
Optimal Pricing for Service Caching and Task
Offloading in Edge Computing

Feridun Tütüncüoğlu and György Dán
Division of Network and Systems Engineering,

School of Electrical Engineering and Computer Science
KTH, Royal Institute of Technology, Stockholm, Sweden

Email: {feridun|gyuri}@kth.se

Abstract—Motivated by the emergence of function-as-a-service
(FaaS) as a programming abstraction for edge computing, we
consider the problem of caching and pricing applications for edge
computation offloading. We model the problem as a multiple-
follower Stackelberg game, where the operator is the leader and
decides what applications to cache and how much to charge for
their use, while the wireless devices (WDs) are the followers and
decide whether or not to offload their computations. We show
that the WDs’ interaction can be modeled as a player-specific
congestion game and show the existence and computability of
equilibria. We then show that the equilibrium price of the
operator can be computed in polynomial time for any cache
placement, and propose a greedy algorithm for computing the
applications to be cached. We use extensive simulations to show
that the proposed heuristic performs close to optimal at negligible
computational overhead.

I. INTRODUCTION

Battery powered Wireless Devices (WDs) are increasingly
used for computationally intensive applications including aug-
mented reality, natural language processing, face, gesture and
object recognition [1], [2]. Performing such computationally
intensive applications on battery powered devices is detrimen-
tal to battery life, and may adversely affect user experience.

Edge computing could enable WDs to offload computa-
tionally intensive tasks to nearby compute resources in the
infrastructure via wireless networks. Through computation
offloading, WDs can potentially reduce their energy con-
sumption, while meeting application latency requirements.
If many WDs offload simultaneously, however, application
performance could suffer due to limited wireless, computa-
tional and storage resources in the edge infrastructure. Thus,
either pricing or admission control have to be implemented to
mitigate contention to an acceptable level.

The contention for communication and computing re-
sources, and their joint management have been explored in
the literature [3], [4], [5], [6], [7], [8], [9], but the interaction
with the management of storage, i.e., the availability of exe-
cutable code and data at the edge server, and the impact of
pricing, are to a large extent unexplored. Code availability
and pricing become particularly important in the case of
emerging Function as a Service (FaaS) offerings (often called

This work was partly funded by the Vinnova Competence Center for
Trustworthy Edge Computing Systems and Applications at KTH and by the
Swedish Research Council through project 2020-03860.

Fig. 1. Edge computing system with N = 4 WDs, and |J | = 5 applications.
The operator caches |X | = 2 apps due to its memory storage constraint. WDs
decide to offload or to perform the apps locally based on their costs and their
completion time constraints. WD 1 and WD 3 decide to offload, WD 2 cannot
offload because App B is not cached, and WD 4 chooses local computing.

serverless computing), where applications are executed on-
demand, by loading container images from storage to memory,
and charging is based on execution time. Loading container
images is, however, time consuming, and thus for latency
sensitive applications caching, i.e., pre-loading the functions is
essential in FaaS for avoiding the execution delay that would
result from a cold start.

In this work, we explore the interaction between a profit
maximizing operator that performs application caching and
pricing, and cost minimizing autonomous WDs that can of-
fload their computation, subject to application availability and
latency constraints. Our main contributions are as follows.

• We propose a Stackelberg game to model the interaction
between the operator and the WDs.

• We show that the interaction of the WDs can be modeled
by a player-specific congestion game and we prove the
existence of pure strategy Nash Equilibrium (NE).

• We propose a polynomial time algorithm for computing
the optimal price to be charged by the operator, and a
greedy heuristic for application caching.

• We use extensive simulations for showing that the re-
sulting solution is close the Stackelberg equilibium, and
significantly outperforms popularity-based caching.

The rest of the paper is organized as follows. We present
the system model and problem formulation in Section II. We
show the existence of NE in Section III, and we propose
an algorithm for optimal pricing in Section IV. We show
numerical results in Section V, and discuss related work in
Section VI. Section VII concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multi-access edge computing system that
consists of an edge server with memory storage capacity S,
and a set N = {1, 2, . . . , N} of WDs that can offload their
computational task for execution at the edge server via a
wireless link. We denote by φi ∈ J the type of the task
that WD i wants to execute, and we refer to J as the set of
applications (i.e., the set of task types). The applications are
the software images required for the execution of the tasks;
tasks of different WDs may need the same application image.
The computational task of WD i is characterized by the size
Di of the input data (e.g, in bytes), by the expected number
Lj of cycles required to perform the task (e.g, in Gcycles) for
j = φi, and by the completion time requirement τ̄i.

The operator can use its storage for caching a subset X ⊆ J
of applications, subject to capacity constraint∑

j∈X
sj ≤ S, (1)

where sj is the size of the software image for application j.
Caching application j involves a usage cost rj to the operator,
but allows it to charge unit price π to each offloading WD
with φi = j. We consider that the price π is application
independent, aligned with pricing in current FaaS offerings.

We denote by ai the offloading decision of WD i; ai = 1
corresponds to offloading, and ai = 0 to local computing.
Offloading is only possible for applications that are cached by
the operator, i.e., φi 6∈ X → ai = 0,∀i. Next, we present
our model of local computing and of computation offloading,
followed by the problem formulation.

