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Abstract—We consider the interplay between la-
tency constrained applications and function-level re-
source management in a serverless edge computing
environment. We develop a game theoretic model of
the interaction between rate adaptive applications and
a load balancing operator under a function-oriented
pay-as-you-go pricing model. We show that under per-
fect information, the strategic interaction between the
applications can be formulated as a generalized Nash
equilibrium problem, and use variational inequality
theory to prove that the game admits an equilibrium.
For the case of imperfect information, we propose an
online learning algorithm for applications to maximize
their utility through rate adaptation and resource
reservation. We show that the proposed algorithm
can converge to equilibria and achieves zero regret
asymptotically, and our simulation results show that
the algorithm achieves good system performance at
equilibrium, ensures fast convergence, and enables
applications to meet their latency constraints.

Index Terms—generalized Nash equilibrium prob-
lem, online learning, serverless edge computing, re-
source allocation.

I . Introduction
Edge computing brings computing resources close to

the network edge, and is emerging as a key enabler for
latency sensitive and bandwidth intensive applications.
Examples of applications that could benefit from edge
computing include augmented reality, computer vision-
enabled automation and surveillance [1]–[3].

Nonetheless, large scale deployment of applications
in edge computing environments will require a deploy-
ment and management interface that provides simple
abstractions for the management and maintenance of
physical resources, consisting of a small set of parameters
that are configurable in real-time. These parameters
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should be such that they allow to control application
performance, e.g., in terms of the trade-off between data
rate and latency, while providing information about
pricing and billing. At the same time, the abstraction
should allow edge infrastructure operators to efficiently
manage the available physical resources, subject to energy
and reliability constraints.

A promising lightweight abstraction that could po-
tentially suit a variety of edge applications is function
as a service (FaaS). In the case of FaaS, applications
are explicitly composed of the subsequent parallel or
sequential invocation of subtasks, referred to as functions
[4]. Functions are managed, i.e., instantiated, executed
and shut down, by the infrastructure, relieving the
programmer from the burden of system configuration.
Stateless FaaS has already found adoption in cloud
computing, referred to as serverless computing, as it
provides autoscaling and follows the pay-as-you-go pricing
model [5]. Recently proposed solutions for stateful FaaS
could extend this offering with low-latency mutable state
and communication in the near future [4], [6].

Nonetheless, compared to a cloud computing environ-
ment, resource management for FaaS in an edge comput-
ing environment faces a number of novel challenges [7].
First, it has to cater for heterogeneous hardware platforms,
and has to consider the orchestration of communication
and computing resources. Second, it should cater for
the latency requirements of applications that involve
the execution of multiple functions, and at the same
time may be able to adjust their data rate so as to
maximize their utility. Third, it has to deal with the
strategic interaction between multiple applications for
constrained resources. The outcome of the resulting
interaction between infrastructure resource management
and application behavior is, however, not well understood.

Motivated by the above challenges, in this paper
we consider the interaction between rate control and
infrastructure resource management for latency sensitive
tasks in a serverless edge computing system, and make
the following main contributions:

• We propose a queuing network model of task graph
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execution and use it for formulating a game theoretic
model of the interaction between self interested
wireless devices that can reserve communication and
computing resources, and a FaaS edge operator that
allocates the resources.

• We show pseudoconvexity of the task sojourn time
with respect to the arrival intensity in a G/G/1 queue
and in a G/G/1 fork-join network, a result that may
be of independent interest.

• We show that under perfect information the strategic
interaction between Wireless Devices (WDs) can
be formulated as a generalized Nash equilibrium
problem, and we show the existence of Nash equilibria
by using variational inequality theory.

• For the case of imperfect information, we propose
an online algorithm called Online Adaptive Rate
Reservation and Control (OARC) for learning equi-
libria in a distributed manner. We show that OARC
converges to equilibria and achieves zero regret
asymptotically.

• Our numerical results show that OARC outperforms
the state of the art in Online Convex Optimization
(OCO) for a variety of task graphs.

The rest of the paper is organized as follows. We present
the system model and problem formulation in Section
II, and prove pseudoconvexity and monotonicity of the
sojourn time in fork-join networks in Section III. We
consider equilibria under perfect information in Section
IV, and learning equilibria under imperfect information
in Section V. Section VI presents numerical results.
Section VII discusses related work and Section VIII
concludes the paper.

I I . System Model and Problem
Formulation

We consider an edge computing system that consists
of a set N = {1, 2, . . . , N} of wireless devices (WDs), a
set A = {1, 2, . . . , A} of access points (APs) and an edge
cloud that hosts a set C = {1, 2, . . . , C} of computing
resources (CRs), illustrated in Figure 1. We define the
set R = A ∪ C of edge (communication and computing)
resources.

Tasks and subtask graphs: We consider that WD i ∈
N generates latency sensitive computational tasks of type
i with intensity λi. We model a type i task as a directed
acyclic graph Gi = (Vi, Ei), where each node v ∈ Vi is
a subtask. The source node vi

0 ∈ Vi represents wireless
transmission of the task’s input data via an AP a ∈ A to
the edge cloud. Nodes v ∈ Vi \ {vi

0} are computational
(execution) subtasks, and correspond to the execution
of the functions that constitute the task. The sink node
vi

|Vi| is the last execution subtask, and its completion
marks the completion of the task. We denote by T i the
maximum average task completion time acceptable to
tasks of WD i. A directed edge e(vi

m, vi
o) ∈ Ei indicates

that subtask vi
m has to finish before subtask vi

o can start

Fig. 1: FaaS-enabled edge cloud infrastructure with N = 4
WDs, A = 2 APs and C = 9 CRs, a fork-join subtask
graph Gi, and the corresponding queuing network.

execution. We refer to Gi as the task graph of WD i, and
we consider that the task graphs Gi represent fork-join
type jobs, i.e, subtasks are executed sequentially or in
parallel. Finally, we define V = ∪i∈N Vi. Observe that for
a task of type i the arrival rate of each subtask v ∈ Vi is
λv = λi.

Communication and Computing Resources: We
denote by Rv ⊆ R the set of resources that can be used
for performing subtask v ∈ Vi. For a wireless transmission
subtask vi

0 ∈ Vi the resources are Rvi
0

⊆ A, i.e., a subset
of the APs, while for execution subtasks v ∈ V \{∪i∈N vi

0}
they are Rv ⊆ C, i.e., a subset of CRs. Similarly, for a
resource r ∈ R we define the set Vr = {v ∈ V|r ∈ Rv}
of subtasks that can be performed using resource r. We
denote by µr,v the service rate at which resource r can pro-
cess subtask v; thus, µr,vi

0
is the achievable transmission

rate of WD i ∈ N when using communication resource
r ∈ A, while for execution subtask v ∈ V \ {∪i∈N vi

0} the
service rate is µr,v when using CR r ∈ C. Heterogeneous
service rates allow us to model infrastructures with
heterogeneous communication and computing resources.
Figure 1 illustrates the components of the considered
system, including WDs, heterogeneous communication
and computing resources and the corresponding modeling
abstraction, which maps every subtask to a corresponding
G/G/1 queue, resulting in a G/G/1 queuing network as a
model of data transmission and subtask graph execution.

A. Edge Resource Allocation
Our model of resource allocation in the serverless edge

infrastructure allows resources to be shared dynamically
among subtasks. We denote by pr,v the fraction of
resource r allocated for processing subtask v ∈ V, and
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by p = (pr,v)r∈R,v∈V the resulting resource allocation
vector. Furthermore, we define the resource utilization
ρr =

∑
v∈Vr

pr,v ≤ 1, and the vector ρ ∈ [0, 1]|R|, which
contains the resource utilizations ρr in nonincreasing
order. We consider that the processing capacity not
allocated at a resource is shared among the subtasks
in proportion to their allocations, thus the perceived
allocation of resource r available to subtask v is

p̃r,v = pr,v

ρr
, (1)

We denote by µ̃r,v = p̃r,vµr,v the resulting perceived
service rate for subtask v on resource r, and we express
the total perceived service rate for subtask v,

µ̃v =
∑

r∈Rv

µ̃r,v. (2)

Similar to existing serverless offerings and to bandwidth
SLAs in 5G networks [8], we consider that users can
reserve computing capacity and communication resources.
The ability to reserve compute capacity is akin to
provisioned concurrency in existing serverless offerings1

Nonetheless, unlike in existing commercial offerings, for
simplicity we define the reservation in terms of processing
rate (instead of processing capacity). This formulation is
reasonable, as users can know the average service times
of their subtasks. We denote by σvi

the service rate
reservation made by WD i ∈ N for its subtask vi ∈ Vi.
Furthermore, we denote by σi =

∑
vi∈Vi

σvi the total rate
reservation of WD i. Throughout the paper we consider
that σvi

= σi

|Vi| , ∀vi ∈ Vi, i.e., WDs make the same service
rate reservation for all of their subtasks. We make this
assumption for two reasons. First, a uniform allocation of
service rates to the servers minimizes the mean sojourn
time in a tandem network of M/M/1 queues. It may not
be optimal for non M/M/1 queues, but it is likely not too
far from optimal. Second, this model allows for a simple
interaction between the users and the infrastructure as
each user can reserve resources through a single parameter
independent of the number of subtasks in its task graph,
providing ease of use for customers. Considering non-
homogeneous rate reservations could be an interesting
extension of our work.

