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Abstract—Multi-access edge computing (MEC)-enabled integrated space-air-ground (SAG) networks have drawn much attention
recently, as they can provide communication and computing services to wireless devices in areas that lack terrestrial base stations
(TBSs). Leveraging the ample bandwidth in the terahertz (THz) spectrum, in this paper, we propose MEC-enabled integrated SAG
networks with collaboration among unmanned aerial vehicles (UAVs). We then formulate the problem of minimizing the energy
consumption of devices and UAVs in the proposed MEC-enabled integrated SAG networks by optimizing tasks offloading decisions,
THz sub-bands assignment, transmit power control, and UAVs deployment. The formulated problem is a mixed-integer nonlinear
programming (MILP) problem with a non-convex structure, which is challenging to solve. We thus propose a block coordinate descent
(BCD) approach to decompose the problem into four sub-problems: 1) device task offloading decision problem, 2) THz sub-band
assignment and power control problem, 3) UAV deployment problem, and 4) UAV task offloading decision problem. We then propose to
use a matching game, concave-convex procedure (CCP) method, successive convex approximation (SCA), and block successive
upper-bound minimization (BSUM) approaches for solving the individual subproblems. Finally, extensive simulations are performed to
demonstrate the effectiveness of our proposed algorithm.

Index Terms—Multi-access edge computing (MEC), integrated space-air-ground networks, task offloading, resource allocation,
one-to-one matching game, successive convex approximation (SCA), block successive upper-bound minimization (BSUM).

✦

1 INTRODUCTION

INternet of Things (IoT) devices are expected to be de-
ployed worldwide for performing latency-sensitive tasks

with significant computation requirements, such as auto-
nomic navigation, road traffic monitoring, forest fire moni-
toring, and rescue operations in disaster areas [1]. However,
it is problematic for energy-constraint IoT devices to execute
complex tasks on time locally. Edge computing could enable
the devices to execute their tasks on time by offloading the
tasks to computing servers deployed at terrestrial base sta-
tions (TBSs) and access points (APs), but terrestrial networks
may not be available in remote areas and in disaster areas.

MEC-enabled integrated SAG networks have recently
emerged as a potential technology for providing remote
computation services to IoT devices in areas where there
is no terrestrial infrastructure [2] [3]. Integrated SAG net-
works can leverage the computational and communication
resources of unmanned aerial vehicles (UAVs) and of low
earth orbit (LEO) satellites for providing pervasive access to
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computing services.
A key requirement for the integrated SAG networks to

become successful is high bitrate connectivity between IoT
devices and UAVs. A promising candidate for this purpose
could be THz communication, ranging from 0.1 to 10 THz,
since it can provide higher bitrates due to the vast spectrum
than what is achievable at lower frequency bands [4] [5] [6].
The main detriment of relying on the THz band is severe
link attenuation, which is combined with high dispersion [7]
and the easy obstruction of communication links through
objects. Thus, the use of the THz frequency band in SAG
networks could be feasible for short-range aerial communi-
cation, i.e., communication between UAVs and ground IoT
devices to offload the devices’ tasks to the servers attached
to UAVs for further processing, due to the existence of line-
of-sight (LoS) communication links in the Air-to-Ground
communication [8]. However, its efficient use requires joint
consideration of UAV deployment for optimizing LoS com-
munication links between UAVs and ground IoT devices,
and the optimization of wireless resources, such as sub-band
allocation and transmit power control [9] [10] [11].

In this paper, we address the above challenge, consid-
ering energy efficient task offloading in MEC-enabled inte-
grated SAG networks. The considered architecture adopts
the THz frequency band for aerial base stations (i.e., UAVs)
to provide remote wireless access to the ground wireless
devices for offloading their computation tasks to the edge
servers installed at UAVs. Importantly, the proposed archi-
tecture allows collaboration among UAVs, i.e., UAVs can
decide whether to relay computational tasks among each
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other or to offload them to LEO satellites. As a result of
collaboration among the UAVs, the energy consumption of
the devices can be further reduced.

To the best of our knowledge, this paper is the first
to study the energy minimization problem in THz-assisted
MEC-enabled integrated SAG networks, incorporating UAV
collaboration by concurrently optimizing task offloading
decisions of UAVs and devices, THz sub-bands assignment,
transmit power control, and UAV deployment. The main
contributions of this paper are as follows:

• We first formulate the energy minimization prob-
lem in THz-assisted MEC-enabled integrated space-
air-ground networks by optimizing the offloading
decisions of the devices and the UAVs, THz sub-
bands assignment and transmit power control, UAVs
deployment, while satisfying the delay constraint of
each device’s task, resource constraints of the THz
band, and the transmit power constraint of each
device.

• Secondly, we show that the formulated problem is
a non-convex mixed integer programming problem
due to the coupling of decision variables in the
objective function and constraints. To obtain a solu-
tion, we divide the problem into four sub-problems
using the block coordinate descent (BCD) method: 1)
device task offloading decision problem, 2) the THz
sub-band assignment and power control problem, 3)
UAV deployment problem, and 4) UAV task offload-
ing decision problem.

• Thirdly, we show that the device task offloading
decision problem is convex and then propose the
standard optimization technique to solve the prob-
lem. Then, a one-to-one matching game and CCP ap-
proach are proposed to solve sub-bands assignment
and power control problems. Finally, SCA and BSUM
methods are proposed to solve the UAVs deploy-
ment and UAVs tasks offloading decision problems,
respectively.

• Finally, we demonstrate the convergence of the pro-
posed algorithm by using extensive simulations. Fur-
thermore, to show the effectiveness of our proposed
algorithm, we compare the results of our proposed
algorithm to the baseline schemes proposed in recent
literature [12] and [13].

The rest of this paper is organized as follows. The related
works and system model are described in Section 2 and
Section 3, respectively. Section 4 presents the problem for-
mulation and the proposed solution is presented in Section
5. Simulation results are shown in Section 6. Section 7
concludes the paper.

2 RELATED WORKS

2.1 Multi-Access Edge Computing (MEC)-Enabled Inte-
grated Space-Air-Ground Networks

MEC-enabled integrated SAG networks have received in-
creasing attention in the recent literature [14], [15], [16],
[17], [18], [19], [20]. In [14], the authors studied robust
optimization-based UAV trajectory optimization and power

control in SAG networks. Moreover, the work [15] investi-
gated linear programming-based UAV trajectory optimiza-
tion and task offloading scheme. However, both [14] and
[15] only took into account a single UAV scenario, leaving
out power control, resource allocation, and interference
management. In [16], the authors proposed greedy and
SCA-based task offloading and UAVs deployment schemes
in the integrated SAG networks. The work [17] proposed
radio resource allocation and task offloading framework
for the integrated SAG vehicular networks. The authors
in [18] investigated a machine learning-based framework
for the MEC-enabled integrated SAG networks in order to
offer computation services to numerous internet of vehi-
cles (IoVs) in remote regions. In [19], the authors studied
SCA-based hybrid task offloading and computing resource
allocation scheme in the SAG networks. However, power
control, interference management, and collaboration among
UAVs were omitted in [16], [17], [18], [19]. The authors in
[20] introduced the collaboration among UAVs in the multi-
UAV-assisted MEC system. However, deployment of the
UAVs, power control, interference management, and MEC-
enabled satellites were omitted.

All of the aforementioned works, however, made the as-
sumption that their proposed SAG networks would operate
in the sub-6 GHz frequency band. With the rapid growth
of connected wireless devices and the limited available
bandwidth (i.e., communication resource) at the sub-6 GHz
band, the maximum bandwidth usage at the considered
frequency band has been reached. Thus, researchers are
eager to explore the untouched THz frequency band with
available abundant bandwidth to fill the resource require-
ment of the devices in future wireless networks.

