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Abstract—Multi-access edge computing (MEC)-enabled inte-
grated space-air-ground networks have drawn much attention
recently, as they can provide communication and computing
services to wireless devices in areas that lack terrestrial base
stations (TBSs). They could make it possible for battery-powered
Internet of Things (IoT) devices to offload their computation
tasks to MEC-enabled unmanned aerial vehicles (UAVs) assisted
aerial networks and low earth orbit (LEO) satellites and thus
reduce their energy consumption and allow them to complete
the execution of tasks on time. However, due to the limited
computation capacity of the MEC servers at UAVs and satel-
lites, an efficient offloading decision and computation resource
allocation scheme is essential. Therefore, this paper investigates
the problem of minimizing the latency experienced by the wireless
devices in the MEC-enabled integrated space-air-ground network
by optimizing the offloading decision while assuring the energy
constraints of both devices and UAVs. The problem is proved
to be a non-convex problem, and the block successive upper-
bound minimization (BSUM) method is proposed as a solution.
Finally, extensive simulation results are presented to exhibit the
effectiveness of the BSUM algorithm in solving the proposed
problem.

Index Terms—Multi-access edge computing (MEC), integrated
space-air-ground networks, task offloading, resource allocation,
block successive upper-bound minimization (BSUM).

I. INTRODUCTION

MEC-enabled integrated space-air-ground networks have re-
cently emerged as a potential technology for providing remote
computation services to the Internet of Things (IoT) devices
in the deep seas, in mountainous regions, and in disaster areas
where terrestrial infrastructures (i.e., TBSs) do not exist [1],
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[2]. Integrated space-air-ground networks make it possible for
energy-constrained IoT devices to offload their computation
tasks thereby extending their service lifetime and allowing
computationally demanding applications to be executed in
remote areas [3], [4]. In order for computation offloading to
cater for application requirements, however, there is a need
for efficient offloading decision schemes that can ensure task
execution within the deadlines of tasks.

This problem was addressed in [5] and [6], which proposed
an optimization approach for efficient offloading and resource
allocation schemes in integrated space-air-ground networks.
Moreover, machine learning-based efficient task offloading and
resource allocation problems in the integrated space-air-ground
networks were studied in [7]. These existing studies assume
that the UAVs in the considered integrated space-air-ground
networks operate independently (i.e., no collaboration) [8]–
[11]. In other words, if a UAV’s computation capacity is
insufficient to compute the offloading tasks of its associated
devices, it will offload all tasks directly to the satellite, leaving
underutilized neighboring UAVs with abundant computation
capacity. Clearly, devices may experience lower latencies if
their tasks could be relayed to nearby UAVs, but how to
coordinate the offloading among UAVs in integrated space-
air-ground networks is an intriguing problem yet unsolved.

To the best of our knowledge, this paper is the first to
address the latency minimization problem in MEC-enabled
integrated space-air-ground networks while incorporating UAV
collaboration by concurrently optimizing task offloading deci-
sions of both UAVs and devices. The main contributions of
this paper are as follows:

• We first formulate the latency minimization problem in
a MEC-enabled integrated space-air-ground network by
optimizing the offloading decisions, i.e., decisions of both
the devices and the UAVs, while satisfying their energy
constraints.

• We then show that the formulated problem is a non-
convex mixed integer programming problem due to the
coupling of decision variables in the objective function
and constraints. Therefore, to address the problem, we
propose to relax the binary constraints and then propose
to use the block successive upper-bound minimization
(BSUM) algorithm to solve the relaxed problem.

• Finally, we demonstrate the convergence of the proposed
algorithm by using extensive simulations. Furthermore,
to show the effectiveness of our proposed algorithm, we
compare the results of our proposed algorithm to baseline
schemes.