Load-balancing Network Operator: To effectively
serve user requests, we consider that the network operator
performs load balancing periodically. It does so by
minimizing ρ, i.e., the vector of the utilization of commu-
nication and computing resources, in the lexicographical
sense, subject to rate stability constraints2. Thus, the

1Amazon Lambda allows function instances to be kept initialized,
called provisioned concurrency.

2Let ρ, ρ′ ∈ R|R|
≥0 . Then ρ <L ρ′ (smaller according to the

lexicographical order) if and only if there exists 1 ≤ r′ ≤ |R|
such that for r < r′ we have ρr = ρ′

r and ρr′ < ρ′
r′ . Given that ρ

consists of the utilizations in non-increasing order, lexicographical
minimization results in a particular min-max solution. The two are
equivalent for |R| = 2.

operator periodically solves the optimization problem

lex min
p

ρ (3)

s.t.
σv ≤

∑
r∈Rv

pr,vµr,v, ∀v ∈ V (4)

ρr =
∑

v∈Vr
pr,v, ∀r ∈ R, (5)

σv = σi

|Vi| , ∀v ∈ Vi, (6)
pr,v = 0, ∀r ∈ R, v /∈ Vr (7)
pr,v ≥ 0, ∀r ∈ R, v ∈ Vr. (8)

Constraint (4) ensures that each subtask receives the
reserved rate and allows WD i to adjust the sojourn
time for subtask v (c.f., Kingman’s approximation of the
waiting time in a G/G/1 queue [9]), constraint (5) defines
the utilization of each resource r ∈ R under resource
allocation vector p, constraint (6) enforces resources to be
allocated uniformly among execution subtasks of a WD,
and constraints (7) and (8) ensure that the allocation of
resources to the subtasks respects assignment constraints.

The resource allocation implemented by the operator
determines the perceived service rates of the subtasks,
and together with the task arrival rates it determines the
average task completion times of the users. To express
this dependence, we define the collection λ = (λi)i∈N
of arrival intensities of the WDs. Similarly, we define
the collection σ = (σi)i∈N of resource reservations of the
WDs. Finally, we denote by S̄i(λ, σ) the mean completion
time of tasks generated by WD i, which in our model
equals the mean sojourn time of customers in a G/G/1
fork-join queuing network corresponding to the subtask
graph Gi.

B. User Utility
Aligned with the pay-as-you-go billing model widely

used in serverless computing, we denote by cλ
i and cσ

i the
unit cost per arrival rate and per resource reservation,
respectively, and we define the computing cost for WD
i as Ci(λi, σi) = cλ

i λi + cσ
i σi. The term cλ

i accounts for
the cost due to the number of invocations, but it can also
account for the computational resources actually used for
executing tasks, as usual in existing serverless offerings.
Furthermore, we define the utility of WD i,

Ui(λi, σi) = fi(λi) − Ci(λi, σi), (9)

where fi(λi) is a continuously differentiable concave
function of λi, i.e., d2f

dλ2
i

< 0. Concavity of the utility
is a natural assumption for many monitoring and control
applications, and is widely used as it captures diminishing
marginal gains [10]–[14], while differentiability ensures
analytical tractability. We also make the reasonable as-
sumptions that fi(0) = 0 and cλ

i < df
dλi

|λi=0 ≤ Li ∈ R>0.
Since the WDs pay for the rate at which they generate

tasks and for the resource reservations they make (c.f.
equation (9)), for each WD i ∈ N there exists a maximum
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rate λi and a maximum resource reservation σi, which
can be obtained as the solution to ∂Ui

∂λi
(λi, 0) = 0 and to

Ui(λi, σi) = 0, respectively. Therefore, we can consider
that WD i ∈ N chooses σi from the compact set Si =
[σi, σi] and λi from the compact set [λi, λi], for some
σi ≥ 0 and λi ≥ 0.

N Set of WDs
N Number of WDs
A Set of APs
A Number of APs
C Set of CR
C Number of CR
R Set of resources (R = C ∩ A)
i Index of WDs

λi Arrival intensity of WD i
λ Task intensity vector (λi)i∈N

λ−i Task intensity vector except WD i
Vi Set of subtasks (i.e. nodes) for WD i
vi

0 Wireless transmission subtask of WD i
vi

|Vi| Last subtask (i.e. sink node) of WD i

T i Maximum average completion time
Rv Set of resources used for subtask v
µr,v Service rate of r for processing subtask v
pr,v Fraction of resource r for subtask v
p Resource allocation vector (pr,v)r∈R,v∈V
ρr Utilization of resource r,

ρr =
∑

v∈Vr
pr,v ≤ 1

ρ Vector of utilization ∀r ∈ R, ρ ∈ [0, 1]|R|

p̃r,v Perceived allocation for subtask v
on resource r

µ̃r,v Perceived service rate for subtask v
on resource r

µ̃v Total perceived service rate for subtask v
σv Service rate reservation for subtask v
σi Total reservation of WD i
σ Reservation vector (σi)i∈N

σ−i Reservation vector except WD i

Si Mean task completion time of WD i
cλ

i Cost per task intensity of WD i
cσ

i Cost per reservation of WD i
Ci Computing cost of WD i
Ui Utility of WD i

TABLE I: Table of Notations.

C. Serverless Stochastic Rate Allocation Game
In the considered system the WDs are engaged in

repeated strategic interaction through the resource allo-
cation p, which they can influence through the resource
reservations σ. We consider that the WDs can update
their resource reservations σ periodically, i.e., whenever
the network operator updates the resource allocation p
by solving (3)-(8). Between subsequent updates of the

resource reservation the WDs can adjust their rates λ.
We adopt the game theoretic notation σ−i and λ−i to
denote the resource reservations and the rates of all WDs
except WD i, respectively.

Each WD i ∈ N aims at maximizing its utility (9)
subject to its average task completion time constraint T i,
by choosing resource reservation σi and rate λi. Thus,
each WD i aims at solving the optimization problem

arg max
λi,σi

Ui(λi, λ−i, σi, σ−i) (10)

s.t. S̄i(λi, λ−i, σi, σ−i) ≤ T i (11)

The resulting game played by the WDs is a dynamic
game in which not only the objective functions of WDs
depend on each others’ strategies, but also the strategy
sets through stochastic constraints. Importantly, in
practice the mean task sojourn times, and thus, the
action sets are not known, but have to be learned by the
WDs. We refer to the resulting game as the Serverless
Stochastic Rate Allocation (SSRA) game. In what follows
we investigate (i) whether the SSRA game admits
an equilibrium, and (ii) whether WDs could learn an
equilibrium strategy in a distributed manner.

I I I . Sojourn Time Characterization

In this section we first show monotonicity and pseudo-
convexity of the mean task completion time S̄i(λ, σ), i.e.,
the sojourn time in a G/G/1 fork-join network, in the
task arrival rate λi. We then characterize the structure
of the optimal solution of the operator’s load balancing
problem (3)-(8), and finally we show monotonicity of
the mean task completion time S̄i(λ, σ) in the resource
reservation σi. We use these results in Section IV and V.

A. Monotonicity and Pseudoconvexity of the Sojourn
Time in the Arrival Rate

It is known that even in a single G/G/1 queue with
FCFS service discipline the mean sojourn time need not
be a convex function of the arrival rate [15]. Nonetheless,
in what follows we show that the mean sojourn time is
a monotone, pseudoconvex function of the arrival rate.
The importance of this result is that pseudoconvexity is a
sufficient condition for gradient-based learning algorithms
to converge to the optimal solution.

We start with showing the result for tandem queues;
we consider a set V = {1, 2, . . . , V } of G/G/1 queues in
series, and we assume that the service discipline is FCFS
and work-conserving (i.e., a server is never idle when its
queue is non-empty). We make the common assumption
that the interarrival and service time distributions satisfy
the stability criterion [16], [17]. We denote by Iv

n the time
between the arrival of customer n − 1 and customer n to
queue v ∈ V. Furthermore, we denote by sv

n, wv
n and Sv

n
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the service, waiting and sojourn times of customer n in
queue v ∈ V , respectively, and we introduce the notation

Iv
l,m =

m∑
k=l

Iv
k , ΣSv

l,m =
m∑

k=l

sv
k, S1:V

n =
V∑

v=1
Sv

n, (12)

where for l > m the sums are empty and are thus 0. Before
we present our results, let us recall two fundamental
results concerning the waiting times and the sojourn
times in tandem queues, respectively. We first present
the waiting time expression for a single G/G/1 queue,
and then we extend the result to tandem queues.

Lemma 1. [16] Let mv represent the mth customer in
queue v. Lindley’s recursion has the unique solution

wv
n = max

mv≤n
(ΣSv

mv,n−1 − Iv
mv+1,n), v ∈ V.

The second result follows from Lemma 1 and provides
a closed-form expression for the sojourn time of G/G/1
tandem queues.

Lemma 2. [17] The total time S1:V
n that customer n

spends in a system of V ≥ 1 queues connected in series
can be expressed as

S1:V
n = max

m1≤...mV ≤mV +1=n

( V∑
v=1

ΣSv
mv,mv+1

− I1
m1+1,n

)
.