2.2 THz-assisted Multi-Access Edge Computing

The management of the THz spectrum for MEC was con-
sidered in [21], [22], [23], [24], [25], [26], [27], [28], [29], [30],
[31]. In [21], the authors proposed a secure mobile relaying
system with UAV assistance that gathers data from several
ground user equipment (UEs) and sends it to a destination
using THz bands. The work [22] presented a viewpoint
rendering offloading decision and transmit power control
technique based on deep reinforcement learning for virtual
reality (VR) video streaming via THz-wireless channels. Fur-
thermore, in [23], the authors proposed a machine learning-
based phase-shift design of IRS elements and rendering
transmission for the VR system via IRS-assisted THz net-
works. The authors proved that using the THz frequency
band could satisfy the ultra-reliable and low-latency re-
quirement of the VR system in [24], and [25]. The work
[26] discussed an optimization technique-based framework
for the transmit power control and task offloading via THz
frequency in the MEC system. In [27], the authors discussed
the ruin theory-based age of information (AoI) minimiza-
tion scheme in augmented reality (AR) system over THz
networks. The work [28] presented a hybrid beamforming
scheme for the vehicular networks over THz massive MIMO
system. In [29], the authors proposed a penalty-constrained
convex approximation (PCCA)-based framework for trans-
ferring data and power concurrently over THz networks. In
[30], distributed proximal policy optimization (DPPO) based
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Fig. 1: Illustration of MEC-enabled integrated
space-air-ground networks.

beamforming and phase-shift design for the IRS-assisted
cooperative communication and sensing system over THz
networks were examined. The study [31] presented a multi-
hop IRS-assisted THz communication system beamforming
architecture based on deep reinforcement learning.

All of the aforementioned existing works separately con-
sidered THz-assisted wireless networks and MEC-enabled
integrated SAG networks. As a result, in contrast to pre-
viously published studies, we explore MEC-enabled inte-
grated SAG networks over the THz frequency band in this
paper. Additionally, we consider collaboration among UAVs
in the proposed THz-assisted MEC-enabled integrated SAG
networks, which has never been taken into account in all of
the existing works.

3 SYSTEM MODEL

We consider a MEC system in the integrated space-air-
ground network that consists of a set J of J wireless
devices, a set K of K UAVs, and a set S of S LEO satellites,
as illustrated in Fig. 1. Each device j ∈ J in the considered
network has a latency-sensitive computation task Tj , which
can be characterized by a tuple Tj = {φj , αj , Aj}, where
φj is the maximum tolerable delay of the task, αj is the
CPU cycles needed to compute one bit of data, and Aj is
the data size of the task. Devices are energy constrained, we
thus consider that each device offloads a certain amount of
data of its computation task to its associated UAVs. In this
paper, we assume that the association between devices and
UAVs is already determined depending on the distance via
the K-means algorithm.

We use Jk to denote the set of devices that offload a
certain amount of data of their computation tasks to UAV

k, and assume J =
K⋃

k=1
Jk where Jk ∩ Jk′ = ∅,∀k, k′ ∈

K, k ̸= k′. We consider that the THz frequency band is
adopted for communication between devices and UAVs due
to the abundance of bandwidth in this frequency band. The
available bandwidth in the considered THz frequency band
is divided into a set B of B sub-bands, and we use ω to
denote the bandwidth of each sub-band. Since, the THz
frequency band is only suitable for short-range communi-
cation due to severe link attenuation and dispersion, we
consider that mmWave (28 GHz) backhaul links are adopted
to communicate among UAVs and satellites. Furthermore,
we consider that UAVs and satellites can obtain the channel
state information (CSI) of associated devices and UAVs, e.g.,
using techniques presented in [32], [33], [34].

3.1 Local Computing Model
Let (Aj−βk

j ) be the amount of data of device j’s task that is
processed locally on device j and βk

j be the amount of data
that is offloaded to the associated UAV k ∈ K for remote
computing. Thus, wireless device j’s local computation
delay for completing the task which is calculated by [11]
as

lk,loc
j =

(Aj − βk
j )αj

fj
,∀j ∈ J , (1)

where fj represents the computation capacity of device
j. The local energy usage of wireless device j which is
expressed in [11] as

Ek,loc
j = κj(fj)

2αj(Aj − βk
j ),∀j ∈ J , (2)

where κj is a constant that depends on the wireless device’s
chip architecture.

3.2 Communication Model
Each device uses one of the available THz sub-bands at its
associated UAV for data transmission for offloading. We
define ak,bj ∈ {0, 1} as the sub-band assignment variable,
which represents whether or not sub-band b is assigned to
device j associated to UAV k, i.e.,

ak,bj =


1, if sub-band b is assigned to device j, which

offloads βk
j amount of data of its task to UAV k,

0, otherwise.
(3)

We consider that the orthogonal frequency division mul-
tiple access (OFDMA) scheme is used for communication
between a UAV and its associated devices in order to avoid
intra-cell interference. To improve spectrum efficiency, we
consider frequency reuse between UAVs, i.e., all UAVs op-
erate on the same frequency band to communicate with their
associated devices. Thus, inter-cell interference between dif-
ferent UAVs may exist. As a result, in each UAV, a sub-band
can be assigned to at most one device,∑

j∈Jk

ak,bj ≤ 1,∀b ∈ B,∀k ∈ K. (4)

Furthermore, we assume that at most one sub-band can be
assigned to a device,∑

b∈B
ak,bj ≤ 1,∀j ∈ Jk,∀k ∈ K. (5)
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Additionally, molecular absorption is the primary factor
influencing signal propagation at the THz frequency band,
leading to molecular absorption loss [35]. This loss is caused
by certain types of molecules, such as H2O vapor in the air,
each with a distinct absorption spectrum. Given the prox-
imity of UAVs to their associated devices and their ability
to fly, we consider a line-of-sight (LoS) communication link
between UAVs and their devices [9]. Thus, we can express
the channel gain of device j on sub-band b to UAV k as [9]

gk,bj = g0(d
k
j )

−2e−ib(f)d
k
j ,∀j ∈ Jk,∀b ∈ B,∀k ∈ K, (6)

where g0 is the channel gain at reference distance d = 1
m, ib(f) is the coefficient of molecular absorption, which
is influenced by both the concentration of water vapor
molecules in the air and the network operating frequency
(i.e., THz frequency), and dkj is the distance between device
j and UAV k, which can be computed as

dkj =
√
(xk − xj)2 + (yk − yj)2 + h2

k,∀j ∈ Jk,∀k ∈ K,
(7)

where c̈j = [xj , yj ]
T and ok = [xk, yk]

T are the horizontal
coordinates of device j ∈ J and UAV k ∈ K respectively,
and hk is the hovering altitude of the UAV.

The received signal to interference plus noise ratio
(SINR) between device j on sub-band b and its associated
UAV k is then given by [9] as

γk,b
j =

P k,b
j gk,bj

Ik,bj + σ2
,∀j ∈ Jk,∀b ∈ B,∀k ∈ K, (8)

where P k,b
j represents the transmit power of device j, σ2 is

the additive white Gaussian noise power, and

Ik,bj =
∑

k′∈K,k′ ̸=k

∑
j′∈J ,j′ ̸=j

P k′,b
j′ gk,bj′ (9)

is the interference experienced at UAV k. Finally, we can
calculate the achievable data rate of device j on sub-band b
as

Rk,b
j = ω log2(1 + γk,b

j ),∀j ∈ Jk,∀b ∈ B,∀k ∈ K. (10)

We use (10) to compute the data rate Rk
j =

∑
b∈B

ak,bj Rk,b
j of

device j, which can be used for computing the transmission
delay experienced by device j when offloading βk

j amount
of data of its task to UAV k which is described by [11] as

lk,trans
j =

βk
j

Rk
j

,∀j ∈ Jk,∀k ∈ K. (11)

We express the transmission energy consumed at device j
when offloading a βk

j amount of data of its task to UAV k as
[11]

Ek,trans
j = lk,trans

j

∑
b∈B

P k,b
j ,∀j ∈ Jk,∀k ∈ K. (12)

After receiving the offloaded data from its associated de-
vices, UAV k decides to either process them locally on
its server or transfer them to neighboring UAVs or to the
satellites.