The rest of this paper is organized as follows. The system
model is described in Section II. Section III presents the
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Fig. 1: A proposed system model.

problem formulation and the proposed solution. Simulation
results are shown in Section IV. Section V concludes the paper.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a MEC system in the
integrated space-air-ground network consisting of a set J of
J wireless devices, a set K of K UAVs, and a LEO satellite.
Each device j ∈ J in the considered network has a latency-
sensitive computation task Tj , which can be represented by a
tuple Tj = {φj , αj , Aj}, where φj is the maximum tolerable
latency of the task, αj is the required CPU cycles to process
one bit of data, and Aj is the total input data size of the task.
Wireless devices can either perform their computation tasks
locally or they can offload tasks to MEC-enabled UAVs or
to the satellite to be computed remotely. We assume that the
2 GHz frequency band is used for communication between
devices and UAVs, while the 28 GHz (mmWave) frequency
band is used for communication between UAVs and the
satellite.
A. Communication Model

We consider that the wireless devices are outside of the
coverage area of TBSs, hence, the wireless devices cannot
offload their computation tasks to those. As a result, wireless
devices offload tasks to the nearest UAV k ∈ K with the best
channel quality. We define wk

j ∈ {0, 1} as the task offloading
decision variable, which represents whether or not the task of
wireless device j is offloaded to UAV k by using a wireless
link,

wk
j =


1, if computation task Tj of device j is offloaded

to UAV k,

0, otherwise.
(1)

Let us denote the horizontal coordinates of wireless device j
and UAV k by [xj , yj ]

T and [xk, yk]
T , respectively. Moreover,

hk represents the hovering altitude of UAV k. Thus, the
distance between device j and UAV k is

dkj =
√
(xk − xj)2 + (yk − yj)2 + h2

k,∀j ∈ Jk,∀k ∈ K.
(2)

Then, by adopting the free-space path loss model, the channel
gain between device j and UAV k is given by [12]

gkj =
g0

(dkj )
ϑ
,∀j ∈ Jk,∀k ∈ K, (3)

where g0 denotes the channel gain at the reference distance
d0 = 1 m, and ϑ is the path loss exponent. We can then
calculate the spectrum efficiency of device j as

γk
j = log2

(
1 +

Pjg
k
j

Ikj + σ2

)
,∀j ∈ Jk,∀k ∈ K, (4)

where Pj is the uplink transmission power of wireless device
j, and gkj is the achievable channel gain between wireless
device j and UAV k, σ2 is the noise power and Ikj =∑
k′∈K,k′ ̸=k

∑
j′∈J ,j′ ̸=j

Pj′g
k
j′ is the interference at UAV k.

Finally, the instantaneous data rate achieved by wireless
device j associated with UAV k can be calculated as

Rk
j =

Bk

|Jk|
γk
j , ∀j ∈ Jk,∀k ∈ K, (5)

where |Jk| is the total number of wireless devices that
offload their computation tasks to UAV k. Depending on the
instantaneous data rate, the transmission latency experienced
by device j when offloading its computation task to UAV k
is given by [6] [13]

lkj =
Aj

Rk
j

,∀j ∈ Jk,∀k ∈ K. (6)

The energy consumption for task offloading from wireless
device j to UAV k is [6] [13]

Ek
j =

PjAj

Rk
j

,∀j ∈ Jk,∀k ∈ K. (7)

After receiving the offloaded tasks from its associated users,
UAV k decides to either process the tasks locally on its
server or offload them to neighboring UAVs or the satellite,
depending on its available computation capacity.

Thus, we define the binary decision variable zk→k′

j ∈
{0, 1}, which indicates whether or not the computation task
Tj is offloaded to UAV k′

zk→k′

j =


1, if computation task Tj is offloaded from

UAV k to UAV k′,

0, otherwise.
(8)

We make the reasonable assumption that there is a line-of-
sight (LoS) communication link between UAVs. Thus, the
achievable channel gain between UAV k and k′ is [14]

Γk→k′
= 10L

k→k′
/10,∀k, k′ ∈ K, (9)

where Lk→k′
= ςk→k′

+ϑk→k′
is the path loss between UAVs

k and k′, where ςk→k′
is the attenuation factor for a LoS link,

and ϑk→k′
is given by [14]

ϑk→k′
= 20 log10(d

k′

k ) + 20 log10(fc) + 10 log10

[(
2π

c

)2
]
,

(10)
where fc is the carrier frequency, c is the speed of light, and
dk

′

k is the distance between UAVs k and k′. Finally, we can
calculate the achievable data rate between UAV k and k′ as