A. Local Computing

If WD i chooses to perform the task locally, the task needs
to be executed using local computational resources. We denote
by f li the local processing capability (frequency) of WD i, and
express the local processing time as

τ li =
Lφi

f li
. (2)

We consider that f li can be chosen such that local computing
ensures that the task is completed just upon its deadline, i.e.,
τ li = τ̄i. This assumption is reasonable, as dynamic frequency
scaling is widely used for reducing the energy consumption of
battery powered WDs while meeting performance needs [10].

B. Computation Offloading

If WD i decides to offload, it has to transmit Di amount
of data over the wireless channel to the edge server via an
Access Point (AP), and then processing is performed at the
edge server. We denote by

m =

N∑
i=1

ai, (3)

the number of WDs that offload, and for simplicity we consider
that the available frequency spectrum and the edge processing

capacity are equally shared among offloaders. More complex
models of resource sharing could be used in practice.

For data transmission, we make the common assumption of
a Gaussian channel [11], [12], and we express the data rate
achievable by WD i using the Shannon formula [13],

Rui (pi,m) =
Wi

m
log2(1 +

pihi
σ2
i

), (4)

where Wi is the channel bandwidth, pi is the transmit power
of the transmitted signal, hi is the channel coefficient from
WD i to the AP, and σ2

i is the noise power at the AP. The
transmission power is bounded by the maximum transmission
power p̂i, i.e., pi ≤ p̂i. Given the data rate, we can express
the upload time as

τui (m) =
Di

Rui (pi,m)
. (5)

We denote by f c the computing capability of the edge
server, and we consider that it is equally shared among the
tasks that are offloaded, consequently we can model the
processing time at the edge server as

τ ci (m) =
Lφi

f c/m
. (6)

C. WD Cost Model
We model the cost of WD i as a combination of its

energy consumption and the price charged by the operator
for computation offloading. In the case of local computing the
cost is due to the energy consumed by the local processor to
execute the task, i.e.,

C0
i = τ li (f

l
i)

2γliβi, (7)

where γli is the power use coefficient, and βi is the unit energy
cost of WD i.

In the case of offloading the cost is the sum of the energy
consumption of the transmission of the input data and the
execution cost that is to be paid to the operator. We consider
that the execution cost is proportional to the task complexity
Lφi

, which is reasonable for today’s FaaS offerings following
the pay-as-you-go model. The cost of WD i in the case of
offloading is thus

C1
i = τui piβi + Lφi

π, (8)

where π is the unit price charged by the operator. The cost of
WD i is thus

Ci(ai, pi, a−i) = (1− ai)(τ li (f li)2γliβi) + ai(τ
u
i piβi +Lφiπ).

(9)D. Problem Formulation
We consider that the WDs and the operator are rational,

strategic entities. The objective of WD i is to minimize its
cost subject to its completion time requirement, the constraint
on the maximum transmission power, and the caching decision
X of the operator, i.e., it aims to solve

min
ai∈{0,1},pi≤p̂i

Ci(ai, pi, a−i) (10)

s.t. ai(τ
u
i (pi,m) + τ ci (m)) ≤ τ li , (11)

ai = 0 if φi 6∈ X , (12)

2

where the first constraint ensures that WD i does not offload
if τui (pi,m) + τ ci (m) > τ li , and the second constraint ensures
that it offloads only if application φi is cached by the operator.

The operator’s profit is the difference of its income from
the WDs that offload and the cost of caching the applications,

U(a,X , π) =

N∑
i=1

ai1X (φi)Lφiπ −
∑
j∈X

rj , (13)

where rj is the cost of caching application j, and 1X (φi) is
the indicator function. The operator’s objective is to maximize
its profit by choosing the applications to cache and the price
of executing tasks, i.e.,

max
π≥0,X⊆J

U(a,X , π), (14)

s.t. (1). (15)

The resulting problem is a multi-follower Stackelberg game,
where the operator is the leader and the WDs are the fol-
lowers. We refer to the problem as the Time Constrained
Computation Offloading (TCCO) game, and we are interested
in the existence of Stackelberg equilibria and the complexity
of computing equilibria, under complete information, i.e.,
the system parameters and utilities are known. While this
assumption may be strong, it allows to explore the structure
of the game and is fundamental for subsequent analysis under
incomplete information.

III. EXISTENCE OF EQUILIBRIA

We first focus on the best response of the WDs, i.e., the
followers, for a given caching decision X and price π set by
the operator. The best response is in effect a Nash equilibrium
(NE) played by the WDs, if such a NE exists.

To assess whether NE exist, we start with characterizing the
optimal offloading decision for WDs.

Lemma 1. Consider a WD i such that φi ∈ X , and let
m =

∑
i′ 6=i ai′ + 1. If τ ci (m) > τ li then the optimal

offloading decision is a∗i = 0. Otherwise, let p∗i be such that
τui (m, p∗i) + τ ci (m) = τ li . Then, if p∗i > p̂i then a∗i = 0,
otherwise

a∗i =

{
1, π ≤ βi(f liγli − p∗i (1

f l
i

− m
fc
i

))

0, else,
(16)

Proof. Observe that if τ ci (m) > τ li then WD i cannot complete
the task on time, thus the optimal offloading decision is
a∗i = 0. Otherwise WD i should choose a transmit power
that minimizes its cost while ensuring timely completion. It
is easy to see that the upload time τui (m, pi) is a strictly
monotonically decreasing function of pi, and C(1, pi, a−1) is
a strictly monotonically increasing function of pi. Thus, WD i
minimizes its cost by choosing a transmit power p∗i that yields
τui (m, p∗i) + τ ci (m) = τ li . Now, if p∗i > p̂i then offloading is
not feasible. Otherwise, if p∗i ≤ p̂i then the optimal decision
is

a∗i =

{
1, C(1, p∗i , a−i) ≤ C(0, p∗i , a−i)
0, else.