Thus, we introduce the binary decision variable xk→k′

j ∈
{0, 1}, indicating whether or not the offloaded data of
device j is transferred to neighboring UAV k′ ∈ K,

vk→k′

j =


1, if offloaded data of device j is transferred

from UAV k to UAV k′,

0, otherwise.
(13)

We use βk→k′
=

∑
j∈Jk

vk→k′

j βk
j to denote the total amount

of data transferred from UAV k to UAV k′. The transmission
time from UAV k to k′ is determined by the achievable chan-
nel gain between these UAVs. Recall that the proposed inte-
grated SAG network is meant to provide remote computing
services to IoT devices in remote areas without terrestrial
infrastructure. We expect that in these areas there would be
few obstacles and thus we do not need to account for small-
scale fading caused by the multi-path effect. Thus, taking
the free space loss and rain attenuation into consideration,
the achievable channel gain between UAV k to k′ can be
expressed as [20]

Γk→k′
=

P k→k′
gtx
k g

rx
k′Lr

tnHBk→k′
mm

(
c

4πdk
′

k fmm
c

)2

, (14)

where P k→k′
is the transmit power of UAV k, gtx

k and
grx
k′ represent the antenna gains of the transmitter, UAV k,

and the receiver UAV k′, Lr is the amplification factor, tn
is the noise temperature, H is Boltzmann’s constant, fmm

c

is the mmWave carrier frequency, Bk→k′

mm is the available
bandwidth between UAV k and UAV k′, and dk

′

k denotes
the distance between UAV k and k′. Then, the achievable
backhaul capacity between UAV k and k′ is given by

Rk→k′
= Bk→k′

mm log2

(
1 + Γk→k′

)
,∀k, k′ ∈ K. (15)

Finally, the transmission delay assuming that device j’s data
is transferred to UAV k’ is as [20]

lk→k′,trans
j =

βk→k′

Rk→k′ ,∀k, k′ ∈ K. (16)

Moreover, the total transmission energy consumed at UAV
k when transferring the data of its associated devices to
nearby UAV k′ is given by [20] as

Ek→k′,trans = P k→k′

(
βk→k′

Rk→k′

)
,∀k, k′ ∈ K. (17)

Finally, we introduce the binary decision variable zk→s
j ∈

{0, 1}, to indicate whether or not UAV k transfers the
offloaded data of device j to satellite s

zk→s
j =


1, if offloaded data of device j is transferred

from UAV k to satellite s,
0, otherwise.

(18)
Let βk→s =

∑
j∈Jk

zk→s
j βk

j be the total amount of data

transferred from UAV k to satellite s. Then, the transmission
delay incurred when device j’s offloaded data is transferred
from UAV k to satellite s can be expressed as [36]

lk→s,trans
j =

βk→s

Rk→s
,∀k ∈ K,∀s ∈ S, (19)
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where Rk→s is the achievable backhaul link capacity be-
tween the UAV and the satellite that can be calculated based
on (15). Additionally, the amount of transmission energy
used by UAV k when transferring the total offloaded data
of its associated devices to the satellite s is given by [36]

Ek→s,trans = P k→s

(
βk→s

Rk→s

)
,∀k ∈ K,∀s ∈ S. (20)

3.3 Remote Computing Model
In order to express whether or not the offloaded data of
device j is computed at UAV k, we define the binary
decision variable, wj→k

j ∈ {0, 1}, i.e.,

wk
j =

{
1, if offloaded data of device j is computed at UAV k,

0, otherwise.
(21)

If indeed the wireless device j’s offloaded data is computed
at UAV k, i.e., wk

j = 1, then the computation delay is [11]

l
k,comp
j =

αjβ
k
j

fk
j

,∀j ∈ Jk,∀k ∈ K, (22)

where fk
j is the computation capacity of UAV k that is

allotted to compute the offloaded data of wireless device
j. We consider that the UAVs use proportional allocation
[37] as

fk
j =

αjβ
k
j∑

j′∈J
wk

j′αj′βk
j′
Fmax
k , (23)

where Fmax
k denotes the computation capacity of UAV k.

As a result, when wireless device j offloads βk
j amount of

data of its computation task to UAV k, the total delay it
encounters is

lk,remote
j = lk,trans

j + l
k,comp
j ,∀j ∈ Jk, k ∈ K. (24)

The energy usage at UAV k for processing the offloaded
data of wireless device j can be written as [11]

E
k,comp
j = κ(fk

j )
2αjβ

k
j ,∀j ∈ Jk,∀k ∈ K, (25)

where κ is a constant that depends on the chip architecture
of the UAV’s MEC server. Consequently, the total delay that
the device j experiences when the offloaded data of its task
is performed at UAV k′ is as

lk→k′,remote
j = lk,trans

j + lk→k′,trans
j + l

k→k′,comp
j ,∀j ∈ Jk,

∀k, k′ ∈ K, k ̸= k′.
(26)

Finally, let l
k→s,comp
j denote the computation delay when

wireless device j’s offloaded data is processed at satellite s
which can be calculated based on (22). Then, the total delay
that wireless device j encounters when its offloaded data is
transferred to the satellite is

lk→s,remote
j = lk,trans

j + lk→s,trans
j + l

k→s,comp
j + 2l

k→s,pro
j ,

∀j ∈ Jk,∀k ∈ K,∀s ∈ S,
(27)

where 2l
k→s,pro
j =

2ds
k

c is the round-trip propagation delay
between UAV k and the satellite s. In this paper, we consider

that the satellite has a renewable energy source. Thus, we
disregard the satellite’s energy usage for computing the data
transferred from all UAVs.

We make the reasonable assumption that the available
computation capacity at the satellites is significantly greater
than that at the UAVs and devices, and thus the compu-
tation time at the satellites is negligible compared to the
computation time at the UAVs and devices. As a result,
in our work, we do not account for the computation time
of the satellites. Moreover, in the considered application
scenario, the size of the output data after the offloaded task
of each device has been executed at the MEC servers of
UAVs and satellites is much less than the input data size of
the offloaded task. We thus do not account for the downlink
transmission time in the problem formulation. At the same
time, our model accounts for the downlink propagation
delay, which may be significant for satellite communication.
Therefore, the downlink communication from the UAVs and
satellites to the ground devices is disregarded in this study.
Thus, the total delay encountered by device j when βk

j

amount of data of its computation task is offloaded to the
associated UAV k for remote computing is as

lk, Remote
j = wk

j l
k,remote
j +

∑
k′∈K,k′ ̸=k

vk→k′

j lk→k′,remote
j +∑

s∈S
zk→s
j lk→s,remote

j ,∀j ∈ Jk,∀k ∈ K.
(28)

Finally, the total amount of energy used by the UAV to
execute the offloaded data of the devices in the considered
integrated SAG network is provided by

ETot
k =

∑
j∈J

wk
jE

k,comp
j +

∑
k′∈K,k′ ̸=k

Ek→k′,trans +
∑
s∈S

Ek→s,trans,

∀k ∈ K.
(29)

4 PROBLEM FORMULATION

Our objective is to jointly optimize the deployment of UAVs,
the task offloading decision for the devices and the UAVs,
the transmit power, and the assignment of communication
resources with the aim of minimizing the energy consump-
tion of the UAVs and the devices subject to the available
wireless resources (i.e., sub-bands and transmit power) and
computing time constraints. Thus, we define the objective
function as

Q(o,β,P ,a,w,v, z) =
∑
k∈K

∑
j∈J

(
Ek,loc

j + Ek,trans
j

)
+
∑
k∈K

ETot
k .

(30)
We can then formulate the proposed optimization problem
as

P: minimize
o, β,P, a,w, v, z

Q(o, β,P, a,w, v, z) (31a)

subject to lk,loc
j ≤ φj ,∀j ∈ Jk,∀k ∈ K, (31b)

lk,Remote
j ≤ φj ,∀j ∈ Jk,∀k ∈ K,

(31c)

0 ≤ βk
j ≤ Aj , ∀j ∈ J ,∀k ∈ K,

(31d)
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b∈B

ak,bj ≤ 1 ∀j ∈ Jk,∀k ∈ K,

(31e)∑
j∈Jk

ak,bj ≤ 1 ∀b ∈ B,∀k ∈ K,

(31f)

0 ≤ P k,b
j ≤ Pmax

j ,∀j ∈ Jk,∀k ∈ K,
(31g)

wk
j +

∑
k′∈K,
k′ ̸=k

vk→k′

j +
∑
s∈S

zk→s
j = 1,

∀j ∈ Jk, (31h)

ak,bj ∈ {0, 1},∀j ∈ Jk,∀b ∈ B,∀k ∈ K,
(31i)

wk
j ∈ {0, 1},∀j ∈ Jk,∀k ∈ K, (31j)

vk→k′

j ∈ {0, 1},∀j ∈ Jk,∀k, k′ ∈ K,
(31k)

zk→s
j ∈ {0, 1},∀j ∈ Jk,∀k ∈ K,∀s ∈ S,

(31l)

Xmin
k ≤ xk ≤ Xmax

k ,∀k ∈ K,
(31m)

Y min
k ≤ yk ≤ Y max

k ,∀k ∈ K, (31n)

where constraints (31b) and (31c) guarantee that a task is
executed within the task’s maximum tolerable delay, then
constraint (31d) assures that the data size of the task that is
offloaded to the associated UAV k ∈ K must be less than
the total input data size of the task of device j. Constraints
(31e) and (31f) ensure that each THz sub-band in a UAV
can only be assigned to one device, and the same is true
for each device associated with a UAV. Constraint in (31g)
guarantees that the device’s transmit power is less than its
maximum available power. Constraint (31h) ensures that the
offloaded data of the device is computed at a single location
(i.e., at the associated UAV (or) one of the nearby UAVs (or)
one of the LEO satellites). Moreover, (31i), (31j), (31k), and
(31l) are the binary decision variables. Finally, limitations
on the coordinates of each UAV are ensured by constraints
(31m) and (31n).