Rk→k′
= Bk→k′

log2

(
1 + Γk→k′

)
,∀k, k′ ∈ K, (11)

where Bk→k′
is the available bandwidth between UAV k and

UAV k′. The transmission latency between UAV k and UAV
k′ is [6] [13]
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lk→k′

j =

∑
j∈Jk

zk→k′

j Aj

Rk→k′ ,∀k, k′ ∈ K. (12)

Furthermore, the transmission energy of UAV k can be calcu-
lated as [6] [13]

Ek→k′
= P k→k′


∑

j∈Jk

zk→k′

j Aj

Rk→k′

 ,∀k, k′ ∈ K. (13)

Consequently, let us define the binary decision variable
zk→s
j , which indicates whether or not the computation is

offloaded to the satellite as

zk→s
j =


1, if computation task Tj is offloaded from

UAV k to the satellite,
0, otherwise.

(14)
The achievable signal to noise ratio between UAV k and the
satellite can be expressed as [15]

Γk→s =
P k→sgtx

k g
rx
s Lr

tnaBk→s
mm

(
c

4πdskf
mm
c

)2

, (15)

where P k→s is the transmit power of UAV k, gtx
k and grx

s

are the antenna gains of the transmitter and receiver, Lr is
the attenuation factor, tn is the noise temperature, a is the
Boltzmann’s constant, fmm

c is the mmWave carrier frequency,
and dsk reflects the distance between UAV k and the satellite.
Then, the available mmWave backhaul link capacity between
UAV k and the satellite, can be expressed as [15]

Rk→s = Bk→s
mm log2

(
1 + Γk→s

)
,∀k ∈ K, (16)

where Bk→s
mm is the mmWave bandwidth between UAV k and

the satellite. Therefore, the transmission latency between UAV
k and the satellite can be expressed as [6] [13]

lk→s
j =

∑
j∈Jk

zk→s
j Aj

Rk→s
,∀k ∈ K. (17)

Furthermore, the transmission energy of UAV k can be ex-
pressed as [6] [13]

Ek→s = P k→s


∑

j∈Jk

zk→s
j Aj

Rk→s

 ,∀k ∈ K. (18)

B. Computing Model

1) Local Computing Model: If wireless device j ∈ J
decides to perform its computation task locally (i.e., wk

j = 0),
the latency experienced by the wireless device to complete the
task is given by

lloc
j =

αjAj

Fj
,∀j ∈ J , (19)

where Fj is the computation capacity (i.e., cycle/s) of wireless
device j. Then, the local energy consumption of wireless
device j can be expressed as

Eloc
j = ϖj(Fj)

2αjAj ,∀j ∈ J , (20)

where ϖj is a constant that is dependent on the chip architec-
ture of the wireless device [16].

2) Remote Computing Model: We define the binary variable
zkj ∈ {0, 1} that indicates whether or not wireless device j’s
computation task is performed at UAV k, i.e.,

zkj =


1, if computation task Tj is computed at

UAV k,

0, otherwise.
(21)

If the task of wireless device j is computed at UAV k, i.e.,
zkj = 1, then the computation latency is

lk,comp
j =

αjAj

fk
j

, (22)

where fk
j is the computation capacity of UAV k that is

allocated to wireless device j and which can be formulated
by using weighted proportional allocation [16] as

fk
j = Fmax

k

αjAj∑
i∈J

zki αiAi
, (23)

where Fmax
k is the maximum computation capacity at UAV k.

Consequently, the cumulative latency experienced by wireless
device j when its computation task is offloaded to UAV k is

lk,ej = lkj + lk,comp
j ,∀j ∈ Jk, k ∈ K. (24)

Furthermore, the energy consumption at UAV k for executing
the computation task Tj of wireless device j can be formulated
as

Ek,comp
j = ϖk(f

k
j )

2αjAj ,∀j ∈ J ,∀k ∈ K, (25)

where ϖk is a constant that depends on the chip architecture
of the server at UAV k. Moreover, the total execution latency
experienced by wireless device j when its computation task is
offloaded to UAV k′ is

lk→k′,e
j = lkj + lk→k′

j + lk
′,comp

j ,∀j ∈ Jk, and k, k′ ∈ K. (26)