(13)

We note that both results hold for stable queuing systems,
including the heavy traffic regime, whenever the offered
load is less than 1. In what follows we prove our first
main result concerning the sojourn time of individual
tasks based on Lemma 2.

Theorem 1. Consider a G/G/1 tandem queue consisting
of V queues, and an arbitrary customer n. The total
sojourn time S1:V

n of customer n is an increasing pseudo-
convex function of the customer arrival rate λ.

Proof. For an arrival rate of λ, let us denote by τk−1 =
1
λ tk−1 and τk = 1

λ tk the time at which customers k−1 and
k arrive in the system (i.e., in the first queue), respectively.
tk−1 and tk can assume any non-negative values and they
can be any realizations of random variables. Then, the
interarrival time of customer k and customer k − 1 at
the first queue is I1

k = τk − τk−1 = tk−tk−1
λ . Therefore, it

follows from (12) and Lemma 2 that the total sojourn
time S1:V

n of customer n can be expressed as

S1:V
n = max

m1≤...mV ≤mV +1=n

( V∑
v=1

ΣSv
mv,mv+1

−
n∑

k=m1+1

tk − tk−1

λ

)
.

(14)
First observe that for two successive jobs k−1 and k we

have that tk − tk−1 > 0. Furthermore, since ΣSv
mv,mv+1

is not a function of λ (c.f. equation (12)), we have that
S1:V

n is defined as the maximum of increasing functions,
is continuous, but it is not necessarily a differentiable
function of λ. Therefore, to prove pseudoconvexity of

S1:V
n we need to consider the upper Dini derivative

of S1:V
n , which we denote by D+S1:V

n . It is easy to
see from (14) that S1:V

n is an increasing function of λ
such that D+S1:V

n (λ′) > 0 for any λ′ > 0. To prove
pseudoconvexity, we need to show that S1:V

n is increasing
in any direction where the upper Dini derivative is
positive. Since D+S1:V

n (λ′) > 0 for any λ′ > 0, we have
that D+S1:V

n (λ′)(λ′′ − λ′) ≥ 0 is true only if λ′ ≤ λ′′.
Therefore, to check pseudoconvexity it suffices to show
that λ′ ≤ λ′′ implies S1:V

n (λ′) ≤ S1:V
n (λ) for all λ on

the line segment connecting λ′ and λ′′, i.e., that S1:V
n is

nondecreasing in λ, which is clearly the case. This proves
the theorem.

Next, we extend the above result to fork-join networks.

Theorem 2. Consider a G/G/1 fork-join network G =
(V, E) of queues with FCFS and work-conserving service
discipline. Then the sojourn time Sn of customer n is an
increasing pseudoconvex function of the arrival rate λ.

Proof. Let us denote by Π = {v1, . . . , v|Π|} the set of
parallel queues and let v0 and v|V| be the first and the
last queue in the network, i.e., V = {v0} ∪ Π ∪ {v|V|},
respectively. Furthermore, let us denote by Spπ

n the
sojourn time of customer n on the simple path pπ =
{(v0, vπ), (vπ, v|V|)}, which connects the first queue v0
with the last queue v|V| via parallel queue vπ ∈ Π. Then,
the total sojourn time Sn of customer n in the fork-join
network G = (V, E) can be expressed as

Sn = max
π∈Π

Spπ
n . (15)

By Theorem 1 we know that Spπ
n is an increasing

pseudoconvex function of λ. Furthermore, it is easy to
see from (14) and (15) that Sn is also an increasing
function of λ with the upper Dini derivative D+Sn > 0.
By following a similar approach to the one used in the
proof of Theorem 1 it follows that Sn is also pseudoconvex
in λ, which proves the result.

Finally, we extend the result to the mean sojourn times.

Theorem 3. The mean sojourn time S̄ in a G/G/1 fork-
join network G = (V, E) is an increasing pseudoconvex
function of the arrival rate λ.

Proof. Since Theorem 1 is true for any non-negative
values of tk−1 and tk (c.f., equation (14)), it is also true
when the realizations of tk−1 and tk are random variables,
hence the result.

Using the above we can obtain a useful characterization
of the service times of the tasks generated by the WDs
in the considered serverless edge computing system.

Corollary 1. The mean sojourn time S̄i(λ, σ) of a task
generated by WD i ∈ N is an increasing pseudoconvex
function of the task arrival rate λi.

Proof. The result follows from Theorem 3.
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B. Perceived Service Rate under Load Balancing
We now turn our attention to the perceived service

rate µ̃∗
v of the WDs. In order to obtain a characterization,

we first analyze the structure of an optimal solution of
the operator’s problem (3)-(8).

Proposition 1. Consider an optimal solution (p∗, ρ∗)
to (3)-(8), a subtask v ∈ V and a subset R′

v ⊆ Rv of
resources such that p∗

r,v > 0 for every r ∈ R′
v. Then, the

solution p∗ is such that
(i) equality holds in each constraint (4) and

(ii) ρ∗
r = ρ∗

r′′ holds for any two resources r, r′′ ∈ R′
v.

Proof. We start with proving (i). Let us assume that
there is an optimal solution p∗ to (3)-(8) such that σv <∑

r∈Rv
p∗

r,vµr,v holds for some subtask v ∈ V . Next, let us
consider p′ such that p′

r,v < p∗
r,v holds for some resource

r ∈ R′
v, p′

r′′,w = p∗
r′′,w holds for (r′′, w) ∈ R×V \{(r, v)},

and σv =
∑

r∈Rv
p′

r,vµr,v is satisfied. Then, ρ′
r < ρ∗

r

and ρ′
r′′ = ρ∗

r′′ , r′′ ∈ R \ {r} hold. Since ρ contains
the utilizations of resources in nonincreasing order we
obtain that ρ′⪯Lρ∗, which contradicts the assumption
that (p∗, ρ∗) is an optimal solution to (3)-(8), and proves
(i).

We continue with proving (ii). Let us assume that there
is an optimal solution p∗ to (3)-(8) such that ρ∗

r > ρ∗
r′′

holds for two resources r, r′′ ∈ R′
v. Furthermore, let us

consider p′ where p′
r,v < p∗

r,v, p′
r′′,v > p∗

r′′,v and p′
r′,w =

p∗
r′,w, (r′, w) ∈ R×V \{(r, v), (r′′, v)} hold, and ρ′

r = ρ′
r′′

is satisfied. Then, ρ′
r = ρ′

r′′ ≤ ρ∗
r and ρ′

r′ = ρ∗
r′ , r′ ∈ R \

{r, r′′} hold. Since ρ contains the utilizations of resources
in nonincreasing order we obtain that ρ′⪯Lρ∗, which
contradicts the assumption that (p∗, ρ∗) is an optimal
solution to (3)-(8), and proves (ii). This concludes the
proof.

Proposition 1 allows us to formulate the following results.

Corollary 2. Consider an optimal solution (p∗, ρ∗), a
subtask v ∈ V, a subset R′

v ⊆ Rv of resources such that
p∗

r,v > 0 for every r ∈ R′
v, and a resource r′′ ∈ R′

v. Then
the perceived service rate is

µ̃∗
v = σv

ρ∗
r′′

= σi

|Vi|ρ∗
r′′

. (16)

Proof. First, from (ii) in Proposition 1 we have that
ρ∗

r = ρ∗
r′′ for any resource r ∈ R′

v \ {r′′}, and thus the
perceived service rate µ̃∗

v defined in (2) can be expressed as

µ̃∗
v =

∑
r∈R′

v

p∗
r,vµr,v

ρ∗
r

=
∑

r∈R′
v

p∗
r,vµr,v

ρ∗
r′′

. Second, from (i)
in Proposition 1 we have that

∑
r∈R′

v
p∗

r,vµr,v = σv = σi

|Vi| ,
which proves the result.

Corollary 3. The perceived service rate µ̃∗
v of every

subtask v ∈ Vi is a nondecreasing function of the resource
reservation σi.

We can provide a stronger result if we restrict our
attention to the case that resources form equivalence
classes, defined as follows.

Assumption 1 (A1). Consider subtasks v, v′ ∈ Vi. If
Rv ∩ Rv′ ̸= ∅ then Rv = Rv′ .

Corollary 4. Under Assumption A1 the utilization ρ∗
r′′ is

an affine function of σi. Furthermore, the perceived service
rate µ̃∗

v of every subtask v ∈ Vi is a concave nondecreasing
function of the resource reservation σi.

We proceed with providing a general result concerning
the sojourn time in a fork-join network G = (V, E). To
do so, we denote by µv the service rate in queue v ∈ V.

Theorem 4. Consider a fork-join network G = (V, E) of
G/G/1 queues with FCFS and work-conserving service
discipline. The sojourn time Sn of customer n and the
mean sojourn time S̄ are decreasing functions of the
service rates µv.

Proof. Let us consider three customers l, n and m such
that l ≤ n ≤ m. For a service rate of µv we can express
the time required to serve customer n as sv

n = xn,v

µv
, where

xn,v is a non-negative random variable with E[xn,v] = 1.
For any realization of xn,v, it follows from the definitions
of ΣSv

l,m, S1:V
n and Sn (c.f., equations (12),(14) and (15))

that the sojourn time Sn of customer n is a decreasing
function of service rate µv in queue v ∈ V. Taking
expectation, it follows that the mean sojourn time S̄
in a fork-join network is also a decreasing function of
the service rate µv in queue v ∈ V, which proves the
result.