5 SOLUTION APPROACH

Convex optimization techniques cannot be employed di-
rectly to address the optimization problem in (31) because
decision variables are coupled in the objective function and
in the constraints, the problem has nonlinear constraints and
binary variables, and has a non-convex structure. We thus
propose to use the block coordinate descent (BCD) approach
to decompose the problem into four sub-problems: 1) device
task offloading decision problem, 2) sub-band assignment and
transmit power control problem, 3) UAV deployment problem,
and 4) UAV task offloading problem. Then, the decomposed
sub-problems are solved alternatingly.

5.1 Device Task Offloading Decision

For a given sub-band assignment and transmit power de-
cision {P,a}, deployment {o} of UAVs, and offloading

decision {w,v, z} of UAVs, we can formulate the device
task offloading decision problem as

P1: minimize
β

Q(β) (32a)

subject to lk,loc
j ≤ φj ,∀j ∈ Jk,∀k ∈ K, (32b)

lk,Remote
j ≤ φj ,∀j ∈ Jk,∀k ∈ K, (32c)

0 ≤ βk
j ≤ Aj , ∀j ∈ J ,∀k ∈ K, (32d)

From problem P1, we can see that the objective function
(32a) and the constraints (32b)-(32d) are linear. Thus, we can
conclude that problem P1 is convex. As a result, we can
solve the problem using convex optimization techniques.

5.2 Sub-band Assignment and Power Control

For a given task offloading decision {β} of devices, a
deployment {o} of UAVs, and offloading decision {w,v, z}
of UAVs, we can formulate the sub-band assignment and
power control problem as

P2: minimize
P,a

Q(P,a) (33a)

subject to (31c), (31e)-(31g), (31i), (33b)

Unfortunately, the decision variables in P2 are coupled in
the objective function and in the constraints, and the prob-
lem has a combination of binary and continuous variables.
Thus, problem P2 is a mixed-integer nonlinear program-
ming (MINLP) problem that is NP-hard. Therefore, we
develop a polynomial time two-stage distributed approach
to address P2, by combining a matching game to assign sub-
bands, and the concave-convex procedure (CCP) approach
to evaluate the power control at each UAV.

Stage 1 (Sub-band Assignment). We want to maximize
the total transmission rate of the devices because by doing
so, we can decrease their transmission delay, i.e., constraint
(31c), and transmission energy, i.e., the objective function,
as indicated in (11) and (12), respectively. In other words,
transmission energy and delay have an inverse relationship
with data rate. As a result, we can formulate the sub-band
assignment problem as a data rate (i.e., transmission rate
between devices and UAVs) maximization problem. How-
ever, the sub-band assignment problem is a combinatorial
integer programming problem. Thus, deploying centralized
optimization techniques can cause significant overhead and
complexity. As a result, we propose a low complexity dis-
tributed matching algorithm [38] to solve the problem. Since
a wireless device can only have one sub-band assigned to it
and a sub-band can only be assigned to a maximum of one
device, we can model our sub-band assignment problem as
a one-to-one matching game. We first provide the definition
of the one-to-one matching game for sub-band assignment
at each UAV k ∈ K.

Definition 1: Given two disjoint sets of players, Jk and B,
the one-to-one matching game ϑk : Jk → B for the sub-band
assignment is defined as:

1) ϑk(b) ⊆ Jk and |ϑk(b)| ∈ {0, 1}, ∀b ∈ B;
2) ϑk(j) ⊆ B and |ϑk(j)| ∈ {0, 1} , ∀j ∈ Jk;
3) j = ϑk(b)↔ b = ϑk(j), ∀b ∈ B,∀j ∈ Jk.
Here, |ϑk(.)| is a representation of the cardinality of

the matching outcome ϑk(.). Conditions (1) and (2) in the
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Algorithm 1 One-to-One Matching Game-Based Sub-band
Assignment Algorithm

1: Input: Jk, B;
2: Initialization: Set J un

k = Jk, Bj = B,∀j ∈ Jk, a set of
devices requested to sub-band b,J b,req

k = ∅, and a set of
rejected devices from sub-band b,J b,rej

k ,∀b ∈ B;
3: Construct the preference list of devices in Jk according

to (34) by equally allocating its available transmit power
to all sub-bands, i.e., P k,b

j =
Pmax

j

B ,∀j ∈ Jk;
4: Find a stable matching ϑ∗

k

5: while
∑
b∈B

∑
j∈Jk

qjb ̸= 0 do

6: for j = 1 to |J un
k | do

7: Find b = argmax
b∈B

θj(b).

8: Make a request to the UAV k by setting qjb = 1.
9: end for

10: for b = 1 to B do
11: Update J b,req

k ← {j : qjb = 1,∀j ∈ Jk}.
12: Construct the preference list of UAV for its
13: available sub-bands according to (35).
14: Find j = argmax

j∈Jk

θb(j).

15: Assign sub-band b to device j.
16: Update J b,rej

k ← {J b,req
k \ j}.

17: Update Bj ← {Bj \ b}, ∀j ∈ J b,rej
k .

18: end for
19: Update J un

k ← J un
k ∩ {J

1,rej
k ∪ ..... ∪ J B,rej

k }.
20: end while
21: Until: Achieve the stable matching ϑ∗

k.
22: Sub-bands Assignment: ϑ∗

k → ak.

definition ensure that a sub-band can only be assigned to
one device at a time and that a device can only have one sub-
band assigned to it. Furthermore, according to condition (3),
if device j is matched with sub-band b, then sub-band b
must also be matched with device j. The outcome of the one-
to-one matching game is the assignment mapping between
a set of devices Jk and sub-bands B.

Firstly, we define the preference function of device j ∈
Jk for sub-band b ∈ B and the preference function of sub-
band b ∈ B for device j ∈ Jk as θj(b) and θb(j), respectively.
The notation b1 ≻j b2 implies that device j prefers sub-band
b1 over b2, i.e., θj(b1) > θj(b2), and at the same time the
notation j1 ≻b j2 indicates that the sub-band prefers device
j1 over j2, i.e., θb(j1) > θb(j2).

Preference of the device: The preference function of
device j for sub-band b can be defined as

θj(b) = ω log2

1 +
P k,b
j gk,bj∑

k′∈K,k′ ̸=k

∑
j′∈J ,j′ ̸=j

P k′,b
j′ gk,bj′ + σ2


︸ ︷︷ ︸

Rk,b
j

.

(34)
The preference function of device j ∈ Jk in (34) indicates
two facts: 1) the device’s choice of sub-band only determines
the transmission rate that can be achieved, which then
determines the transmission delay and energy consumption
when offloading a certain amount of data of its computation

task to the associated UAV, as we can see in (11) and (12),
and 2) the device would wish to offload a certain amount of
its computation task to the associated UAV via the sub-band
which can provide the highest transmission rate.

Preference of the UAV for its available sub-bands: UAV
k’s preference function for matching device j ∈ Jk with
sub-band b ∈ B can be expressed as

θb(j) = Φ1 ω log2

1 +
P k,b
j gk,bj∑

k′∈K,k′ ̸=k

∑
j′∈J ,j′ ̸=j

P k′,b
j′ gk,bj′ + σ2


︸ ︷︷ ︸

Rk,b
j

−

∑
k′∈K,k′ ̸=k

Φk′,b
j P k,b

j gk
′,b

j︸ ︷︷ ︸
Cumulative interference to other UAVs

,

(35)

where Φ1 and Φk′,b
j are weighting parameters. The UAV

will assign sub-band b to device j in order to maximize
the achievable transmission rate and reduce cumulative
interference to the other UAVs, as can be shown in (35).

Definition 2: A stable matching ϑ∗
k is achieved if there is no

blocking pair (j, b), where a pair (j, b) is a blocking pair when
j /∈ ϑk(b), b /∈ ϑk(j), and b ≻j ϑk(b) and j ≻b ϑk(j).