Finally, let us denote the computation latency when the com-
putation task of device j associated with UAV k is computed
at the satellite by ls,comp

j , which can be calculated based on
(22). We consider that the satellite has a renewable energy
resource, we can neglect the computation energy consumption
at the satellite. Then, the total execution latency experienced
by wireless device j when its computation task is offloaded
to the satellite is

lk→s,e
j = lkj + lk→s

j + ls,comp
j +2lk→s,pro

j ,∀j ∈ Jk, and k ∈ K,
(27)

where lk→s,pro
j =

ds
k

c is the propagation delay between UAV
k and the satellite. The downlink output data transmission
latency and energy usage are insignificant compared to the
uplink input data transmission because the output data size
is relatively small compared to the input data size. As a
consequence, the downlink data transmission is not covered
in our model. Thus, the total latency experienced by wireless
device j when its task is computed remotely is given by

loff
j = zkj l

k,e
j +

∑
k′∈K,k′ ̸=k

zk→k′

j lk→k′,e
j + zk→s

j lk→s,e
j , (28)

Finally, the total energy consumption to complete the execu-
tion of the computation tasks of UAV k

ETot
k =

∑
j∈J

zkjE
k,comp
j +

∑
k′∈K,k′ ̸=k

Ek→k′
+ Ek→s

+Ek,hov,

(29)
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where Ek,hov is the hovering energy and is given by
Ek,hov = P k,hovlk,hov,∀k ∈ K, (30)

where P k,hov and lk,hov = max
j∈J

(φj) are the hovering power

and hovering time of UAV k, respectively.

III. PROBLEM FORMULATION AND PROPOSED SOLUTION

We consider that the objective is to minimize the total
latency experienced by devices while assuring the energy
constraints of devices (Emax

j ) and of the UAVs (Emax
k ) are

met. Our objective function can thus defined as O(w, z) =∑
k∈K

∑
j∈J

(1 − wk
j )l

loc
j + wk

j l
off
j . Finally, we can formulate the

latency minimization problem as

P: minimize
w, z

O(w, z) (31a)

subject to Eloc
j + Ek

j ≤ Emax
j , ∀j ∈ Jk,∀k ∈ K,

(31b)∑
j∈J

zkjE
k,comp
j +

∑
k′∈K,k′ ̸=k

Ek→k′

j

+ Ek→s + Ehov
k ≤ Emax

k ,∀k ∈ K, (31c)

(1− wk
j ) + wk

j (z
k
j +

∑
k′∈K,
k′ ̸=k

zk→k′

j + zk→s
j )

= 1,∀j ∈ Jk,
(31d)

zkj ∈ {0, 1}, zk→k′

j ∈ {0, 1}, zk→s
j ∈ {0, 1},

∀k ∈ K, (31e)

wk
j ∈ {0, 1},∀j ∈ Jk,∀k ∈ K, (31f)

where (31b) and (31c) express the energy constraints of both
wireless devices and UAVs. (31d) denotes that the computation
task of a wireless device can only be executed in one location.
Finally, (31e) and (31f) represent the binary decision variables
of wireless devices and UAVs.

Due to the coupling between decision variables in the
objective function, the nonlinear and binary constraints, and
the non-convex structure, it is impossible to solve the opti-
mization problem in (31) via convex optimization techniques.
Therefore, we propose to use the BSUM method to solve
the proposed problem [17]. BSUM is a novel approach for
solving non-convex and non-smooth optimization problems
by decomposing the problem into small subproblems. In the
BSUM method, the upper bound of the objective function is
minimized by iteratively updating the decision variables w,
and z. Furthermore, BSUM can guarantee to converge to the
stationary points of the objective function in (31). To apply
the BSUM approach, firstly, we relax the binary constraints
in (31e) into continuous ones, i.e., wk

j ∈ [0, 1], zkj ∈ [0, 1],
zk→k′

j ∈ [0, 1], and zk→s
j ∈ [0, 1]. Then, we can introduce the

feasible sets of w, and z as

W ≜{w : Eloc
j + Ek

j ≤ Emax
j , (1− wk

j ) + wk
j (z

k
j +

∑
k′∈K,
k′ ̸=k

zk→k′

j + zk→s
j ) = 1, wk

j ∈ [0, 1],∀j ∈ Jk,∀k ∈ K},

TABLE I: Simulation Parameters.