Theorem 4 allows us to formulate the following result.

Corollary 5. The mean sojourn time S̄i(λ, σ) of a task
generated by WD i ∈ N is a decreasing function of the
perceived service rate µ̃v for each subtask v ∈ Vi.

Proof. The result follows from the proof of Theorem 4.

Finally, we use the above result to show that the mean
sojourn time S̄i(λ, σ) is a monotonic function of the
resource reservation σi.

Theorem 5. Consider an optimal solution to the op-
erator’s problem (3)-(8), and the resulting perceived
service rates µ̃∗

v of subtasks v ∈ Vi. The mean sojourn
time S̄i(λ, σ) of a task generated by WD i ∈ N is a
nonincreasing function of the resource reservation σi.

Proof. First, from Corollary 5 we have that the mean
sojourn time S̄i(λ, σ) is a decreasing function of the
perceived service rate µ̃∗

v for each subtask v ∈ Vi. Second,
from Corollary 3 we have that the perceived service rate
µ̃∗

v of each subtask v ∈ Vi is a nondecreasing function of
resource reservation σi. Hence, we have that S̄i(λ, σ) is
nonincreasing in σi, which proves the result.

IV. Equilibria Under Perfect
Information

We first consider the case of perfect information, i.e.,
each WD i knows λ and σ, and can infer its mean task
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completion time S̄i(λ, σ). Observe that the sets of feasible
rates and reservations of players form coupled constraints,
and hence the resulting game is a generalized Nash
equilibrium problem. In what follows we use Variational
Inequality (VI) theory to prove the existence of equilibria
in the SSRA game under perfect information. First, we
recall the definition of a VI(K, F ) problem from [18].

Definition 1. Let K ⊆ Rn be a closed convex set and F :
K → Rn a continuous function. The VI(K, F ) problem
is to find a point x∗ ∈ K such that F (x∗)T (x − x∗) ≥ 0,
for ∀x ∈ K.

We are now ready to formulate one of our main results.

Theorem 6. The SSRA game under perfect information
admits a pure strategy Nash equilibrium.

Proof. First, let us recall that the WDs can update their
resource reservations periodically, and that between two
updates of the resource reservations they can adjust their
rates. In order to model the dynamics of the game played
by the WDs, we introduce two fictitious players iσ and
iλ for each WD i ∈ N , which decide about the resource
reservation σi and the rate λi, respectively. Furthermore,
we denote by Nσ, |Nσ| = N and Nλ, |Nλ| = N the
sets of fictitious players that decide about the resource
reservations and rates, respectively. Finally, we denote by
Nf the set of all fictitious players, i.e., Nf = Nλ ∪ Nσ.

In order to model how the fictitious players inter-
act with each other we define for each iσ ∈ Nσ the
set Kiσ

(λ, σ−i) ≜ {σi|S̄i(λ, σi, σ−i) ≤ T i} of feasible
resource reservations, and for each iλ ∈ Nλ the set
Kiλ

(λ−i, σ) ≜ {λi|S̄i(λi, λ−i, σ) ≤ T i} of feasible rates.
We can then define the generalized Nash equilibrium prob-
lem (GNEP) Γf =< Nf , (Kif

)if ∈Nf
, (Uif

(λ, σ))if ∈Nf
>

in which both fictitious players iσ and iλ aim at maximiz-
ing utility Ui(λ, σ) of WD i with respect to the latency
constraint of WD i. Therefore, Γf is a strategic game in
which each fictitious player iσ ∈ Nσ aims at maximizing
its utility Uiσ (λ, σ) = Ui(λ, σ) by solving

arg max
σi

Ui(λ, σi, σ−i) (17)

s.t. σi ∈ Kσ
i (λ, σ−i), (18)

and each fictitious player iλ ∈ Nλ aims at maximizing
its utility Uiλ

(λ, σ) = Ui(λ, σ) by solving

arg max
λi

Ui(λi, λ−i, σ) (19)

s.t. λi ∈ Kλ
i (λ−i, σ). (20)

Clearly, a pure strategy Nash equilibrium of Γf is an
equilibrium of the SSRA game in which the WDs update
their resource reservations and rates separately. We
thus have to prove that Γf has a pure strategy Nash
equilibrium.

In the following we use VI to prove the result concern-
ing the existence of equilibria in Γf . Therefore, we need
to define a suitable VI(K, F ) problem that corresponds

to game Γf . To do so, we have to specify the set K and
the function F [18]–[20]. First, we define the set

K = Πiσ∈Nσ Kiσ (λ, σ−i)Πiλ∈Nλ
Kiλ

(λ−i, σ). (21)

Second, we define the function

F =
(

∇σU(λ, σ)
∇λU(λ, σ)

)
,

where ∇σU(λ, σ) and ∇λU(λ, σ) are the gradient vectors
given by

∇σU(λ, σ) =


dU1(λ,σ)

dσ1
...

dUN (λ,σ)
dσN

 , ∇λU(λ, σ) =


dU1(λ,σ)

dλ1
...

dUN (λ,σ)
dλN

 .

The proof relies on showing that that set K is compact
and convex and that the utility Ui(λ, σ) of each WD i is
continuously differentiable in (λ, σ) and concave in σi and
λi [20]. We start with proving the compactness of set K.
Let us recall that WD i ∈ N can choose σi and λi from the
compact sets [σi, σi] and [λi, λi], respectively. Therefore,
it is easy to see that Kiσ

(λ, σ−i) and Kiλ
(λ−i, σ) are

compact subsets of [σi, σi] and [λi, λi], respectively. Since
the Cartesian product of compact sets is compact (c.f.,
Tychonoff’s theorem), we obtain that set K defined in
(21) is compact.

We continue with proving the convexity of set K. From
Corollary 1 and Theorem 5 we have that S̄i(λ, σ) is an
increasing pseudoconvex function of the task arrival rate
λi and a nonincreasing function of σi, respectively. There-
fore, S̄i(λ, σ) is quasiconvex in λi and in σi, and thus
sublevel sets Kiλ

(λ−i, σ) and Kiσ
(λ, σ−i) are convex [21].

Since the Cartesian product of convex sets is a convex
set [21] we obtain that the set K defined in (21) is convex
as well.

Finally, it is easy to check that the utility function
Ui(λ, σ) defined in (9) is continuously differentiable in
(λ, σ) and concave in σi and λi. Hence, it follows from
Theorem 2.1 and Proposition 2.2 in [20] that the solution
of VI(K, F ) exists and it is also a Nash equilibrium of Γf ,
and thus of the SSRA game. This proves the theorem.

We have thus shown that equilibria exist in the SSRA
game under perfect information, which is a prerequisite for
the study of learning equilibria under imperfect informa-
tion considered in the following section. In the Appendix,
included in the supplementary material, we also show that
rate reservation is essential in the considered problem,
as the interaction between rate control and resource
allocation may lead to starvation otherwise. Next, we
study whether equilibria can be reached under imperfect
information.

V. Learning to Play Equilibrium using
Online Optimization

In what follows we propose an online optimization
algorithm for WDs to maximize their individual utility
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Result: Resource reservation σi of WD i
1 for t = 1, . . . do
2 ηt = 1

tγ2 , αt = tγ1

3 σi
−(t) = σi(t)− ηt

2 ,
4 Report σi

−(t) to Operator;
5 (S−

i , λ−
i )← RA(λi(t), T i) ▷ Rate adaptation;

6 σi
+(t) = σi(t) + ηt

2 ;
7 Report σi

+(t) to Operator;
8 (S+

i , λ+
i )← RA(λi(t), T i) ▷ Rate adaptation;

// Subgradient computation
9 Û−

i (t) = Ui(λ−
i , σ−

i (t));
10 Û+

i (t) = Ui(λ+
i , σ+

i (t));
11 ∇Ûi(t)← (Û+

i (t)− Û−
i (t))/ηt;

12 λi(t + 1) = (λ+
i + λ−

i )/2
13 σi(t + 1) =

arg minσ∈Si
−[∇Ûi(t)]⊺(σ − σi(t)) + 1

αt
||σ − σi(t)||2;

14 end

Algorithm 2: Pseudocode of the OARC algorithm.

based on measured sojourn times of their computational
tasks, called OARC. The pseudo-code of the algorithm
is shown in Figure 2. The algorithm makes use of online
gradient ascent based on a perturbation of σi, used for
estimating the gradient of the utility function Ui, and
in between perturbations it ensures that the latency
constraint is met through rate adaptation (RA). In each
iteration, the algorithm first updates the perturbation
size (ηt), and the learning rate (αt) (Line 1). It then
computes the perturbed reservations (σ−

i (t), σ+
i (t)) and

reports those to the operator (Lines 3, 4 and 6, 7). WDs
estimate the resulting arrival intensities and average
response times ((S+

i , λ+
i ),(S−

i , λ−
i )) corresponding to the

rate reservations (σ−
i (t), σ+

i (t)) (Lines 5 and 8). Between
Lines 9 − 11, the algorithm computes the stochastic
subgradient with respect to the rate reservation. Finally,
it computes the estimated arrival rate and updates the
reservation using a gradient ascent step, based on the
computed stochastic subgradient (Lines 12−13). In what
follows we first show that the proposed algorithm can
indeed ensure to meet the mean sojourn time constraint,
and that under certain assumptions it converges to an
equilibrium.