The proposed game guarantees to converge to the stable
matching since it is implemented identically to the standard
deferred acceptance algorithm [39]. The pseudocode of
the one-to-one matching game-based sub-band assignment
algorithm is shown in Algorithm 1. Firstly, we acquire a set
of devices Jk, a set of sub-bands B, and initialize a set of
unmatched devices J un

k , a set of prospective sub-bands for
each device Bj , a set of requested devices to each sub-band
J b,req
k , and a set of rejected devices by each sub-band J b,rej

k .
Every device builds its own preference list for all possible
sub-bands (line 3) and then chooses the best sub-band b (line
7) that can provide the highest transmission rate and sends
the request to UAV k in order to get access to that sub-band
(line 8). When device j selects sub-band b, the value of
qjb is set to 1, and if not, to 0. After receiving requests
from devices, the UAV updates the set of devices that have
requested sub-band b (line 11). Then, the UAV constructs
the preference list of sub-band b for all requested devices
(lines 12-13). After that, the UAV will choose the best device
for sub-band b from the list of devices that have requested
that sub-band, J b,req

k (line 14), and assign the chosen device
to sub-band b (line 15). Then after, the set of rejected devices
for sub-band b is updated (line 16), and sub-band b is
deleted from the list of prospective sub-bands of its rejected
devices (line 17). Finally, the set of unmatched devices is
likewise updated based on the sets of rejected users for
all sub-bands (line 19). The matching process is conducted
iteratively until a stable match is established between both
sides (i.e., devices and sub-bands). The process will stop
when all devices are assigned to the sub-bands or there are
no more sub-bands to send the access request to. Finally,
the output of the one-to-one matching, ϑ∗

k is mapped to the
sub-band assignment vector ak, i.e., ϑ∗

k → ak, (line 22).
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P2.1: minimize
P

∑
k∈K

∑
j∈J

Ej→k,trans
j (P ) (36a)

subject to
βk
j

ω log2

1 +
Pk,b

j gk,b
j∑

k′∈K,k′ ̸=k

∑
j′∈J ,j′ ̸=j

Pk′,b
j′ gk,b

j′ +σ2

 ≤ φj ,∀j ∈ Jk,∀k ∈ K, (36b)

0 ≤ P k,b
j ≤ Pmax

j ,∀j ∈ Jk,∀k ∈ K, (36c)

Stage 2 (Power Control Problem). Utilizing the output
of the proposed one-to-one matching game-based sub-band
assignment algorithm that we presented in Algorithm 1, the
power control problem can be expressed as P2.1.

Theorem 1. The objective function (36a) of the power control
problem P2.1 is a concave function.

Proof: Let us define

L(P k,b
j ) =

1

ω log2

1 +
gk,b
j∑

k′∈K,k′ ̸=k

∑
j′∈J ,j′ ̸=j

Pk′,b
j′ gk,b

j′ +σ2

 ,

(37)
where P k,b

j = {P 1,b
j′ , P 2,b

j′ , . . . , PK,b
j′ }, j′ ∈ J . In accor-

dance with the definition presented in (12), Ek,trans
j which

is the objective function (36a), is the perspective function of

L(P k,b
j ), i.e., Ej→k,trans

j (P ) = βk
j P

k,b
j L

(
P k,b

j

Pjk,b

)
. Since the

perspective function maintains concavity, if we can demon-
strate that L(P k,b

j ) is concave, then its perspective function
Ej→k,trans

j (P ) must also be concave. In order to keep things
simple, we will demonstrate that L(P k,b

j′ ) is concave for a
single variable. The case with multiple variables consists of a
concave affine function and a single variable function, hence
if we are able to demonstrate that the perspective function
is concave in the single variable scenario, then it will also be
concave for multiple variables. Let us introduce

M(P k,b
j′ ) =

1

log2

(
1 + 1

Pk′,b
j′

) , P k′,b
j′ > 0

as the function of the single variable case of L(P k,b
j ). Then,

the first-order derivative of M(P k,b
j′ ) w.r.t P k′,b

j′ , will be

dM(P k,b
j′ )

dP k′,b
j′

=
1

ln 2P k′,b
j′ (P k′,b

j′ + 1) log2

(
1 + 1

Pk′,b
j′

)2

.

(38)

From (38), we observe that
dM(P k,b

j′ )

dP k′,b
j′

> 0. Thus, M(P k,b
j′ )

is a non-decreasing function of the transmit power profile

P . The second-order derivative is then

d2M(P k,b
j′ )

dP
(k′,b)2
j′

=
2(P k′,b

j′ + 0.5)

0.48
(
(P k′,b

j′ )2 + P k′,b
j′

)
log2

(
1 + 1

Pk′,b
j′

)3

[
1

P k′,b
j′ + 0.5

− ln

(
1 +

1

P k′,b
j′

)]
.

(39)

From (39), we can conclude that

1

P k′,b
j′ + 0.5

< ln

(
1 +

1

P k′,b
j′

)
(40)

when P k′,b
j′ > 0. Therefore,

d2M(P k,b
j′ )

dP
(k′,b)2
j′

< 0, and M(P k,b
j′ )

is concave. Additionally, constraint (36b) is concave, which
can be shown following the same steps.

Thus, to make problem P2.1 tractable, we first transform
the problem into DC (i.e., difference of two convex func-
tions) form. Following that, we develop a CCP (concave-
convex procedure)-based technique to approach its station-
ary point, which is the optimal solution to the power control
problem.

Firstly, the DC form of the constraint (36b) is[
βk
j

ωφj
− log2

∑
k∈K

∑
j∈J

P k,b
j gk,bj + σ2


︸ ︷︷ ︸

R̂(P )

−

− log2

 ∑
k′∈K,k′ ̸=k

∑
j′∈J ,j′ ̸=j

P k′,b
j′ gk,bj′ + σ2


︸ ︷︷ ︸

U(P )


]
≤ 0.

(41)

Moreover, according to Theorem 1, the objective function
(36a) is concave, thus, we can transform the objective func-
tion into a DC form, i.e., 0 −

(
−Ej→k,trans

j (P )
)

. Finally,
by approximating the concave parts of both the objective
function and constraint in (41) using the first-order Taylor
approximation approach, we can convexify the objective
function and the constraint. Thus, the following is the ap-
proximation function of U(P ) in (41)

Ū
(
P (t̂+1)

)
= U

(
P (t̂)

)
+∇U

(
P (t̂)

)(
P (t̂+1) − P (t̂)

)
(42)
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Algorithm 2 CCP-Based Power Control Algorithm

1: Initialization: Set t̂ = 0, ϵ1 = 10−4, and find initial
feasible solutions (P (0));

2: repeat
3: Solve the problem in (45) by using CVXPY toolkit and

find the optimal transmit power profile P (t̂+1);
4: Update t̂ = t̂+ 1;

5: until ∥ Êj→k,trans
j (P (t̂))−Êj→k,trans

j (P (t̂+1))

Êj→k,trans
j (P (t̂))

∥ ≤ ϵ1;

6: Then, set P (t̂+1) as the desired solutions.

where the subscript t̂ is the current iteration and

∇U
(
P (t̂)

)
=

−
∑

k′∈K,k′ ̸=k

∑
j′∈J ,j′ ̸=j

gk,bj′

ln 2
(
log2(

∑
k′∈K,k′ ̸=k

∑
j′∈J ,j′ ̸=j

P k′,b
j′ gk,bj′ + σ2)

) .
(43)

Consequently, the objective function’s approximation func-
tion is defined as

Êj→k,trans
j

(
P (t̂+1)

)
= −Ej→k,trans

j

(
P (t̂+1)

)
−

∇Ej→k,trans
j

(
P (t̂)

)(
P (t̂+1) − P (t̂)

)
(44)

Finally, we can reformulate the power control problem as
below

P2.11: minimize
P

−
∑
k∈K

∑
j∈J

Êj→k,trans
j (P ) (45a)

subject to R̂(P )− Ū (P ) ≤ 0,∀j ∈ Jk,∀k ∈ K,
(45b)

0 ≤ P k,b
j ≤ Pmax

j ,∀j ∈ Jk,∀k ∈ K,
(45c)

where the objective function (45a) and constraint (45b) are
convex, and the constraint (45c) is linear. Thus, problem
P2.11 is a convex problem. Therefore, we can solve it by
using convex optimization techniques. The summary of the
CCP-based power control algorithm is presented in Algo-
rithm 2.