Parameter Value Parameter Value
g0 -50 dB Pj 23 dBm
σ2 -174 dBm Aj [10, 50] Mbits
αj [10, 50] Cycles fj [0.5, 3] MHz

ϖk, ϖj 5 × 10−27 Bk 3 MHz
ϑ 2 Pk→k′ 30 dBm

Bk→k′ 1.7 MHz Bk→s
mm 1.8 MHz

Emax
j 10 kJ Emax

k 50 kJ
fmm
c 28 GHz Pk→s 30 dBm
θn 0.5

Z ≜{z :
∑
j∈J

zkjE
k,comp
j +

∑
k′∈K,k′ ̸=k

Ek→k′

j + Ek→s+

Ehov
k ≤ Emax

k , (1− wk
j ) + wk

j (z
k
j +

∑
k′∈K,
k′ ̸=k

zk→k′

j +

zk→s
j ) = 1, zkj , z

k→k′

j , zk→s
j ∈ [0, 1],∀j ∈ Jk,∀k ∈ K},

Finally, we define the proximal upper-bound function, On of
the objective function in (31a) for each iteration t, ∀n ∈ N
where N is the index set. In order to ensure that the proximal
upper-bound function On is convex, we apply a quadratic
penalization to the objective function in (31a) as

On(wn;w
t, zt) = O(wn;w

(t−1), z(t−1)) +
θn
2

∥ (wn−

w(t−1)) ∥2 .
(32)

where θn is the penalty parameter, which can be used for the
other vector of variables, zn. In addition, at each iteration, t,
the proximal upper-bound function in (32) has the minimizer
vectors w(t−1), and z(t−1) with regard to wn and zn, which
are taken to be the solution of the previous iteration. The
solution at iteration (t + 1) can then be updated by solving
the following optimization problems:

wt+1
n ∈ argmin

wn

On

(
wn;w

(t), z(t)

)
, (33)

z(t+1)
n ∈ argmin

zn

On

(
zn; z

(t),w(t+1)

)
. (34)

Then, the subproblems in (33) and (34) can be solved using the
CVXPY toolkit. Finally, a summary of our proposed BSUM-
based algorithm for task offloading decision in MEC-enabled
integrated space-air-ground networks is presented in Algo-
rithm 1. In our work, we utilize the CVXPY toolkit, which
implements an Embedded Conic Solver (ECOS), to solve sub-
problems (33) and (34) [18]. For a problem with N variables,
the computational complexity of the interior point method [18]
used in the ECOS solver is O(N)3.5. The number of variables
in subproblems (33) and (34) is J and K(K+1), respectively.
Thus, the computational complexity of the proposed BSUM-
based task offloading decision in MEC-enabled integrated
space-air-ground networks is O(J3.5) +O((K(K + 1))3.5).

IV. SIMULATION RESULTS

To evaluate the proposed solution, we consider wireless
devices distributed within an area of 400 m × 400 m. To
provide computing services to the devices, 3 MEC-enabled
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Fig. 2: (a) shows the convergence of the proposed algorithm. (b) shows the energy consumption under different number of
devices.(c) shows total latency under different number of devices.
Algorithm 1 BSUM-Based Algorithm for Task Offloading
Decision in MEC-enabled Integrated Space-Air-Ground Net-
works

1: Initialization: Set t = 0, ϵ1 = 10−4, and find initial
feasible solutions (w(0), z(0));

2: repeat
3: Choose index set N ;
4: Let w(t+1)

n ∈ argmin
wn

On

(
wn;w

(t), z(t)
)
;

5: Set w(t+1)
m = wt

m, ∀m /∈ N ;
6: Find z

(t+1)
n by solving (34);

7: t = t+ 1;
8: until ∥ O(t)

n − O(t+1)
n

O
(t)
n

∥ ≤ ϵ1

9: Then, set
(
w

(t+1)
n , z(t+1)

n

)
as the desired solution.