(17)

We can substitute τui (m, p∗i) = τ li − τ ci (m), (2) and (6) into
(17), and obtain (16), which proves the result.

Using the above best response, a NE of the WDs
is a collection of offloading decisions (a∗i)i∈N such that
C(a∗i , p

∗
i , a
∗
−i) ≤ C(1 − a∗i , p∗i , a∗−i), ∀i ∈ N . Next, we use

a topological equivalence argument to show that a NE always
exists.

Theorem 1. The TCCO game possesses a pure strategy Nash
equilibrium among the WDs.

Proof. Note that the TCCO game is a player-specific network
congestion game with topology shown in Figure 2 (left).
The nodes S, A, and D stand for Source, Access Point,
and Destination, respectively. In the network topology the
path (S,A,D) corresponds to computation offloading, while
the direct path (S, D) corresponds to local computing with
edge weights Ci(1, p∗i , a−i) and Ci(0, p

∗
i , a−i), respectively.

To show the existence of equilibria, in what follows we
show that Γ can be transformed to a network with parallel
edges Γ̃ such that the games played on the two networks
are best response equivalent. We do so by replacing the
edge (A, D) and its two end vertices A and D in Γ by a
single vertex, and by redefining the costs of incident edges.
Thus, we obtain the parallel network topology Γ̃ shown in
Fig. 2 (right), where the local computing cost is defined
as C̃i(0, p∗i , a−i) = Ci(0, p

∗
i , a−i) − Lφi

π, and the cost of
offloading is C̃i(1, p∗i , a−i) = Ci(1, p

∗
i , a−i)−Lφiπ. Observe

that the difference between the cost functions of WD i in Γ and
that in Γ̃ depends only on the strategy of the operator. This in
fact implies that Γ̃ and Γ are best-response equivalent, and thus
they have identical sets of pure strategy Nash equilibria. Since
Γ̃ is a singleton player specific congestion game, it possesses
a pure NE [14], and so does Γ. This concludes the proof.

In addition, an equilibrium can be computed through letting
WDs update their offloading strategies one at a time, as we
show next.

Lemma 2. The game played among the WDs in the TCCO
game possesses the finite improvement property, i.e., if WDs
update their offloading strategies one at a time, they reach a
NE in a finite number of steps.

Proof. Each WD has two strategies, thus the result follows
from Theorem 1 in [15].

We can thus conclude that for any caching decision X and
price π set by the operator, there is a NE for the WDs, and it
can be computed efficiently.

IV. OPTIMAL PRICING AND CACHING POLICY

In this section, we propose a polynomial time algorithm
for computing the optimal equilibrium price for the operator
caching decision X , and then a greedy policy for computing a
caching decision. Throughout the section we consider Strong
Stackelberg Equilibrium (SSE), i.e., if there are multiple
subgame perfect equilibria then one with maximum utility for

3

Fig. 2. Topology of the network congestion game Γ and Γ∗ used in the proof
of Theorem 1.

the operator will be chosen. This is a reasonable assumption
if the operator executes the proposed algorithms.

A. Computing the Equilibrium Price

Let us denote by πi,m the maximum price at which WD i
would choose to offload for a particular number of offloaders
m ≤ N , and let us call πi,m the threshold price of WD i
for m. In addition, we define the notation that we will use
in the this section. Let us define the set N o(π,m) = {i| i ∈
N , πi,m ≥ π} of potential offloaders at price π if there were
m offloaders, and define the set NX = {i| i ∈ N , φi ∈ X} of
WDs whose applications are cached by the operator. We then
define the set Πt = {πi,m|i ∈ N , 1 ≤ m ≤ N} of threshold
prices and denote by Πt

m = {π| |{i|πi,m ≥ π}| ≥ m} the
set of threshold prices such that there are at least m WDs
with πi,m ≥ π. We define corresponding sets for the set X
of cached applications; we define Πt

X = {πi,m|i ∈ NX , 1 ≤
m ≤ NX } as the set of threshold prices and define Πt

X ,m =
{π| |{i ∈ NX , πi,m ≥ π}| ≥ m} as the set of threshold prices
such that there are at least m WDs i ∈ NX with πi,m ≥ π. We
define the set N o

X (π,m) = {i ∈ NX | πi,m ≥ π} of WDs that
would want to offload at price π if a total of m WDs offload
for cached application set X . Under the complete information
assumption the threshold prices πi,m, i ∈ N can be calculated
using Lemma 1. For an application placement X and price π
we denote by α∗(X , π) the set of Nash equilibria among WDs
that yield maximum utility to the operator.

We continue with an important result that we will use
for proposing a polynomial time algorithm that computes the
utility maximizing price.

Lemma 3. Consider an application placement X and thresh-
old prices π′, π′′ ∈ Πt

X such that there is no threshold
price in the interval (π′, π′′), i.e., (π′, π′′) ∩ Πt

X = ∅. Let
π1, π2 ∈ (π′, π′′], π1 < π2. Then the set of equilibria
α∗(X , π1) = α∗(X , π2). Furthermore, for any a ∈ α∗(X , π1)
the utility of the operator is monotonically increasing on
(π′, π′′], i.e., U(a,X , π1) < U(a,X , π2).