Proposition 2. Let σi be fixed, and λ∗
i (σi) =

arg maxλi∈[λi,λi] Ui(λi, λ−i, σ). Then the set of solutions
of the problem

min
λi≤λ∗

i
(σi)

[S̄i(λi, λ−i, σ) − T i]2. (22)

is compact and convex.

Proof. We prove the result by first showing convexity
and compactness of the solution set. By Corollary 1
S̄i(λi, λ−i, σ) is increasing and pseudoconvex in λi. Thus,
the objective [S̄i(λi, λ−i, σ)−T i]2 is pseudoconvex. Pseu-
doconvexity implies quasiconvexity, and every sublevel
set of a quasiconvex function is convex, which together

with the finiteness of λ∗
i (σi) proves the result.

Observe that pseudoconvexity of the objective in (22)
implies that stochastic gradient descent algorithms, such
as stochastic approximation and the Adam algorithm [22]
can be used for finding a solution efficiently (c.f., Theorem
4.1 in [23]). We can thus consider that users are able to
solve (22) using a rate adaptation (RA) algorithm, which
we formulate as the following assumption.

Assumption 2 (A2). Denote by λ̂i(σi(t)) the estimated
solution to (22). The arrival rate estimation error ζi,t =
λ̂i(σi(t)) − λ∗

i (σi(t)) satisfies E[ζi,t] = 0, t = 1, 2, . . . and
E[ζ2

i,t] ≤ ci,t, limt→∞ ci,t = 0.

The assumption that the estimate is unbiased is justified
by that ηt → 0, which makes that the perturbed reserva-
tions converge to σi(t), and hence the computed arrival
rates converge to the actual optimal arrival rate. We now
turn to the analysis of the task arrival rate and the utility
under the following assumption.

Assumption 3 (A3). Consider two strategies (λi, σi)
and (λ′

i, σ′
i), and let 0 ≤ θ ≤ 1. Then

S̄i(θλi + (1 − θ)λ′
i, λ−i, θσi + (1 − θ)σ′

i, σ−i) ≤
max(S̄i(λi, λ−i, σi, σ−i), S̄i(λ′

i, λ−i, σ′
i, σ−i)). (23)

In what follows we show that under Assumption 3 the
maximum task arrival rate of each user is concave in its
rate reservation.

Proposition 3. Let us define the maximum task intensity
λi(σi) = max{λi|S̄i(λi, λ−i, σi, σ−i) ≤ T i}. If Assump-
tion 3 holds then λi(σi) is a concave function of σi.

Proof. Recall that by Corollary 1 and Theorem 5 the
mean sojourn time S̄i(λ, σ) is increasing and pseudo-
convex in λi, and is nonincreasing in σi, respectively.
Assumption 3 implies that the mean sojourn time S̄i is
jointly quasiconvex in (λi, σi). Quasiconvexity implies
that each sublevel set {(λi, σi)|S̄i(λ, σ) ≤ T} is convex.
Since S̄i is quasiconvex nondecreasing in λi, convexity of
the sublevel set implies that λi(σi) is concave in σi.

A consequence of the above result is that the utility is
concave in the rate reservation.

Corollary 6. Let Ũi(σi) = Ui(λi(σi), (σi, σ−i)). Then
Ũi(σi) is concave in σi, and there is L > 0 such that
Ũi(σi) is L-Lipschitz continuous on Si.

Proof. Concavity follows from Proposition 3, and the
concavity of fi. L-Lipschitz continuity follows from that
S̄(λi, σi, σ−i) is bounded by Ti, and λi and σi have
compact domain, thus S̄ is L-Lipschitz. Observe that
for any T i < ∞, the set Si ⊂ [0, ∞) is compact, and
since Ũi is concave, it is Lipschitz continuous in the
relative interior of its domain ( [24], Proposition 2.107).
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In addition, fi is Li-Lipschitz continuous by assumption,
thus Ui is L-Lipschitz continuous for some L > 0.

Our first main result about OARC establishes that if
OARC converges then it indeed converges to an equilib-
rium of the SSRA game.

Theorem 7. Assume that the sequence σ(t) generated
by OARC converges to σ∗(t). Then σ∗(t) is a Nash
equilibrium of the SSRA game.

Before we present the proof, we introduce three technical
results related to the update expression and to the
measured utility under noisy rate estimates.

Lemma 3. The update expression in Line 13 of the
OARC algorithm can be written as the projected gradient
update

σi(t + 1) = Pi[σi(t) − 1
2αt

∇Ûi(t)], (24)

where Pi is the Euclidean projection on Si. The projected
gradient is equivalent to

Pi(σ̃i(t)) = arg max
σi∈Si

⟨σ̃i(t), σi⟩ − 1
2∥σi∥2 (25)

σ̃i(t + 1) = σ̃i(t) + 1
2αt

∇Ûi(t), (26)

where the term h(σi) = 1
2 ∥σi∥2 is called the penalty

function, and σ̃i(t) ∈ R is called the aggregated gradient.

Proof. The first statement follows from Lemma 1 in [25].
The second statement follows from (3.7) in [26].

Second, we characterize the bias of the gradient estimates
used in OARC.

Lemma 4. Consider the measured central difference
derivative estimate ∇Ûi(t). The estimate has a bias of

∇Ûi(t) − ∇Ũi(t) = O(η2
t

4 ) + θ(ζi,t)
ηt

, (27)

where θ(ζi,t) is the error due to the arrival rate estimation
error.

Proof. Consider the Taylor expansion of Ũi at σi(t),

Ũi(σi(t) ± ηt

2 ) = Ũi(σi(t)) ± ηt

2
∂Ũi(σi(t))

∂σi(t)

+ η2
t

8
∂2Ũi(σi(t))

∂σ2
i (t) ± O(η3

t

8 ), (28)

and use it to express the true gradient at σi(t) as a
function of the central difference derivative estimate,

∇Ũi(t) =
Ũi(σi(t) + ηt

2 ) − Ũi(σi(t) − ηt

2 )
ηt

− O(η2
t

4 ).
(29)

Consider now the measured utility based on (9),

Û+
i (t) = fi(λi(σi(t) + ηt

2 ) + ζi,t) (30)

−cλ
i λi(σi(t) + ηt

2 ) − cλ
i ζi,t − cσ

i (σi(t) + ηt

2 ),

Û−
i (t) = fi(λi(σi(t) − ηt

2 ) + ζi,t) (31)

−cλ
i λi(σi − ηt

2 ) − cλ
i ζi,t − cσ

i (σi(t) − ηt

2 ),

where λi(σi(t)) is the arrival intensity at σi(t). We can
perform a Taylor series expansion of (30) and (31) at
λi(σi(t) + ηt

2 ), and λi(σi(t) − ηt

2 ) respectively, to obtain

Û+
i (t) = Ũi(σi(t) + ηt

2 ) +

+ ζi,t(f ′
i(λi(σi(t) + ηt

2 )) − cλ
i ) +

+
ζ2

i,t

2 f ′′
i (λi(σi(t) + ηt

2 )) + O(ζ3
i,t),

= Ũi(σi(t) + ηt

2 ) + θ+(ζi,t) (32)

Û−
i (t) = Ũi(σi(t) − ηt

2 ) +

+ ζi,t(f ′
i(λi(σi(t) − ηt

2 )) − cλ
i ) +

+
ζ2

i,t

2 f ′′
i (λi(σi(t) − ηt

2 )) + O(ζ3
i,t)

= Ũi(σi(t) − ηt

2 ) + θ−(ζi,t), (33)

where θ+(ζi,t) and θ−(ζi,t) are the utility estimation error
due to the arrival rate estimation error. Let us subtract
(33) from (32) and divide it by ηt, we then obtain

∇Ûi(t) =
Ũi(σi(t) + ηt

2 ) − Ũi(σi(t) − ηt

2 )
ηt

+

θ+(ζi,t) − θ−(ζi,t)
ηt

, (34)

which together with (29) and using θ(ζi,t) = θ+(ζi,t) −
θ−(ζi,t) concludes the proof.

We note that the above result may be extended to non-
differentiable functions following the analysis in [27]
Third, we show that the utility estimation error due to
the arrival rate estimate vanishes.

Lemma 5. Assume that fi is smooth and Assumption 2
holds. Then

lim
t→∞

E
[θ(ζi,t)

ηt

]
→ 0. (35)

Proof. Recall that θ(ζi,t) = θ+(ζi,t) − θ−(ζi,t), and
consider the Taylor series expansion, similar to (32) and
(33),

θ(ζi,t)
ηt

=
ζi,t(f ′(λi(σi(t) + ηt

2 ) − f ′(λi(σi(t) − ηt

2 ))
ηt

+
ζ2

i,t

2 (f ′′(λi(σi(t) + ηt

2 ) − f ′′(λi(σi(t) − ηt

2 ))
ηt

+ . . . . (36)

Consider now (36) and the limit of its expectation, recall-
ing that the denominator is deterministic, the difference of
the first order derivatives in the first term of (36) is equal
to the second order derivative by definition. Following
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the same logic, the difference in the second term is equal
to the third order derivative by definition. This holds for
all higher order derivatives in (36) as ηt → 0. Now, by
assumption fi is a smooth and L-Lipschitz continuous
function, hence its derivatives are bounded. Furthermore,
by Assumption 2 we have E[ζ2

i,t] → 0 as t → ∞, hence
higher moments do so too with probability 1, which
concludes the proof.