5.3 UAV Deployment

For a given {β,P, a,w, v, z}, we can formulate the UAV
deployment problem as

P3: minimize
o

Q(o) (46a)

subject to (31c), (31m), (31n), (46b)

where Q(o) =
∑

j∈Jk

∑
k∈K

Ej→k,trans
j +

∑
k∈K

( ∑
k′∈K,k′ ̸=k

Ek→k′,trans +
∑
s∈S

Ek→s,trans
)

. However,

problem P3 is non-convex due to the non-convex objective
function and constraint (31c). Thus, we use a successive
convex approximation (SCA) approach to address the
formulated UAV deployment problem and to achieve a
locally optimal solution. SCA iteratively approximates

every non-convex function in the optimization problem
with a convex function. Then, the approximated convex
problem is solved via standard optimization techniques.

We first introduce sets of auxiliary variables λj,k =
{λj,k,∀j ∈ Jk,∀k ∈ K}, λk,k′ = {λk,k′ ,∀k, k′ ∈ K}, and
λk,s = {λk,s,∀k ∈ K,∀s ∈ S} in order to replace non-linear
inequality constraint (31c) with four inequality constraints
as follows

βk
j

Rk
j

≤ λj,k,∀j ∈ Jk,∀k ∈ K, (47)

βk→k′

Rk→k′ ≤ λk,k′ ,∀k, k′ ∈ K, (48)

βk→s

Rk→s
≤ λk,s,∀k ∈ K,∀s ∈ S, (49)

λj,k + λk,k′ + λk,s ≤ φj ,∀j ∈ Jk,∀k, k′ ∈ K,∀s ∈ S. (50)

Then, we can reformulate problem P3 as shown in P3.1.
Due to the logarithmic terms in Rk

j (i.e., N1(o) and N2(o)),
Rk→k′

, and Rk→s, problem P3.1 is non-convex. Thus, as
shown in (52), we first convexify N1(o) by introducing its
convex lower bound function, N̂1(o), based on the first-
order Taylor approximation at the given location of UAV
k at t-th iteration, ok(t). In the same way, N2(o)), Rk→k′

,
and Rk→s can be convexified as shown in (53), (55) and
(57), respectively.

Finally, we can approximate the non-convex problem
P3.1 as a convex problem as the following

P3.2: minimize
o,λ, n̈, n̂, ñ

Q̂(o,λ, n̈, n̂, ñ) (59a)

subject to N̂1(o)− N̂2(o) ≤ 0,∀j ∈ Jk,∀k ∈ K,
(59b)

βk→k′

R̈k→k′ ≤ λk,k′ ,∀k, k′ ∈ K, (59c)

βk→s

R̈k→s
≤ λk,s,∀k ∈ K, s ∈ S, (59d)

(30m), (30n), (50), (54), (56), (58),
(59e)

where Q̂(o,λ, n̈, n̂, ñ) =
∑

j∈Jk

∑
k∈K

Pk,b
j βk

j

R̈k
j

+

∑
k∈K

( ∑
k′∈K,k′ ̸=k

Pk→k′
βk→k′

R̈k→k′ +
∑
s∈S

Pk→sβk→s

R̈k→s

)
. As problem

P3.2 is a convex problem, we can solve it using convex
optimization techniques. The summary of the SCA-based
optimal UAVs deployment algorithm is presented in
Algorithm 3.

5.4 UAV Task Offloading Decision

For a given {β, o,P, a}, we can formulate the UAV task
offloading decision problem as

P4: minimize
w,v, z

Q(w,v, z) (60a)

subject to (31c), (31h), (31j)-(31l), (60b)
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P3.1: minimize
o

∑
j∈Jk

∑
k∈K

Ej→k,trans
j +

∑
k∈K

( ∑
k′∈K,k′ ̸=k

Ek→k′,trans +
∑
s∈S

Ek→s,trans
)

(51a)

subject to
βk
j

ωλj,k
− log2

∑
k∈K

∑
j∈J

P k,b
j g0

(dkj )
2eib(f)d

k
j

+ σ2


︸ ︷︷ ︸

N1(o)

−

− log2

 ∑
k′∈K,k′ ̸=k

∑
j′∈J ,j′ ̸=j

P k′,b
j′ g0

(dkj′)
2e

ib(f)dk
j′

+ σ2


︸ ︷︷ ︸

N2(o)

 ≤ 0,∀j ∈ Jk,∀k ∈ K, (51b)

(48), and (49), (51c)
(31m), (31n), (50), (51d)

N̂1(o) =

 βk
j

ωλj,k
− log2

(∑
k∈K

∑
j∈J

P k,b
j g0

(h2
k+ ∥ ok(t)− c̈j ∥2)eib(f)(h

2
k+∥ok(t)−c̈j∥2)1/2

+ σ2

)+

(
∥ ok − c̈j ∥2

− ∥ ok(t)− c̈j ∥2
) ∑

k∈K

∑
j∈J

Pk,b
j g0

[
1
2 (h

2
k+∥ok(t)−c̈j∥2)1/2eib(f)(h2

k+∥ok(t)−c̈j∥
2)1/2 ib(f)+eib(f)(h2

k+∥ok(t)−c̈j∥
2)1/2

]
(
(h2

k+∥ok(t)−c̈j∥2)eib(f)(h2
k
+∥ok(t)−c̈j∥2)1/2

)2

ln 2

( ∑
k∈K

∑
j∈J

Pk,b
j g0

(h2
k+∥ok(t)−c̈j∥2)eib(f)(h2

k
+∥ok(t)−c̈j∥2)1/2

+ σ2

)
(52)

N̂2(o) = − log2

 ∑
k′∈K,k′ ̸=k

∑
j′∈J ,j′ ̸=j

P k′,b
j′ g0

(h2
k + n̈k)eib(f)(h

2
k+n̈k)1/2

+ σ2

 , (53)

where

n̈k ≤∥ ok(t)− c̈j′ ∥2 +2(ok(t)− c̈j′)
T (ok − ok(t)),∀k′ ∈ K, k′ ̸= k, ∀j′ ∈ Jk, j′ ̸= j, (54)

R̈k→k′
= Bk→k′

mm log2

1 +
P k→k′

gtx
k g

rx
k′Lr

tnHBk→k′
mm

 c2

16π2

(
(hk − hk′)2 + n̂k

)
(fmm

c )2


 ,∀k, k′ ∈ K, (55)

where

n̂k ≥∥ ok(t)− ok′(t) ∥2 +2(ok(t)− ok′(t))T (ok − ok′) (56)

R̈k→s = Bk→s
mm log2

1 +
P k→sgtx

k g
rx
s Lr

tnHBk→s
mm

 c2

16π2

(
(hk − hs)2 + ñk

)
(fmm

c )2


 ,∀k ∈ K,∀s ∈ S, (57)

where

ñk ≥∥ ok(t)− os ∥2 +2(ok(t)− os)
T (ok − ok(t)),∀k ∈ K,∀s ∈ S, (58)

Problem P4 is non-convex and is a combinatorial problem.
As a result, we propose to use the BSUM method to address

problem P4 [40]. BSUM is a method for addressing non-
convex and non-smooth optimization problems by splitting
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Algorithm 3 UAV Deployment Algorithm

1: Initialization: Set t = 0, ϵ2 = 10−4, and find initial
feasible solutions (o(0),λ(0), n̈(0), n̂(0), ñ(0));

2: repeat
3: Solve the problem in (59) by using CVXPY toolkit

and find the optimal location of UAVs and auxiliary
variables, o(t+1), λ(t+1), n̈(t+1), n̂(t+1), and ñ(t+1) ;

4: Update t = t+ 1;
5: until ∥ Q̂(t)−Q̂(t+1)

Q̂(t)
∥ ≤ ϵ2;

6: Then, set o(t+1), λ(t+1), n̈(t+1), n̂(t+1), and ñ(t+1) as the
desired solution.