UAVs hover at an altitude of 50 m. Additionally, a LEO
satellite at an altitude of 780 km is taken into consideration
to execute the devices’ offloaded tasks that the UAVs cannot
handle. The rest of the simulation parameters are shown in
Table I. We executed the algorithms implemented in Python
on a PC with Intel(R) Core(TM) i5-8500 CPU 3.00 GHz, 32.0
GB RAM, and NVIDIA GeForce GTX 1660 Ti. As a basis
for comparison, we use three baseline schemes proposed in the
recent literature [5] and [13], namely: 1) All remote computing
scheme where devices offload all of their tasks UAVs to
perform remote computing, 2) All local computing scheme
where devices compute their tasks locally, and 3) No UAVs
collaboration scheme where the UAV computation capacity
is insufficient to execute the offloaded tasks of its associated
devices, the UAV directly transferred the tasks of its devices to
the satellite using mmWave backhaul links without checking
its neighboring UAVs which have sufficient computation to
execute its computation tasks.

We illustrate the convergence of the proposed BSUM al-
gorithm in Fig. 2a. As shown in the figure, our proposed
algorithm converges to the stationary solution in fewer than
10 iterations. As a result, our proposed algorithm can be
applied in large-scale networks. Furthermore, we also com-
pare the total latency experienced by wireless devices (i.e.,
the objective function of our optimization problem in (31a))
under various block selection rules, including Cyclic, Gauss-
Southwell, and Randomized. The figure shows that all block
selection rules achieve the same total latency and courage
equally fast convergence. Fig. 2b shows the total energy con-
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Fig. 3: Maximum latency experienced by each device.

sumption (i.e., energy consumption of both UAVs and wireless
devices) for various number of wireless devices. The figure
shows as the number of wireless devices increases, so does
the total energy usage of the network. The figure also shows
the energy consumption under three baseline schemes. As
shown in Fig. 2b, the energy consumption under our proposed
scheme is the lowest when compared with the benchmark
schemes. Moreover, Fig. 2c shows the total network latency
for different numbers of wireless devices. The figure shows
that our proposed algorithm can achieve the lowest total
latency when compared to the benchmark schemes. As a result,
we conclude that our proposed algorithm is more effective
for the considered space-air-ground networks than benchmark
schemes. Fig. 3 shows the maximum latency experienced
among devices (i.e., the latency experienced by each device)
when there are 20 devices in the considered networks. From
the figure, we observe that the latency experienced by device-
12 is the highest. It is because device-12 has the largest input
data size and the required CPU cycles to compute its data
compared to other devices.

Finally, Fig. 4 shows the total latency for various number
of UAVs and wireless devices. We can observe that when
there are few wireless devices in the network, e.g., 20 devices,
the total latency experienced by the wireless devices does not
decrease considerably, even when more UAVs are deployed.
However, when the network size increases, i.e., increase the
number of wireless devices in the network, the total latency
lowers dramatically when more UAVs are deployed. The
rationale for this is that deploying a few UAVs is sufficient
to handle the computation tasks of wireless devices when the
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Fig. 4: Total latency under different number of UAVs.

network size is small. Furthermore, deploying more UAVs
in a small network size can result in increased total energy
consumption. However, as the network grows in size, it takes
longer to complete users’ tasks, resulting in increased total
latency experienced by devices. As a result, more UAVs will
be needed to ensure low total latency in this scenario.

V. CONCLUSIONS

In this paper, we considered MEC-enabled integrated space-
air-ground networks to provide computation services to wire-
less devices in remote areas. We formulated the offloading
decisions problem for the considered network to minimize
the total latency experienced by the wireless devices. In order
to solve the formulated non-convex problem, we first relaxed
the binary constraints into continuous ones and we proposed
a BSUM method to address the relaxed problem. Finally,
we conducted comprehensive simulations to demonstrate the
effectiveness of the proposed algorithm, and it is found that
when compared to benchmark schemes, our proposed method
significantly reduces energy consumption and the total latency
experienced by the wireless devices.
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