Using the above results we are now ready to prove
Theorem 7.

Proof of Theorem 7. Let g∗ = g(σ∗) = ∇Ũ(σ∗) and
assume that σ∗ is not a Nash equilibrium. By the
characterization of Nash equilibria (see [26] for details),
there exists a player i ∈ N and a deviation qi ∈ [σi, σ̄i] =
Si ⊆ R and ⟨g∗

i , qi − σ∗
i ⟩ > 0. By continuity, there exist

some c > 0 and neighborhoods U and G of σ∗ and g∗

respectively such that

⟨g′
i, qi − σ′

i⟩ ≥ c (37)

whenever σ′ ∈ U and g′ ∈ G. Now, let Ω be the event that
σ(t) converges to σ∗, so P(Ω) > 0 by assumption. Within
Ω we can also assume for simplicity that σ(t) ∈ U and
g(σ(t)) ∈ G for all t. Recall that in OARC the learning
rate αt satisfies

∞∑
t=1

( 1
αtτt

)2
<

∞∑
t=1

1
αt

= ∞, (38)

where τt =
∑t

t′=1
1

αt′
. By using the update rule given in

Lemma 3, and Assumption 2, we can rewrite the update
rule in terms of the bias and the error term

σ̃i(t) = σ̃i(1) +
t∑

t′=1

1
αt′

∇Ûi(t′)

= σ̃i(1) +
t∑

t′=1

1
αt′

(
gi(t′) + O

(η2
t′

4

)
+ θ(ζt′)

ηt′

)
= σ̃i(1) + τtḡi(t), (39)

where ḡi(t) = τ−1
t

∑t
t′=1

1
αt′

(
gi(t′) + O

(
η2

t′
4

)
+ θ(ζi,t′ )

ηt′

)
.

By Lemma 5, the term due to the arrival intensity
estimation error satisfies τ−1

t

∑t
t′=1

1
αt′

θ(ζi,t′ )
ηt′

→ 0 (a.s).
Let us define some positive constant M > 0, we can then
rewrite the latter term as

τ−1
t

t∑
t′=1

1
αt′

O
(η2

t′

4

)
= τ−1

t

t∑
t′=1

1
(t′)γ1

O
( 1

4(t′)γ2

)
≤ τ−1

t

t∑
t′=1

1
(t′)γ1

1
4(t′)γ2

M

≤
∑t

t′=1
1

(t′)γ1
1

4(t′)γ2∑t
t′=1

1
(t′)γ1

M → 0 (a.s.).

(40)

Consequently, g(σ(t)) → g∗ in Ω and P(Ω) > 0, and
hence by (40) we can conclude that P(ḡ(t) → g∗|Ω) = 1.
Consider now the penalty function h defined in Lemma 3,
and define its subdifferential

∂h(x) = {y ∈ R : h(x′) ≥ h(x) + ⟨y, x′ − x⟩, ∀x′ ∈ R}. (41)

Function h is called subdifferentiable at x ∈ R whenever
∂h(x) is nonempty, and by (Theorem 12.60(b) in [28],
and theorem 23.5 in [29]) for the subdifferential ∂h it
holds that σ̃i(t) ∈ ∂h(σi(t)) ⇐⇒ σi(t) = Pi(σ̃i(t)).
Thus using the definition of the subdifferential and (39)
we have

h(qi) − h(σi(t)) ≥ ⟨σ̃i(t), qi − σi(t)⟩
≥ ⟨σ̃i(1), qi − σi(t)⟩

+τt⟨ḡi(t), qi − σi(t)⟩. (42)

Since ḡ(t) → g∗ almost surely on Ω, (37) yields
⟨ḡi(t), qi − σi(t)⟩ ≥ c > 0 for all sufficiently large t. We
find that |⟨σ̃i(1), qi − σi(t)⟩| ≤ ∥σ̃i(1)∥∗∥qi − σi(t)∥ ≤
∥σ̃i(1)∥∗∥Si∥ = O(1). By substituting this into (42),
we obtain h(qi) − h(σi(t)) > cτt → ∞ with positive
probability. This is a contradiction since h is continuous
and 1-strongly convex, and Si is compact. Thus we
conclude that σ∗(t) is a NE, which proves the result.

We have so far shown that if OARC converges then it
converges to an equilibrim of the SSRA game. In what
follows we also show that OARC achieves zero regret
asymptotically. For simplicity we present the proof for
the case of noiseless rate estimates, but the proof can be
easily extended to noisy rate estimates for the expected
regret.

Proposition 4. Let U i(σi(t)) = 1
2 (Ũi(σ+

i (t)) +
Ũi(σ−

i (t))), and let αt =
√

t. Also, let ∥Si∥2 = σi − σi. If
every WD i can find the minimizer of [Si(λi, λ−i, σ)−T i]2
then the regret of the OARC algorithm is

Ri(T ) =
T∑

t=1
Ũi(σopt

i ) − U i(σi(t)) (43)

≤ ∥Si∥2
√

T +
(

∥L∥2

4 + L

)
(2

√
T − 1)(44)

Thus, lim supT →∞ Ri(T )/T = 0.

Proof. Since Ũi is concave and L-Lipschitz, for any σi(t)
we have

Ũi(σi) ≤ U i(σi(t)) + ∇U i(t)(σi − σi(t)) + Lηt (45)

for any σi, including for σopt
i . Thus,

Ũi(σopt
i ) − U i(σi(t)) ≤ ∇U i(t)(σopt

i − σi(t)) + Lηt. (46)

At the same time we can use the update equation and
Lemma 3 for obtaining the bound

(σi(t + 1) − σi(t))2 ≤ (σi(t) − σopt
i )2

− 1
αt

(σi(t) − σopt
i )∇U i(t) + 1

4α2
t
∥∇U i(t)∥

2
, (47)

10



where the inequality is due to the projection Pi. Re-
arranging the inequality we obtain

(σi(t) − σopt
i )∇U i(t) ≤ αt((σi(t) − σopt

i )2

−(σi(t + 1) − σopt
i )2) + 1

4α2
t
∥∇U i(t)∥

2
. (48)

We can combine (46) and (48) to obtain

Ri(T ) ≤
T∑

t=1
{(σopt

i − σi(t))∇U t + Lηt} (49)

≤
T∑

t=1
αt((σi(t) − σopt

i )2 − (σi(t + 1) − σopt
i )2)

+
T∑

t=1
{ 1

4αt
∥∇U t∥

2 + Lηt} (50)

≤ α1(σi(1) − σopt
i )2 − αT (σi(T + 1) − σopt

i )2

+
T∑

t=2
(αt − αt−1)(σi(t) − σopt

i )2

+∥L∥2
T∑

t=1

1
4αt

+ L

T∑
t=1

ηt (51)

≤ ∥Si∥2

(
α1 +

T∑
t=2

(αt − αt−1)
)

+∥L∥2
T∑

t=1

1
4αt

+ L

T∑
t=1

ηt (52)

≤ ∥Si∥2αT + ∥L∥2
T∑

t=1

1
4αt

+ L

T∑
t=1

ηt. (53)

Using αt = tγ1 , ηt = 1
tγ2 , and the bound

∑T
t=1 t−γ ≤

1 +
∫ T

1 t−γdt, we obtain

Ri(T ) ≤ ∥Si∥2T γ1 + ∥L∥2

4
T 1−γ1 − γ1

1 − γ1
+ L

T 1−γ2 − γ2

1 − γ2
.

(54)
For 0 < γ1, γ2 ≤ 1 we obtain lim supT →∞ Ri(T )/T = 0.
Furthermore, using γ1 = γ2 = 0.5 we obtain (44), which
proves the result.

Thus, the OARC algorithm can compute a solution that
is asymptotically optimal in hindsight.

VI. Numerical Results
We performed extensive simulations in order to assess

equilibrium behavior and to validate the proposed OARC
algorithm. For the evaluation we consider three scenarios
with different task graphs and queue types. In Scenario
1 the task graph consists of two subtasks in series
corresponding to a wireless transmission subtask followed
by one computational subtask executed in series. Scenario
2 consists of three subtasks in series, corresponding to
wireless transmission subtask followed by two computa-
tional subtasks executed in series. Scenario 3 is a fork-join

queuing system in which a wireless transmission subtask
is followed by two computational subtasks executed in
parallel, followed by a computational subtask. For all of
the scenarios, we have |A| = 4 APs and |C|=8 servers.
We assigned up to ⌈|N |/|A|⌉ users at random to each
AP.

We set the WDs’ latency constraints T i uniform at
random on [0.1, 0.01] s, which is reasonable for a variety
of low latency applications envisioned for 5G systems [30].
We choose the service rate of each resource and subtask
µr,v to be uniformly distributed on [ 2

T i
, 3

T i
] for Scenario 1.

For Scenario 2 and Scenario 3 we set the service rate to be
50% higher, on average. Finally, as an example of a non-
negative concave function we use fi(λi) = log(1 + λi) for
computing the WD’s utility [31], and set cλ = cσ = 0.02.
Note that with these parameters λi = 49, and we set
λi = 0. For the evaluation we consider Poisson arrival
processes, the service times are exponentially distributed
(M) or deterministic (D), allowing us to validate our
results under significantly different service processes.