Proof. We start with proving the first statement, i.e.,
α∗(X , π1) = α∗(X , π2). Let a ∈ α∗(X , π1) be an equi-
librium under price π1. Now, since there is no thresh-
old price on (π′, π′′), for any π2 ∈ (π1, π

′′) it holds

that C(1, p∗i , a−i) ≤ C(0, p∗i , a−i) for π1 if and only if
C(1, p∗i , a−i) ≤ C(0, p∗i , a−i) for π2. Hence, a ∈ α∗(X , π2).

To prove the second statement, let us consider an equilib-
rium a ∈ α∗(X , π′′). By the previous statement we know that
a ∈ α∗(X , π) for π ∈ (π′, π′′]. We can rewrite (13) for the
equilibrium strategy profile a under homogeneous pricing and
obtain

U(a, x, π) =
∑

i∈N :ai(X ,π′′)=1

1X (φi)Lφi
π −

∑
j∈X

rj , (18)

which is monotonically increasing in π for any given x on
(π′, π′′]. This concludes the proof.

Proposition 1. Let π be a price such that max(Πt
X ,m+1) <

π ≤ max(Πt
X ,m), and let a′, a′′ ∈ α∗(X , π) be NE for

application placement X and price π. Then
∑
i∈NX

a′i =∑
i∈NX

a′′i ≤ m, i.e., the number of offloaders is the same
in the NE.

Proof. First, we prove
∑
i∈NX

a′i ≤ m. We choose π >
max(Πt

X ,m+1), by the definition of Πt
X ,m+1 we have

|N o
X (π,m)| = m. Whether or not a WD i ∈ N o

X (π,m)
would offload depends also on whether the application φi
is cached by the operator. Thus, if there exists a WD i ∈
N o
X (π,m) such that φi /∈ X , then for any equilibrium strategy

a ∈ α∗(X , π) we have ai = 0. Hence,
∑
i∈NX

ai ≤ m.
Second, we prove

∑
i∈NX

a′i =
∑
i∈NX

a′′i by contradiction.
Let m′ =

∑
i∈NX

a′i and m′′ =
∑
i∈NX

a′′i , and without
loss of generality, assume that m′′ < m′. Then, for strategy
profile a′, there has to be at least m′ WDs with πi,m′ ≥ π.
Similarly, for NE strategy profile a′′, there have to be at least
m′′ WDs with πi,m′′ ≥ π. Observe that πi,m′ < πi,m′′ since
by assumption m′′ < m′. However, if a′ is a NE then we
know that there are at least m′ WDs for which πi,m′′ ≥ π.
Thus in strategy profile a′′ there are at least m′−m′′ WDs that
would prefer offloading at price π, and hence a′′ cannot be a
NE, which contradicts the initial assumption. Thus, m′ = m′′

must hold, which concludes the proof.

Next, we show that for given π and application placement x,
a NE with maximum payoff for the operator can be computed
in polynomial time. To show this, observe that for given
price π, the operator’s income from a WD that offloads is
U(ai, {φi}, π) = ai1X (φi)Lφi

π, and is independent of what
other WDs are offloading.

Lemma 4. Consider a price π and application placement X .
Let m′ = maxm {|N o

X (π,m)| ≥ m}. Consider a setN † ⊆ N ,
N o
X (π,m′+ 1) ⊆ N † ⊆ N o

X (π,m′) such that |N †| = m′ and∑
i∈N †\No

X (π,m′+1) Lφi
is maximal. Then the strategy profile

a in which ai = 1 ⇐⇒ i ∈ N † is a NE with maximum
payoff for the operator, and can be found in polynomial time.

Proof. Consider m′ = maxm {|N o
X (π,m)| ≥ m}, and ob-

serve that N o
X (π,m′ + 1) ⊂ N o

X (π,m′). Since |N o
X (π,m′ +

1)| = m′′ < m′ + 1 in any NE
∑
i∈NX

ai < m′ + 1, at the
same time there is at least one NE in which

∑
i ai = m′,

thus by Proposition 1 we know that
∑
i∈N ai = m′ for any

4

Algorithm 1: Computing a NE for WDs

Data: X , π Result: N †
m′ = maxm {|N o

X (π,m)| ≥ m}
N † = ∅
if m′ < |NX | then
N † = N o

X (π,m′ + 1)
end
N †.add({| arg max

∑
i∈No

X (π,m′)\No
X (π,m′+1) Lφi

| =
m′ − |N †|})

a ∈ α∗(X , π). Clearly in a NE with m′ offloaders ai = 1 for
WDs i ∈ N o

X (π,m′+1), and hence there are
(|No

X (π,m′)|−m′′

m′−m′′

)
equilibria that can be computed, with potentially different pay-
offs for the operator. To find an equilibrium with the highest
payoff for the operator, recall that the income Ui(ai, {φi}, π)
from WD i offloading is independent of what other WDs
offload. Hence the set N † of offloaders that maximizes the
income of the operator is such that N o

X (π,m′ + 1) ⊆ N †,
and it contains the WDs with highest Lφi

from the set
N o
X (π,m′) \ N o

X (π,m′ + 1).
To see that the solution can be obtained in polynomial time,

observe that m′ can be found based on N o
X (π,m), and N †

can be found by sorting WDs in decreasing order of Lφi , both
in polynomial time (see Algorithm 1).

We are now ready to compute the price that maximizes the
operator’s revenue for given application placement.

