEEE
Trans. on Mobile Computing, vol. 23, pp. 705–718, Jan. 2024.

[11] ——, “Optimal pricing for service caching and task offloading in edge
computing,” in Proc. of IFIP/IEEE WONS, 2022.

11

[12] F. Guillemin and V. Q. Rodriguez, “Evaluating the impact of tower com-
panies on the telecommunications market,” in Proc. of IEEE Conference
on Innovation in Clouds, Internet and Networks and Workshops, 2021.

[13] M. Bilal, M. Canini, R. Fonseca, and R. Rodrigues, “With great freedom
comes great opportunity: Rethinking resource allocation for serverless
functions,” in Proc. of ACM European Conference on Computer Systems,
2023.

[14] H. Qiu and T. Li, “Auction method to prevent bid-rigging strategies
in mobile blockchain edge computing resource allocation,” Future
Generation Computer Systems, vol. 128, pp. 1–15, 2022.

[15] Z. Zhang, Z. Li, and C. Wu, “Optimal posted prices for online cloud
resource allocation,” in Proc. of ACM POMACS, 2017.

[16] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 1990.

[17] S. Chen, L. Li, Z. Chen, and S. Li, “Dynamic pricing for smart mobile
edge computing: a reinforcement learning approach,” IEEE Wireless
Communications Letters, vol. 10, no. 4, pp. 700–704, 2021.

[18] B. Baek, J. Lee, Y. Peng, and S. Park, “Three dynamic pricing schemes
for resource allocation of edge computing for iot environment,” IEEE
Internet of Things Journal, vol. 7, no. 5, pp. 4292–4303, 2020.

[19] C. Ancker and A. Gafarian, “Queueing with impatient customers who
leave at random,” Journal of Industrial Engineering, 1962.

[20] B. Han et al., “A utility-driven multi-queue admission control solution
for network slicing,” in Proc. of IEEE INFOCOM, 2019.

[21] M. Dai, L. Luo, J. Ren, H. Yu, and G. Sun, “PSACCF: Prioritized online
slice admission control considering fairness in 5G/B5G networks,” IEEE
Trans. on Network Science and Eng., vol. 9, no. 6, 2022.

[22] V. G. Kulkarni, Modeling and analysis of stochastic systems, 3rd ed.
CRC Press, 2016.

[23] J. F. Shortle, J. M. Thompson, D. Gross, and C. M. Harris, Fundamentals
of queueing theory. John Wiley & Sons, 2018.

[24] S. Depeweg, J. M. Hernández-Lobato, F. Doshi-Velez, and S. Udluft,
“Learning and policy search in stochastic dynamical systems with
Bayesian Neural Networks,” in Proc. of ICLR, 2017.

[25] T. W. Killian et al., “Robust and efficient transfer learning with hidden
parameter Markov decision processes,” Proc. of NeurIPS, 2017.

[26] F. Doshi-Velez and G. Konidaris, “Hidden parameter Markov decision
processes: A semiparametric regression approach for discovering latent
task parametrizations,” in Proc. of IJCAI, 2016.

[27] F. Tütüncüoğlu and G. Dán, “Sample-efficient learning for edge resource
allocation and pricing with BNN approximators,” in in Proc. of IEEE
INFOCOM Workshops (ICCN), 2024, pp. 37–42.

[28] C. Perez, F. Petroski Such, and T. Karaletsos, “Generalized hidden
parameter MDPs: Transferable model-based RL in a handful of trials,”
in Proc. of AAAI, 2020, pp. 5403–5411.

[29] J. Hernandez-Lobato, Y. Li, M. Rowland, T. Bui, D. Hernandez-Lobato,
and R. Turner, “Black-box alpha divergence minimization,” in Proc. of
ICML, 2016.

[30] S. Jošilo and G. Dán, “Selfish decentralized computation offloading for
mobile cloud computing in dense wireless networks,” IEEE Transactions
on Mobile Computing, 2019.

[31] ——, “A game theoretic analysis of selfish mobile computation offload-
ing,” in Proc. of IEEE INFOCOM, 2017.