We used two algorithms as baselines for comparison.
The first algorithm is the OCO proposed in [32]. OCO
is an extension of the Zinkevich algorithm, meant to
satisfy convex stochastic constraints, and maximizes the
expected utility by adjusting (λi, σi) simultaneously. We
used perturbations to estimate the local gradients, as
those are assumed to be known by OCO. The second base-
line is obtained by applying Online Adaptive Rate Reser-
vation and Control - Sum of Utilization (OARC-SUM)
using the sum utility of all users as objective function,
i.e., considering that users cooperate for maximizing their
sum utility instead of competing. We refer to this baseline
as the OARC-SUM algorithm. In addition, to be able
to assess the impact of Stochastic Approximation (SA)
on the performance of OARC, we consider a baseline
for Scenario 1 where we compute the optimal arrival
rates λi analytically instead of using SA. We refer to
this as OARC-Model. The results shown are the averages
and the 95% confidence intervals computed based on 30
simulations.

A. Utility Performance

Fig. 3 shows the total utility as a function of the
number of WDs for Scenario 1 with exponential service
times, for OARC, OCO, OARC-SUM and OARC-Model.
Surprisingly, the total utility for OARC is not mono-
tonically increasing. The reason for this is that above
N = 4 the WDs can no longer achieve their maximum
rate λi and thus they contend for the communication
and computing resources. Contention in turn decreases
the maximum service capacity of the system due to the
latency constraints (c.f., the achievable rate in an M/M/1
queue with service rate µ under latency constraint T , vs
the sum of the achievable rates in two M/M/1 queues
with service rate µ/2 under latency constraint T ).
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Fig. 3: Utility vs. number of WDs for Scenario 1.
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Fig. 4: CDF of normalized sojourn times for N = 12 in
Scenario 1.

The figure also shows that OARC-SUM outperforms
OARC which is justified by that OARC-SUM aims at
maximizing the sum utility of all WDs, i.e., WDs do not
act independently. The figure also allows us to assess the
effect of rate adaptation on the utility obtained by OARC.
Comparing the curves for OARC and OARC-Model, we
can observe that the impact of stochastic rate adaptation
is negligible.

Comparing the results for OARC and OCO, it may be
surprising that OCO achieves higher utility than OARC
for N > 4. To explain why this is possible, Fig. 4 shows
the empirical CDF of the normalized sojourn times of
the WDs for the two algorithms for N = 12. We compute
the normalized sojourn time as the ratio of the average
sojourn time of a WD divided by its latency constraint.
The figure shows that OCO leads to a significant violation
of the latency constraint for the majority of WDs. On the
contrary, OARC-Model does not lead to a violation of the
latency bound, while OARC leads to minor violations of
the latency constraint due to SGD-based rate adaptation.
Another observation that can be drawn from Fig. 4 is
that in the heavy traffic regime OARC enables WDs to
adjust their rates and prevents latency violations with
high probability. On the contrary, OCO fails to keep

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

Fig. 5: Utility vs. number of WDs for Scenarios 2 and 3,
M/D queue.
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Fig. 6: Arrival intensity vs. number of WDs for Scenarios
2 and 3, M/D queue.

the mean sojourn time of the WDs under their latency
constraints: when there are many WDs, OCO might lead
to unstable queues whereas OARC ensures queue stability
by keeping the mean sojourn time of the WDs at their
latency constraints. We can thus conclude that OCO
does not solve the SSRA problem, mainly due to that
the utility is not jointly convex in the arrival rate and in
the rate reservation, which highlights the importance of
the approach followed by OARC.

Corresponding results for deterministic service times,
included in the Appendix, show that the utility for
deterministic service times is slightly higher than for
exponential service times, but the curves show similar
characteristics. In what follows we will show results for
deterministic service times for clarity of exposition.

Fig. 5 shows the total utility as a function of the number
of WDs for Scenario 2 and Scenario 3 with deterministic
service times. The results show that OARC performs
close to OARC-SUM for more complex subtasks graphs
as well, including a fork-join task graph (Scenario 3).
Importantly, it also shows that the shapes of the curves
are not affected by the subtask graph topology, i.e., the
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Fig. 7: Reservation vs. number of WDs for Scenarios 2
and 3, M/D queue.
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Fig. 8: Revenue vs. number of WDs for Scenarios 2 and
3, M/D queue.

utility decreases due to contention for resources. The
superior performance of OCO in Scenario 2 and Scenario
3 is again due to that OCO results in significant latency
constraint violations (we omit the figure for brevity).

Fig. 6 shows the total arrival intensity as a function
of the number of WDs for Scenario 2 and Scenario 3
with deterministic service times. The results show that
the utility is to a large extend determined by the arrival
intensity, both for OARC and for OCO. It is interesting
to note that OARC-SUM has lower total arrival intensity
(particularly for N < 4) even though it has higher
total utility compared to OARC. This is due to that
OARC-SUM prevents that a few users achieve a very
high arrival intensity, harming the rest of the users. We
also note that the total utility and arrival rate are far from
the social optimum for N > 4, as the utility obtained for
N = 4 would be achievable for N > 4 by assigning zero
rate to all but 4 users, this is, however, not an equilibrium.

B. Operator Revenue
Fig. 7 shows the total reservation as a function of

the number of WDs for Scenario 2 and Scenario 3
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Fig. 9: Average computation time vs. number of rounds
for solving Problem (3)-(8).

with deterministic service times. Surprisingly, the total
reservation for OARC does not increase linearly with the
number of users beyond N > 4, which can be explained
by that WDs learn that they cannot increase their utility
by increasing their reservation parameter due to the
congestion on the resources. Interestingly, OCO results
in significantly higher resource reservations compared to
OARC and OARC-SUM, which is due to that the latency
constraint is not met by the WDs, allowing significantly
higher rates.

Fig. 8 shows the total revenue of the edge cloud oper-
ator as a function of the number of WDs for Scenario 2
and Scenario 3 with deterministic service times. Since the
revenue is a linear function of the reservation parameter
and the arrival intensity, its shape is similar to that of
the curves shown in Figs. 7 and 6. Somewhat surprisingly,
the results in Fig. 8 show that the total revenue decreases
beyond N > 4 when using OARC and OARC-SUM,
i.e, the edge cloud operator looses revenue due that the
WDs contend for the resources, and consequently reduce
their arrival rates so as to meet their latency constraints.
This observation leads us to conclude that operators
would need to implement admission control to maximize
their revenue in a serverless computing environment with
latency constrained tasks.

C. Computation Time of Problem (3)-(8)
Fig. 9 shows the average computation time for solving

problem (3)-(8) for all scenarios, based on a Python
implementation executed on an Intel i9-10900 CPU.
Recall that the task graphs in Scenario 1, Scenario 2
and Scenario 3 contain 2, 3 and 4 subtasks for each user,
respectively, which is why the computation time is highest
for Scenario 3. Overall, we observe that the computation
time increases approximately linearly as the number of
WDs increases. This is because as the number of WDs (N)
increases, so does the number of subtasks |V| = |∪i∈N Vi|,
indicating that the average complexity of the problem
(3)-(8) is linear in the number of subtasks.
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Fig. 10: Total utility vs. number of computing resources
for Scenario 1, 2, and 3 with M/M queue where |A| = 4
APs, OARC.

D. Sensitivity Analysis
Fig. 10 shows the total utility as a function of the

number of computing resources for Scenarios 1, 2 and
3 with exponential service times for |A| = 4 APs. The
figure shows that the utility is a monotonically increasing
concave function with respect to the number of computing
resources for all scenarios, and indicates that the proposed
algorithm utilize the available computing resources. We
note that the concavity of the curves is due to the
concavity of the utility functions.

VII. Related work

Our problem is related to network utility maximiza-
tion introduced in [33], later extended to, e.g., packet
losses [34], and to queuing networks subject to a stability
constraint [35]. Unlike in the case of network utility
maximization, in the problem we consider the objective
of the network is not aligned with that of the users, which
makes the two problems fundamentally different.

Related to ours are recent works on rate control in
queuing networks. In [36] authors considered distributed
rate control for a fork-join processing network under a
static server assignment, and proposed a solution akin
to the back-pressure algorithm. The focus of this work
was on rate stability, and thus the issue of utilities and
latency constraints was not considered. Authors in [37]
analyze the convexity of the system time in queuing net-
works, and authors in [38] consider constrained stochastic
approximation and provide unbiased estimators that can
be used for GI/G/1 queues. The results hold as long as
the cost function is strictly unimodal, including convex.

There are few works focusing on resource management
for serverless computing [5]. Authors in [5] use Bayesian
optimization for learning the execution time and cost of
serverless functions on Amazon AWS. Their approach
does not consider server side resource allocation and
the interaction among users explicitly, and the solution
requires the repeated solution of an integer linear program

based on estimated parameters for choosing parameters
for service chains.

Our work is related to recent work on online learning.
Closely related to our algorithm is the Zinkevich algo-
rithm for unconstrained online convex optimization [32].
The algorithm was extended in [32] to online convex
optimization with stochastic constraints. These works
focus on a single decision maker, and assume that the
cost and the constraint functions are revealed after every
round. Similarly, authors in [39], [40] propose algorithms
for nested stochastic approximation, but the problem
formulations do not consider stochastic constraints.