Theorem 2. Consider an application placement X . Then the
price π∗ computed by Algorithm 2 maximizes the operator’s
revenue, i.e., U(a∗,X , π∗) ≥ U(a,X , π) ∀a∗ ∈ α∗(X , π∗),
π, a ∈ α∗(X , π).

Proof. Consider a price such that π /∈ Πt
X , and allows a set

of equilibria α∗(X , π). If π ∈ [0,max(Πt
X)), then there is a

threshold price π′ ∈ Πt
X such that π′ > π. By Lemma 3 the

two prices allow the same set of equilibria, a ∈ α∗(X , π′) =
α∗(X , π), and the utilities satisfy U(a,X , π′) > U(a,X , π).
Thus, to be able to find the profit maximizing price and
the corresponding strategy profile, it is sufficient to compute
U(a,X , π′),∀π′ ∈ Πt

X and then find the price such that
π∗ = arg maxπ′∈Πt

X
U(a,X , π′(m)). Hence, Algorithm 2

computes a price that maximizes the utility of the operator.

Observe that the computational complexity of Algorithm 1
is O(|NX |2), while that of Algorithm 2 is O(|NX |4) as it
invokes Algorithm 1 up to |NX |2 times.

B. Caching Applications

We have so far shown how to choose an optimal price
π∗ for given caching decision X . What remains is to com-
pute an optimal caching decision X ∗, which together with
π∗(X ∗) solves (14). However, computing the optimal set of
applications is challenging for two reasons. First, the utility
of caching an application depends on the set of applications
that are already cached, as the number and type of offloaders
depend on the set of cached applications. Second, caching an

Algorithm 2: Calculating optimal price for given X
Data: X ,Πt

X Result: π∗, U∗
/* Compute the utility for ∀πi,m */
for k = 1 : |Πt

X | do
N † = Algorithm1(X ,Πt

X (k))
U(k) =

∑
i∈N † Lφi

Πt
X (k) -

∑
j∈X rj

end
U∗ = maxk U(k)
k∗ = min{k|U(k) = π∗}, π∗ = Πt

X (k∗)

additional application may actually reduce the total utility of
the operator, i.e., the operator’s utility is not monotone.

Definition 1. The set function U : J → R is monotone if for
any X ⊂ J and j ∈ J \ X we have U(X ∪ {j}) ≥ U(X).

Monotonicity is a common assumption, e.g., in Knapsack
problems with independent item values. In the considered
problem the operator’s utility need not be monotone.

Proposition 2. Let X ⊂ J and j ∈ J \ X , then

U(a,X ∪ {j}, π∗(X ∪ {j}))− U(a,X , π∗(X)) S 0. (19)

Proof. We prove the result through the following example.
Example: Let N = {1, 2}, J = {1, 2}, L1 = 5 Gcycles,
L2 = 12 Gcycles, φ1 = 1, φ2 = 2 p̂1 = 200mW, p̂2 =
300mW, R1 = 0.1, R2 = 0.2, f l1 = f l2 = 0.7 GHz, f c = 12
GHz, γi = 10−18, βi = 1, ∀i ∈ N , W1 = W2 = 0.1 GHz,
σ2

1 = 0.4, σ2
2 = 1.2, h1 = h2 = 1 and D1 = 50 MB, D2 =

200MB.
The resulting threshold price matrix is Πt

{1,2} =[
0.6886 0.6766
0.5263 0.3349

]
$/Gcycles. Observe that π∗({1}) = 0.6886,

U(a, {1}, 0.6886) = 3.343, π∗({2}) = 0.5263, and
U(a, {2}, 0.5263) = 6.11, while π∗({1, 2}) = 0.3349 and
U(a, {1, 2}, 0.3349) = 5.39. Clearly, U(a, {2}, 0.5263) >
U(a, {1, 2}, 0.3349) > U(a, {1}, 0.6886), which proves the
two strict inequalities. Equality holds, e.g., for applications
with no WD willing to offload. Hence, U is not monotone.

Since the operator’s utility is not monotone, we propose to
use the Non-negative Greedy Algorithm (NNG) algorithm to
compute the set of cached applications. NNG is a modified
version of deterministic local search algorithm proposed in
[16] with weight ε = 0 and with knapsack constraint; its
pseudocode is shown in Algorithm 3. Unfortunately, the utility
of the operator is not even weakly submodular,hence it is
not possible to provide an approximation ratio bound for the
resulting cache placement. Instead we resort to simulations to
provide a numerical evaluation of equilibrium performance.

V. NUMERICAL RESULTS

We used extensive simulations to evaluate the operator’s
utility in equilibrium, the computation time, and the average
number of offloading WDs in equilibria.

For the evaluation we consider a system with up to N = 200
WDs, up to |J | = 40 applications and storage capacity up to

5

Algorithm 3: NNG Algorithm
Data: J , S Result: X ∗, U∗
U∗ = 0, X = ∅
for j ∈ J do

U(j) = Algorithm2({j},Πt
{j}))

end
J ′ = sort(U)
k = 1
while k < |J | ∧

∑
j∈X sj < S do

j = J ′(k)
U ′ = Algorithm2(X ∪ {j},Πt

X∪{j})

if U ′ ≥ U∗ then
X = X ∪ {j}
U∗ = U ′

end
k = k + 1

end
while ∃j ∈ X | U(X \ {j}) > U(X) do
X = X \ {j}
k = 1
/* Return to first while loop */

end

S = 8. The computational complexity Lj follows a continuous
uniform distribution on [1, 10] Gcycles, and the cost rj of
application j follows a continuous uniform distribution on
[1, 10]$. The computational capability of the edge server is
f c = 12 GHz. The task types of the WDs are chosen uniform
at random from J .