Algorithm 4 BSUM-Based UAV Task Offloading Decision
Algorithm

1: Initialization: Set ẗ = 0, ϵ3 = 10−4, and initial solutions
(w(0),v(0), z(0));

2: repeat
3: Choose index setM;
4: Let w(ẗ+1)

m ∈ argmin
wm

Qm

(
wm;w(ẗ),v(ẗ), z(t)

)
;

5: Set w(ẗ+1)
n = wẗ

n, ∀n /∈M;
6: Find v

(ẗ+1)
m , and z

(ẗ+1)
m by addressing (63) and (64);

7: Update ẗ = ẗ+ 1;

8: until ∥ Q(ẗ)
m − Q(ẗ+1)

m

Q
(ẗ)
m

∥ ≤ ϵ3

9: Then, set
(
w

(ẗ+1)
m , v(ẗ+1)

m , z(ẗ+1)
m

)
as the desired solution.

the problem into manageable subproblems. Using the BSUM
approach, the decision variables w,v, z are updated con-
secutively in order to minimize the upper bound of the
objective function. Additionally, BSUM can ensure conver-
gence to the stationary points of the objective function in
(60a). To use the BSUM technique, we first relax the binary
constraints (31j)-(31l) and replace them with continuous
ones. Then, we can introduce the feasible sets of w, v, and
z as the following

W ≜{w : lk,Remote
j ≤ φj , w

k
j +

∑
k′∈K,k′ ̸=k

vk→k′

j +
∑
s∈S

zk→s
j = 1,

wk
j ∈ [0, 1],∀j ∈ Jk,∀k ∈ K},

V ≜{v : lk,Remote
j ≤ φj , w

k
j +

∑
k′∈K,k′ ̸=k

vk→k′

j +
∑
s∈S

zk→s
j = 1,

vk→k′

j ∈ [0, 1],∀j ∈ Jk,∀k, k′ ∈ K},

Z ≜{z : lk,Remote
j ≤ φj , w

k
j +

∑
k′∈K,k′ ̸=k

vk→k′

j +
∑
s∈S

zk→s
j = 1,

zk→s
j ∈ [0, 1],∀j ∈ Jk,∀k ∈ K,∀s ∈ S},

Finally, we establish the proximal upper bound function
of the objective function (60a) for each iteration ẗ, ∀m ∈M,
whereM is the index set, as shown below

Qm(wm;wẗ,vẗzẗ) = Q(wm; ŵ, v̂, ẑ) +
µm

2
∥ (wm − ŵ) ∥2

(61)

Algorithm 5 Joint Task Offloading, Sub-band Assignment,
Power Control, and UAV Deployment Algorithm

1: Initialization: Set t̃ = 0, ϵ4 = 10−4, and initial solutions
(β(0),a(0),P (0),o(0),w(0)v(0), z(0));

2: repeat
3: Solve device task offloading problem P1 at the

given (a(t̃),P (t̃),o(t̃),w(t̃)v(t̃), z(t̃)) by using CVXPY
toolkit;

4: Solve sub-band assignment and transmit power con-
trol problem at the given (β(t̃+1),o(t̃),w(t̃)v(t̃), z(t̃))
by using Algorithm 1 and Algorithm 2;

5: Solve UAV deployment problem at the given
(β(t̃+1),a(t̃+1),P (t̃+1),w(t̃)v(t̃), z(t̃)) using
Algorithm 3 ;

6: Solve UAV task offloading decision problem at the
given (β(t̃+1),a(t̃+1),P (t̃+1),o(t̃+1)) by using Algo-
rithm 4;

7: Update t̃ = t̃+ 1;
8: until ∥ Q(t̃)− Q(t̃+1)

Q(t̃) ∥ ≤ ϵ4

9: Set
(
β(t̃+1),a(t̃+1),P (t̃+1),o(t̃+1),w(t̃+1),v(t̃+1), z(t̃+1)

)
as the desired solution.

where the quadratic penalty term helps to convexify the
proximal upper-bound function, and µm is a positive
penalty parameter that can be used for the other vectors of
the variables v, and z, respectively. Additionally, the proxi-
mal upper-bound function (61) contains distinct minimizer
vectors ŵ, v̂, and ẑ with respect to w, v, and z at each
iteration ẗ, which are taken into account as the solution of
the preceding iteration (ẗ−1). The solution at iteration (ẗ+1)
is then obtained by solving the subproblems

w(ẗ+1)
m ∈ argmin

wm

Qm

(
wm;w(ẗ),v(ẗ), z(ẗ)

)
, (62)

v(ẗ+1)
m ∈ argmin

vm

Qm

(
vm;v(ẗ),w(ẗ+1), z(ẗ)

)
, (63)

z(ẗ+1)
m ∈ argmin

zm

Qm

(
zm; z(ẗ),w(ẗ+1),v(ẗ+1)

)
. (64)

Subproblems (62), (63), and (64) can be solved by using con-
vex optimization techniques. A summary of our proposed
BSUM-based UAVs tasks offloading decision algorithm is
presented in Algorithm 4.

5.5 Complexity of Joint Task Offloading, Sub-band As-
signment, Power Control, and UAV Deployment Algo-
rithm
Our proposed joint task offloading, sub-band assignment,
power control, and UAV deployment algorithm is sum-
marized in Algorithm 5. The algorithm follows an alter-
nating optimization paradigm that calls for resolving sub-
problems in (32), (33), (46), and (60) repeatedly prior to
convergence. At each iteration, the complexity of the device
task offloading decision is O(JkK). Then, the complexity
of achieving the stable matching in a one-to-one matching
game-based sub-channel assignment algorithm is O(JkB).
The computational complexity of the proposed CCP-based
power control algorithm is O((JkK)3(2JkK)) [41]. The
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TABLE 1: Simulation Parameters.

Parameter Value Parameter Value
B 25 φj 500 ms
g0 -20 dB Pmax

j 23 dBm
σ2 -174 dBm fj 0.01 MHz

κj , κ 1 × 10−10 ω 5 × 102 Hz
ib(f) 0.005 [9] Bk→k′ 1.7 MHz
Pk→k′ 30 dBm gtx

k , g
rx
k′ 41 dB

Lr -23 dB H 300 K
Fmax
k 3.5 MHz Pk→k′ 30 dBm

Bk→k′ 1.7 MHz Bk→s
mm 1.8 MHz

fmm
c 28 GHz Pk→s 30 dBm

complexity of the SCA-based UAV deployment algorithm
in Algorithm 3 is O((K)3.5) [42]. The complexity of the
BSUM-based algorithm to solve the UAV task offloading
decision problem in (60) is O((KS + K2)3.5). Therefore,
at each iteration, the complexity of the proposed joint
task offloading, sub-band assignment, power control, and
UAV deployment algorithm presented in Algorithm 5 is
O(JkK + JkB + (JkK)3(2JkK) + (KS +K2)3.5).

6 SIMULATION RESULTS

6.1 Evaluation Methodology
To evaluate the proposed solution, we consider wireless
devices distributed within an area of 600 m × 600 m. To
provide computing services to the devices, 4 MEC-enabled
UAVs hover at an altitude of 50 m. Additionally, 2 LEO
satellites at an altitude of [780, 800] km are taken into con-
sideration to execute the devices’ tasks that the UAVs cannot
handle; their locations are assumed to be unchanged during
the simulation. The data size of the task, Aj , is selected from
a uniform distribution on [0.1, 0.5] Mbits. Furthermore, the
required CPU cycles to compute a bit of data, αj , is also
selected from a uniform distribution on [10, 50] Cycles. The
rest of the simulation parameters are shown in Table I. We
use Python programming language to conduct simulation,
and all of the proposed algorithms are executed on the PC
with Intel(R) Core(TM) i5-8500 CPU @3.00GHz 3.00 GHz,
32.0 GB RAM, and NVIDIA GeForce GTX 1660 Ti. As a basis
for comparison, we use two baseline schemes proposed in
the recent literature [12] and [13], namely: 1) All local comput-
ing scheme where devices compute their tasks locally, and
2) No UAVs collaboration scheme in which the computation
capacity of the UAV is not sufficient to execute the offloaded
tasks of its associated devices, the UAV directly transferred
its devices’ tasks to LEO satellites using mmWave backhaul
links without checking its neighboring UAVs which have
sufficient computation to execute its computation tasks.
The results shown in this work are the averages of 100
simulations.

6.2 Energy Consumption Analysis
Fig. 2 shows the energy consumption as a function of
the number of devices in the system, obtained using the
proposed algorithm with two state-of-the-art schemes in
the literature. The figure demonstrates that compared to
other schemes, the total energy consumption at UAVs and
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Fig. 2: Energy consumption vs. number of devices for
proposed, local computing only and without UAVs

collaboration.

20 40 60 80
Number of devices (J)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

En
er

gy
 c

on
su

m
pt

io
n 

[k
J]

Optimal
Proposed
FPA
FTO
ATO
RSA
C-UAVs

Fig. 3: Energy consumption as a function of the number of
devices for variants of the proposed scheme.

devices to accomplish the execution of devices’ computation
tasks under our proposed scheme is the lowest in every
network size. The figure also shows that as the network
size increases, the performance gap between the proposed
algorithm and two state-of-the-art schemes widens. As a
result, we conclude that the proposed algorithm is also
appropriate for large-scale networks. Finally, we see how
crucial collaboration among UAVs is to the integrated SAG
networks by analyzing the energy consumption under the
No UAVs collaboration scheme [13], [43] in the figure. In con-
trast to the proposed algorithm, the No UAVs collaboration
scheme results in higher energy consumption since satellites
are farther away from the UAV than its neighboring UAVs,
which results in higher transmission energy (i.e., UAV-to-
satellite transmission energy) than the UAV-to-UAV trans-
mission energy.