In the area of computation offloading, authors in [41]
propose an offline policy for a dynamic computation
offloading and resource scheduling problem under task
completion constraints, consider that both wireless de-
vices and the network operator are decision makers, and
assume that the task of each device can be modeled as a
DAG with the same number of subtasks. Authors in [42]
model an application as a directed acyclic data flow graph,
consider a system with limited wireless and abundant
computing resources shared by multiple applications, and
address the problem of deciding which components in the
data flow graph should be offloaded onto the cloud such
that the throughput of the applications is maximized.
Authors in [43] model a computational task as a DAG,
consider the congestion on computing resources only, and
propose a heuristic for solving an offline task placement
problem in which the objective is to minimize the sum
cost of the devices under constraints on the dependency
among subtasks, the task completion time deadlines and
the amount of available computing resources. Finally,
authors in [44] consider a task graph with loops, cycles and
branches, under the assumption of deterministic service
and waiting times. They present heuristic algorithms for
solving two related optimization problems, minimizing the
response time under a budget constraint, and minimizing
the cost under a response time constraint.

These works do not consider, however, the interaction
between application rate control, server side resource
management and the stochastic service processes. To the
best of our knowledge, ours is the first work that considers
this interaction, analyzes the existence of equilibria and
proposes an online optimization algorithm for learning
equilibria in a distributed manner.

VII I. Conclusion
In this paper, we proposed a modeling abstraction and

a problem formulation for investigating the interaction
between latency constrained services and resource man-
agement for serverless edge computing. The proposed
abstraction is based on a queuing network model of task
graph execution and allows the analysis of the interaction
between selfish WDs that reserve edge resources and a
serverless operator that allocates resources among WDs,
formulated as a non-cooperative game. Our analytical
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results show that rate reservation plays an essential role
for latency sensitive services, at the same time a simple
abstraction for rate reservation allows conceptually simple
algorithms, like the proposed OARC, to converge to
equilibria with good performance. Our numerical results
confirm the analytical findings and also reveal that current
practice of serverless service rate allocation leads to a loss
of service capacity under latency constraints, and to a
loss of operator revenue at the same time. Consequently,
solutions for admission control complemented with new
abstractions and related scheduling policies would be
desirable for latency constrained computing tasks in
a serverless edge computing infrastructure. Our model
could be extended to consider that the computing price
is dependent on the total reservation, i.e., increasing with
the contention for computing resources, it could be used
to study the impact of different forms of signaling between
the WDs and the operator on convergence speed and the
resulting utility, and it could be extended to consider
more complex models of task graphs. We leave these to
be subject of our future work.
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Appendix

A. Starvation without Rate Reservation

In order to show the importance of rate reservation,
let us consider the interaction between autonomous
rate adjustment and operator load balancing under the
hypothetical scenario that the reservation equals the rate
(σi = |Vi|λi), i.e., rate-driven resource allocation. We
start with a simple observation concerning rate stability
of the solution to (3)-(8).

Lemma 6. Let σv = λi, ∀v ∈ V, and p∗ = (p∗
r,v)r∈R,v∈V

an optimal solution to (3)-(8), ρ∗
r =

∑
v∈Vr

p∗
r,v. Then

p∗ is rate stable if and only if ρ∗ = maxr ρ∗
r ≤ 1. It is

stable (in the sense of bounded queue length) if and only
if ρ∗ < 1.

Proof. Let σv = λi, and observe that at an optimal
solution (ρ∗, p∗)

µ∗
v =

∑
r∈Rv

µr,vp∗
r,v ≥ λi, ∀v ∈ V, (55)

and hence rate stability follows from ρ∗ ≤ 1 [45]. On the
contrary, if ρ∗ > 1 then ∃r ∈ R such that ρ∗

r > 1, and
hence the subtask queue at resource r is not rate stable.
For bounded queue length stability, observe that ρ∗ < 1
implies that λi <

∑
r∈Rv

1
ρ∗

r
µr,vpr,v, while ρ∗ = 1 implies

that there is a v ∈ V such that ρ∗
r = 1 ∀r ∈ Rv, and thus

the queue length is unbounded for subtask v.

We now turn to the analysis of the interaction between
WDs and the operator, and use the following example.

Example 1. Consider a system with WDs N = {1, 2},
a single AP (A = 1) and a single computing resource
(C = 1), referred to as resources 1 and 2, respectively.
Each subtask graph Gi consists of a transmission subtask
and an execution subtask, i.e., |Vi| = 2, and V = ∪Vi =
{1, 2, 3, 4}. Task arrivals follow independent Poisson
processes with rates λi, service times are exponentially
distributed with rates µ1,i and µ2,i+2, and σv = λi.

Consider now that WDs and the operator periodically
update their rates and the resource allocation vector,
respectively. As the following result shows, the resulting
rate adjustment leads to starvation.

Lemma 7. Consider the interaction between strategic
WDs and a load balancing operator (eqns. (3)-(8)). The
resulting rate adjustment under latency constraints can
lead to starvation.

Proof. Consider Example 1. We can express the maxi-
mum arrival rate λi of WD i as a function of the actual
service rates µ̃1,i = p̃1,iµ1,i and µ̃2,2+i = p̃2,2+iµ2,2+i and
the latency constraint T i as

λi = max(0,
T i(µ̃1,i + µ̃2,2+i) − 2 − D(T i, µ̃1,i, µ̃2,2+i)

2T i

),
(56)
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Fig. 11: Correspondences λ∗
1 = L1(λ∗

1, λ2) and λ∗
2 =

L2(λ1, λ∗
2) for µ = 10, T 1 = 2, T 2 = 4. Intersections are

fixed points of L. The stable fixed points are (0, 9.5) and
(9, 0). The dotted line separates the basins of attraction
of the two stable fixed points.

where

D(T i, µ1, µ2) =
√

T
2
i (µ1 − µ2)2 + 4

It is easy to see that (56) is a concave increasing function
of µ̃1,i and µ̃2,2+i, and since its Hessian with respect to
(µ̃1,i, µ̃2,2+i) is negative semi-definite, it is jointly concave
in (µ̃1,i, µ̃2,2+i). Furthermore, it is a concave increasing
function of T i.

Consider now problem (3)-(8), and observe that for
the considered example the solution can be expressed as
p1,i = λi/µ1,i and p2,2+i = λi/µ2,2+i for i ∈ {1, 2}, and
thus p̃1,i = λi/µ1,i

λ1/µ1,1+λ2/µ1,2
, and p̃2,2+i = λi/µ2,2+i

λ1/µ2,3+λ2/µ2,4
.

We can substitute these in (56) to obtain the mapping
L : R2 → R2, whose fixed points correspond to rates
(λ1, λ2) that could be achieved by the WDs after itera-
tively updating their rates in response to the operator’s
optimization of the service rates, so as to meet their
latency constraints.

For simplicity, let us consider uniform service rates
µ1,i = µ2,2+i = µ, and observe that the latency constraint
is feasible for WD i if T i ≥ 2/µ. After substitution, we
obtain the mapping Li(λ1, λ2) = max(0, λi

λ1+λ2
µ − 2

T i
).

Assume now that T 1 < T 2, then L has four fixed points,
λ∗(0) = (0, 0), λ∗(1) = (0, µ−2/T 2), λ∗(3) = (µ−2/T 1, 0),
and an interior point where λ∗

1 + λ∗
2 = µ − 2/T 1 − 2/T 2,

i.e., λ∗(4) = ( T 2µ

T 1+T 2
− 2

T 1
, T 1µ

T 1+T 2
− 2

T 2
). Nonetheless, the

only fixed points that are asymptotically stable are λ∗(1)
and λ∗(2), as illustrated in Figure 11, and at these fixed
points only one WD has non-zero rate.

The above result shows that without rate reservation the
interaction between rate control and resource allocation
under latency constraints can lead to undesirable out-
comes. Hence in the main body of the paper we consider
the case of rate reservation.
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Fig. 12: Utility vs. number of users for Scenario 1, M/D
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Fig. 14: Average utility vs. number of rounds for OCO

B. Additional Numerical Results
1) Utility Results for Deterministic Service Times:

Fig. 12 shows the total utility as a function of the number
of WDs for Scenario 1 with deterministic service times,
for OARC, OCO, OARC-SUM and OARC-Model. The
characteristics of the curves are similar to those obtained
using exponential services times, but the total utility
is higher. This is justified by that deterministic services
times allow a higher rate compared to exponential services
times when subject to the same response time constraint.

2) Rate of Convergence: Fig. 13 and Fig. 14 show
the average utility per WD as a function of the number
of rounds for OARC and for OCO, respectively, for
N = 4 and N = 16. The figure shows that OARC
converges relatively fast, within a few hundred rounds, to
an equilibrium. We can also conclude that convergence is
slower when the number of WDs is higher, which is partly
due to the increasing contention for resources. While the
rate of convergence is fairly good considering that OARC
does not require signaling among WDs, it may be still
too slow for practical deployment. Additional signaling
may accelerate convergence, and would be an interesting
direction of future research. OCO converges much slower
(for N = 4, notice the different horizontal axes) and it
did not converge at all for N = 16 in our simulations,
highlighting the superior performance of OARC.
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