[32] “Compact edge server specifications,” 2023. [On-
line]. Available: https://www.electronics-lab.com/seeed-studio-reserver-
a-mini-edge-server-for-high-performance-computing-applications/

[33] J. Kwak, Y. Kim, J. Lee, and S. Chong, “Dream: Dynamic resource and
task allocation for energy minimization in mobile cloud systems,” IEEE
Journal on Selected Areas in Communications, 2015.

[34] C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor, “Dynamic task
offloading and resource allocation for ultra-reliable low-latency edge
computing,” IEEE Transactions on Communications, 2019.

[35] Y. Li, A. Zhou, X. Ma, and S. Wang, “Profit-aware edge server
placement,” IEEE Intenet of Things Journal, 2022.

[36] M. K. Kasi, S. Abu Ghazalah, R. N. Akram, and D. Sauveron, “Secure
mobile edge server placement using multi-agent reinforcement learning,”
Electronics, 2021.

[37] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, “Delay-
aware microservice coordination in mobile edge computing: A reinforce-
ment learning approach,” IEEE TMC, 2019.

[38] A. Hill et al., “Stable baselines,” 2018. [Online]. Available:
https://github.com/hill-a/stable-baselines

[39] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: No regret and experimental design,”
in Proc. of ICML, 2010.

[40] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. of ICML, 2018.

[41] Y.-H. Hung, C.-Y. Wang, and R.-H. Hwang, “Combinatorial clock
auction for live video streaming in mobile edge computing,” in Proc. of
IEEE INFOCOM WKSHPS, 2018.

[42] L. Yang, H. Zhang, X. Li, H. Ji, and V. C. Leung, “A distributed
computation offloading strategy in small-cell networks integrated with
mobile edge computing,” IEEE/ACM ToN, vol. 26, no. 6, pp. 2762–2773,
2018.

[43] T. Bahreini, H. Badri, and D. Grosu, “Mechanisms for resource allo-
cation and pricing in mobile edge computing systems,” IEEE TPDS,
vol. 33, no. 3, pp. 667–682, 2021.

[44] S. Chen, L. Wang, and F. Liu, “Optimal admission control mechanism
design for time-sensitive services in edge computing,” in Proc. of IEEE
INFOCOM, 2022.

[45] Z. Xiong, S. Feng, D. Niyato, P. Wang, and Z. Han, “Optimal pricing-
based edge computing resource management in mobile blockchain,” in
Proc. of IEEE ICC, 2018.

[46] Y. Chen, Z. Li, B. Yang, K. Nai, and K. Li, “A Stackelberg game
approach to multiple resources allocation and pricing in mobile edge
computing,” Future Generation Computer Systems, vol. 108, pp. 273–
287, 2020.

[47] G. Mitsis, E. E. Tsiropoulou, and S. Papavassiliou, “Price and risk aware-
ness for data offloading decision-making in edge computing systems,”
IEEE Systems Journal, 2022.

[48] R. Roostaei, Z. Dabiri, and Z. Movahedi, “A game-theoretic joint optimal
pricing and resource allocation for mobile edge computing in noma-
based 5g networks and beyond,” Computer Networks, vol. 198, p.
108352, 2021.

[49] T. Zhang, “Data offloading in mobile edge computing: A coalition and
pricing based approach,” IEEE Access, vol. 6, pp. 2760–2767, 2017.

[50] J. Yan, S. Bi, L. Duan, and Y.-J. A. Zhang, “Pricing-driven service
caching and task offloading in mobile edge computing,” IEEE Trans. on
Wireless Comm., vol. 20, no. 7, pp. 4495–4512, 2021.

[51] L. Li, M. Siew, and T. Q. Quek, “Learning-based pricing for privacy-
preserving job offloading in mobile edge computing,” in Proc. of IEEE
International Conference on Acoustics, Speech, and Signal Processing,
2019.

[52] Z. Tang, F. Zhang, X. Zhou, W. Jia, and W. Zhao, “Pricing model for
dynamic resource overbooking in edge computing,” IEEE Transactions
on Cloud Computing, 2022.

[53] P. Wang, B. Di, L. Song, and N. R. Jennings, “Multi-layer compu-
tation offloading in distributed heterogeneous mobile edge computing
networks,” IEEE Trans. on Cognitive Comm. and Netw., vol. 8, no. 2,
pp. 1301–1315, 2022.

12