For the WDs, the maximum transmission power p̂i is
uniformly distributed on [50, 300] mW, and the channel band-
width Wi is uniformly distributed on [200, 300] MHz. f li is
uniformly distributed on [0.5, 1.5] GHz, and Di is uniformly
distributed on [1, 50] MB. For the channel parameters, σ2

i is
uniformly distributed on [0.1, 0.3], and so is the channel gain
on [0.8, 1]. Lastly, we set γi = 10−18, βi = 1,∀i ∈ N . These
choices of parameters are similar to those used in previous
work [17], [18]. The results shown are the averages of 250
simulations, together with 95% confidence intervals. We use
two baselines for comparison. First, we use exhaustive search
to find the optimal set of cached applications, i.e., a SSE of the
TCCO game. Second, we consider caching the most popular
applications in terms of |{i : φi = j}| subject to the storage
constraint, and compute the optimal price for this caching
decision, referred to as popularity-based caching (PBC).

A. Operator’s Profit
Figure 3 shows the profit of the operator (U) as a function

of the N number of WDs, for cache sizes S ∈ {2, 4, 8} and
application set cardinalities, and |J | ∈ {8, 16, 40}. The figure
shows that the profit of the operator has a decreasing marginal
gain in the number of WDs, as an increasing contention
for edge server resources makes that WDs are less likely to
decide to offload. At the same time the difference between
the equilibrium profit, and the profit computed using the
NNG heuristic increases with the number of WDs until a

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80
J=40,S=8

J=16,S=2

J=8,S=2

J=8,S=4

SSE

NNG-SSE

PBC

Fig. 3. Utility vs. number of WDs with (S = 4, J = 8), (S = 2, J = 8),
and (S = 2, J = 16), (S = 8, J = 40).

point where there is contention for the resources (see curves
(J = 8, S = 2), (J = 8, S = 4), (J = 16, S = 2)), indicating
that the interaction between the WDs becomes more intricate
causing the greedy heuristic to fail to perform well. Overall, it
can be seen, however, that the NNG algorithm achieves a profit
very close to the actual equilibrium, the relative difference
between the profits is only up to 4%. PBC performs poorly in
comparison to NNG, showing the importance of considering
the strategic interaction between the WDs.

Comparing the results for different scenarios in Figure 3 we
can observe that the operator’s profit is highest for S = 4, J =
8, and it is lowest for S = 8, J = 40. The reason is that for
S = 4, J = 8 there is a higher chance of having more WDs
requiring the application compared to other cases. At the same
time, the profit increase from S = 2, J = 8 to S = 4, J = 8 is
rather marginal, showing that the marginal gain of increased
cache storage is rather low.

One more interesting observation is that the utility for the
scenario J = 16, S = 2 is higher than that for J = 40, S = 8
even though the relative cache size S

J is lower for J = 16, S =
2. This is because for J = 40 the number of WDs per
application is lower, and since caching an application comes
with cost rj , the marginal utility of caching an additional
application is lower for J = 40 than for J = 16.

B. Computation Time

We now evaluate the computation time of finding equilibria
using exhaustive search and using the NNG heuristic. Figure 4
shows the computational time as a function of the number N of
WDs for various system configurations, measured on a Matlab
implementation running on an Intel i9 10900K processor. The
figure highlights the computational advantage of the greedy
NNG heuristic over exhaustive search as the number of WDs
increases.

The computational complexity of NNG heuristic is a func-
tion of S, J and N . Increase in any input results in an increase
in the computation time. Among the considered scenarios,
the computation time of the NNG heuristic is the highest for
S = 8, J = 40, although it is close to S = 4, J = 8. This is
because in latter scenario the number of WDs per application
is highest among the scenarios. Thus, both Algorithm 2 and
the greedy NNG heuristic require more iterations. This is

6

0 20 40 60 80 100 120 140 160 180 200

10
-4

10
-2

10
0

10
2

J=40,S=8

J=16,S=2

J=8,S=4

SSE

NNG-SSE

PBC

Fig. 4. Computation time vs. number of WDs for (S = 4, J = 8), (S =
2, J = 16), (S = 8, J = 40).

confirmed by the opposite case, S = 2, J = 16 where
the number of WDs per application is lowest, and so is
the computation time. We can conclude that the number of
WDs per application is an important factor that affects the
computational time of finding an approximate equilibrium.
Comparing NNG and PBC, we can see that the computation
time of the two algorithms is similar, although finding the
most popular applications is simpler than Algorithm 3. This
is confirmed by the results of scenarios J = 16, S = 2 and
J = 40, S = 8 for PBC: the computation time is lower for
J = 40, S = 8 than for J = 16, S = 2 since PBC does not
use Algorithm 3 but only runs Algorithm 2.

C. Number of Offloaders at Equilibrium

In this subsection, we analyze the number of offloaders at
equilibrium. Figure 5 shows the average number of offloaders
in equilibrium as a function of the number of WDs. We can
observe that for each scenario, the number of offloaders is
lowest at the Stackelberg equilibrium (SSE), and is highest
when using PBC for the region N < 40. For N > 40 all curves
converge to a similar average number of offloaders. At the
same time, more offloaders does not imply higher profit for a
given scenario: even though the number of offloaders is lowest
in the Stackelberg equilibrium (SSE), the corresponding profit
is highest (c.f. Fig. 3). These results confirm that caching,
pricing and the strategic interactions of the WDs need to be
jointly considered by the operator for utility maximization.

VI. RELATED WORK

A number of recent works deal with energy efficient com-
putation offloading for a single mobile user [19], [20], [21],
[22], [23]. [19] proposes a system that enables energy-aware
offloading to the infrastructure. Also the proposed algorithm
maximizes energy savings with minimal computational bur-
den. [20] proposed CPU frequency scaling and transmission
power adaptation to optimize energy consumption of the
computation of a task. [21] investigated the cloud computing
in terms of use of bandwidth and energy consumption, and
provided the results obtained from an experimental platform
(Amazon EC2). The results show that cloud offloading is
sustainable considering the energy consumption. [22] presents
a dynamic offloading algorithm in order to achieve energy
savings under time constraints. In [23], experimental results

0 20 40 60 80 100 120 140 160 180 200
1

2

3

4

5

6

7

8

J=16,S=2

J=8,S=4

SSE

NNG-SSE

PBC

0 10 20 30 40
0

2

4

6

8

Fig. 5. Average number of offloaders vs. number of WDs for various storage
capacity constraints.

are used to show that battery power savings can be achieved
using computation offloading.

A number of recent works proposed optimization ap-
proaches to minimizing the cost of task execution for multiple
mobile devices [24], [25], [26], [27]. Authors in [24] model the
cost of the users as a combination of the energy consumption
and the completion time, formulate the problem as a Markov
decision process, and provide a near-optimal offloading policy.
Authors in [25] study task partitioning to maximize throughput
in processing streaming data. A two-tiered edge/cloud model
with user mobility in a location-time workflow framework was
considered in [26], and a heuristic was proposed to minimize
the sum cost of mobile users. Authors in [27] consider the
joint allocation of wireless and cloud resources and proposed
an iterative algorithm to minimize users’ energy consumption.

Another line of works provide a game theoretic treatment
of the computation offloading problem [28], [29], [30], [31].
[28] allows WDs to choose what share of their task to offload
in order to minimize the energy consumption and at the same
time to meet its delay constraint, while the cloud allocates
resources accordingly. [29] considers a model in which tasks
arrive simultaneously to the cloud through a single wireless
link and proposes a non-cooperative game among users that
minimize their own energy use. The users are subject to
execution deadlines, and have user specific channel bit rates.
[30] considers a hierarchical MEC network, where mobile
users can make offloading decisions, and decide the uplink
transmission power, perform cloud selection, and route the
tasks. A distributed offloading approach is developed based on
the game theory, in which UEs collaborate with each other to
minimize the network cost in terms of energy consumption and
latency. [31] models the load-balancing problem as a stochastic
congestion game in which each users aims to minimize its
task execution time. The experiments show that the proposed
algorithm can improve the load balancing of the cloud system,
and enhance the quality of service.

Most related to ours are recent works that consider appli-
cation caching and offloading [12], [32]. [12] formulates a
Bayesian Stackelberg game, where the leader is the operator
and followers are WDs. The operator’s aim is to maximize
the total revenue by choosing a price and applications to
cache, while WDs aim to minimize their cost in terms of
the charged price and delay. [32] considers the joint opti-

7

mization of computation, caching, and communication to an
edge cloud and uses simulations to show that the proposed
method achieves shorter completion times compared to the
other schemes. Contrary to [12], [32], we treat the execution
time as a constraint, and consider that the WDs strategically
minimize their computation cost, leading to a new game
formulation. We model the interactions between the WDs as
a player-specific congestion game, we analyze the existence
of equilibria, and we propose an algorithm for calculating the
profit maximizing price for the operator in the resulting single
leader multi-follower Stackelberg game.

VII. CONCLUSION

We have provided a game theoretic analysis pricing, applica-
tion caching and computation offloading for edge computing.
We showed that an equilibrium of offloading decisions and
the optimal price for a particular caching decision can be
computed in polynomial time, but the efficient computation
of a strong Stackelberg equilibrium is infeasible due to the
intricate interactions between caching decisions for different
applications. Our numerical results show that a simple greedy
heuristic can be used for computing approximate Stackelberg
equilibria with performance close to the actual equilibrium
performance, at low computational complexity. Our analytical
results about equilibrium existence open for a variety of
avenues for future research, including the consideration of
equilibria under incomplete information and strategies for
minimizing regret in dynamic settings, which arguably are
more accurate models of actual systems.

REFERENCES

[1] M. Hakkarainen, C. Woodward, and M. Billinghurst, “Augmented as-
sembly using a mobile phone,” in IEEE/ACM Intl. Symp. on Mixed and
Augmented Reality, 2008, pp. 167–168.

[2] J. Liu, Z. Wang, L. Zhong, J. Wickramasuriya, and V. Vasudevan,
“uwave: Accelerometer-based personalized gesture recognition and its
applications,” in IEEE Intl. Conf. on Pervasive Computing and Commu-
nications, 2009, pp. 1–9.

[3] S. Jošilo and G. Dán, “Decentralized algorithm for randomized task
allocation in fog computing systems,” IEEE/ACM Transactions on
Networking, vol. 27, no. 1, pp. 85–97, 2019.

[4] ——, “Joint wireless and edge computing resource management with
dynamic network slice selection,,” IEEE/ACM Trans. on Networking, to
appear.

[5] ——, “Joint management of wireless and computing resources for
computation offloading in mobile edge clouds,” IEEE Transactions on
Cloud Computing, vol. 9, no. 4, pp. 1507–1520, 2021.

[6] C. You, K. Huang, and H. Chae, “Energy efficient mobile cloud
computing powered by wireless energy transfer,” IEEE Journal on
Selected Areas in Communications, vol. 34, no. 5, pp. 1757–1771, 2016.

[7] J. Yan, S. Bi, Y. J. Zhang, and M. Tao, “Optimal task offloading
and resource allocation in mobile-edge computing with inter-user task
dependency,” IEEE Transactions on Wireless Communications, vol. 19,
no. 1, pp. 235–250, 2020.

[8] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 16, no. 3, pp. 1397–1411, 2017.

[9] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile edge
computing networks,” in IEEE INFOCOM, 2019, pp. 10–18.

[10] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, and X. S. Shen,
“Toffee: Task offloading and frequency scaling for energy efficiency
of mobile devices in mobile edge computing,” IEEE Transactions on
Cloud Computing, pp. 1–1, 2019.

[11] W. Chen and L. Han, “Time-efficient task caching strategy for multi-
server mobile edge cloud computing,” in IEEE HPCC/SmartCity/DSS,
2019, pp. 1429–1436.

[12] J. Yan, S. Bi, L. Duan, and Y.-J. A. Zhang, “Pricing-driven service
caching and task offloading in mobile edge computing,” IEEE Trans-
actions on Wireless Communications, vol. 20, no. 7, pp. 4495–4512,
2021.

[13] “Chapter 4 - an overview of digital communication and transmission,”
in Wireless Communications Networking, ser. The Morgan Kaufmann
Series in Networking, V. K. Garg, Ed. Burlington: Morgan Kaufmann,
2007, pp. 85–122.

[14] I. Milchtaich, “The equilibrium existence problem in finite network
congestion games,” in Internet and Network Economics, P. Spirakis,
M. Mavronicolas, and S. Kontogiannis, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 87–98.

[15] “Congestion games with player-specific payoff functions,” Games and
Economic Behavior, vol. 13, no. 1, pp. 111–124, 1996.

[16] U. Feige, V. S. Mirrokni, and J. Vondrak, “Maximizing non-monotone
submodular functions,” in 48th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’07), 2007, pp. 461–471.

[17] Y. Huo, X. Dong, and W. Xu, “5g cellular user equipment: From theory
to practical hardware design,” IEEE Access, vol. 5, pp. 13 992–14 010,
2017.

[18] P. Joshi, F. Ghasemifard, D. Colombi, and C. Törnevik, “Actual output
power levels of user equipment in 5g commercial networks and impli-
cations on realistic rf emf exposure assessment,” IEEE Access, vol. 8,
pp. 204 068–204 075, 2020.

[19] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer with
code offload,” vol. 2010, 10 2010, pp. 49–62.

[20] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,” in
2012 Proceedings IEEE INFOCOM, 2012, pp. 2716–2720.

[21] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? the bandwidth and energy costs of mobile cloud computing,”
in 2013 Proceedings IEEE INFOCOM, 2013, pp. 1285–1293.

[22] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” IEEE Transactions on Wireless Communications,
vol. 11, no. 6, pp. 1991–1995, 2012.

[23] A. Rudenko, P. Reiher, G. Popek, and G. Kuenning, “Saving portable
computer battery power through remote process execution,” Mobile
Computing and Communications Review, vol. 2, 1998.

[24] E. Hyytiä, T. Spyropoulos, and J. Ott, “Offload (only) the right jobs:
Robust offloading using the markov decision processes,” in IEEE Intl.
Symp. on a World of Wireless, Mobile and Multimedia Networks (WoW-
MoM), 2015, pp. 1–9.

[25] L. Yang, J. Cao, S. Tang, T. Li, and A. T. Chan, “A framework for
partitioning and execution of data stream applications in mobile cloud
computing,” in IEEE Intl. Conf. on Cloud Computing, 2012, pp. 794–
802.

[26] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos, “Music:
Mobility-aware optimal service allocation in mobile cloud computing,”
in IEEE Intl. Conf. on Cloud Computing, 2013, pp. 75–82.

[27] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,”
IEEE Trans. on Signal and Information Processing over Networks,
vol. 1, no. 2, pp. 89–103, 2015.

[28] Y. Wang, X. Lin, and M. Pedram, “A nested two stage game-based
optimization framework in mobile cloud computing system,” in IEEE
Intl. Symp. on Service-Oriented System Engineering, 2013, pp. 494–502.

[29] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy efficient
offloading for competing users on a shared communication channel,” in
IEEE Intl. Conf. on Communications (ICC), 2015, pp. 3192–3197.

[30] B. Wu, J. Zeng, L. Ge, X. Su, and Y. Tang, “Energy-latency aware
offloading for hierarchical mobile edge computing,” IEEE Access, vol. 7,
pp. 121 982–121 997, 2019.

[31] F. Zhang and M. M. Wang, “Stochastic congestion game for load
balancing in mobile-edge computing,” IEEE Internet of Things Journal,
vol. 8, no. 2, pp. 778–790, 2021.

[32] M. Chen, Y. Hao, L. Hu, M. S. Hossain, and A. Ghoneim, “Edge-cocaco:
Toward joint optimization of computation, caching, and communication
on edge cloud,” IEEE Wireless Communications, vol. 25, no. 3, pp. 21–
27, 2018.

8