In order to evaluate the importance of different decision
variables in minimizing the energy consumption, in what
follows we consider the following variants of the proposed
solution:
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• Centered UAVs (C-UAVs): Each UAV is deployed at
the center of its associated devices, i.e., at the center
of each cluster, which we established via the K-means
algorithm. At the same time, sub-band assignment,
power control, and UAV task offloading problems
are solved via the proposed Algorithm 1, Algorithm
2, and Algorithm 4.

• All tasks offloading (ATO): In this variant, devices
offload all of their computation tasks to their as-
sociated UAVs to perform remote computing. Sub-
band assignment, power control, UAV deployment,
and UAV task offloading problems are solved via
the proposed Algorithm 1, Algorithm 2, Algorithm
3, and Algorithm 4.

• Fixed tasks offloading (FTO): Each device offloads βk
j =

0.5αj to its associated UAV. At the same time, sub-
band assignment, power control, UAV deployment,
and UAV task offloading problems are solved via
the proposed Algorithm 1, Algorithm 2, Algorithm
3, and Algorithm 4.

• Random sub-band assignment (RSA): The available sub-
bands in each UAV are randomly assigned to its asso-
ciated devices, which offload their computation tasks
to the UAV to perform remote computing. Device
task offloading, power control, UAV deployment,
and UAV task offloading problems are solved via
Algorithm 2, Algorithm 3, and Algorithm 4.

• Fixed power Allocation (FPA): Each device uses 50% of
its maximum available power (i.e., P k,b

j = 0.5Pmax
j )

in order to offload its computation task to UAVs
to perform remote computing, while Algorithm 1,
Algorithm 3, and Algorithm 4 are used to solve
device task offloading, UAV deployment, and UAV
task offloading problems.

Furthermore, to evaluate the optimality gap of the pro-
posed algorithm, we compare the performance of the pro-
posed solution with the Optimal scheme, where the sub-
band assignment problem is solved by using the exhaustive
search scheme, which can achieve the optimal solution. In
contrast, the device task offloading, power control, UAV
deployment, and UAV task offloading problems are solved
via Algorithm 2, Algorithm 3, and Algorithm 4.

Fig. 3 shows the energy consumption as a function of the
number of devices in the network. The figure shows that
the energy consumption under the ATO and FTO variants
is significantly higher than under other variants of the pro-
posed scheme. These results show that the most important
optimization variable for minimizing energy consumption
is the amount of data to be offloaded for computation.
Additionally, compared to the C-UAVs and FPA variants,
the energy consumption under the RSA variant is signif-
icantly higher than that of the proposed algorithm. As a
result, we may conclude that compared to the deployment
of UAVs and power control, sub-band assignment (i.e., a)
has a greater impact on energy consumption. In addition,
as the number of devices in the network grows, the perfor-
mance gap between our proposed solution and its variants
which implies that optimization in all variables becomes
increasingly important as the system size increases. Finally,
the figure shows that the energy consumption under the
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Fig. 4: Energy consumption as a function of the number of
UAVs for J = 20, 40, 60 and 80.
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Fig. 5: Energy consumption for J = 60 devices under
different average data sizes.

proposed solution is nearly the same as that of the Optimal
scheme (i.e., the lower optimality gap).

Fig. 4 shows the energy consumption as a function of
the number of UAVs in the network. The figure shows
that when deploying only 2 UAVs in the network, energy
consumption is significantly higher than when there are 4,
6, and 8 UAVs in the network for all device counts, i.e., J =
20, 40, 60, and 80. However, it is interesting that the energy
consumption under 4 UAVs, 6 UAVs, and 8 UAVs is nearly
the same. Therefore, for the considered coverage area and
device counts, deploying 6 UAVs and 8 UAVs will not give
any benefit in terms of energy reduction, but will increase
the hardware cost. In addition, when hovering energy for
UAVs is taken into account, deploying 6 and 8 UAVs will
even result in higher energy consumption than deploying 4
UAVs. Fig. 5 shows the energy consumption as a function of
the average data size of the devices, together with the 95%
confidence intervals. The results show that the energy con-
sumption increases approximately linearly with the average
data size and confirm the importance of optimizing the
fraction of data offloaded and of the sub-band assignment
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Fig. 6: Fraction of tasks offloaded and energy consumption
vs. maximum tolerable delay [ms].
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Fig. 7: Comparison of the achievable data rate of devices.

in minimizing the energy consumption (c.f., FTO, ATO, and
RSA variants vs. proposed). Furthermore, the figure shows
the lower optimality gap, proving the proposed solution’s
efficiency.

6.3 Impact of the Delay constraint
Fig. 6 shows the average fraction of the devices’ tasks that
are offloaded as a function of the maximum allowable delay
of tasks. The figure shows that the fraction of offloaded
data decreases as the tasks’ allowable delay increases. At
the same time, the energy consumption of the devices
increases. These results show that computation offloading
in the considered system is essential for satisfying the tasks’
delay constraints, but it leads to higher energy consumption
than local computing.

6.4 Data Rate Analysis
Fig. 7 shows the achievable data rate of the devices as a
function of the number of devices, when using the proposed
scheme and its variants. The results for the achievable data
rate explain well the difference in terms of energy consump-
tion among the variants of the proposed scheme. The data
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Fig. 8: The average runtime [s] and the average number of
iterations for the convergence of the proposed algorithm.

rate is lowest for the RSA variant, which explains why sub-
band assignment is crucial for low energy consumption.
We can also observe that the effect of not optimizing the
UAVs’ locations is significant, much bigger than that of not
optimizing the transmit power allocation. Finally, the total
data rate attained utilizing our proposed solution is the
highest compared to alternative variants, and the proposed
solution achieves nearly the same total data rate compared
to that of the Optimal scheme. These results explain why
our proposed solution has the lowest energy consumption,
according to (12) as shown in Fig. 3.

6.5 Convergence of Proposed Algorithm

Fig. 8 shows the average runtime, and the average number
of iterations to the convergence of the proposed solution
as a function of the number of devices for K = 4, and 8.
The figure shows that increasing the number of devices in
the network results in the runtime growing considerably.
However, the average number of iterations does not signifi-
cantly increase. Additionally, it is interesting that deploying
4 UAVs requires more runtime and iterations to converge
the proposed solution than deploying 8 UAVs. The reason
is that deploying more UAVs will result in fewer associated
devices at each UAV, which results in less burden to the
UAV for decision making.

7 CONCLUSIONS

In this paper, we considered THz-assisted MEC-enabled
integrated SAG networks to provide computation services
to wireless devices in remote areas. Then, we investigated
the energy minimization problem by optimization tasks
offloading decision, sub-bands assignment, power control,
and UAVs deployment while guaranteeing the maximum
tolerable delay of devices’ computation tasks. Following,
we showed that the formulated problem is a non-convex
problem. Thus, to solve the problem, we decomposed the
problem into four subproblems, namely, device task of-
floading decision problem, sub-band assignment and power
control problem, UAV deployment problem, and UAV task
offloading decision problem, respectively. Then, we solved
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the device task offloading decision problem by using the
convex optimization technique, and a two-sided one-to-
one matching game and CCP approach were deployed to
address the sub-band assignment and power control prob-
lem. Moreover, we proposed SCA and BSUM to solve UAV
deployment and UAV task offloading decision problems. Fi-
nally, we conducted comprehensive simulations to demon-
strate the effectiveness of the proposed algorithm, and it
was found that when compared to benchmark schemes,
our proposed method significantly reduces the energy con-
sumption of the UAVs and devices. An interesting extension
of our model would be to consider the mobility of devices,
UAVs, and satellites over time, which will affect the quality
of the communication links. Assuming time is slotted, one
would have to optimize the offloading decisions, resource
allocation, and power control depending on the achievable
channel gain per time slot. Furthermore, due to the move-
ment of all network entities, which can lead to changes
in signal strength, network topology, and overall network
conditions, one may have to consider re-association between
devices and UAVs, as well as between UAVs and satellites
at each time slot.

REFERENCES

[1] J. Ren, H. Guo, C. Xu, and Y. Zhang, “Serving at the edge: A
scalable IoT architecture based on transparent computing,” IEEE
Network, vol. 31, no. 5, pp. 96–105, Aug. 2017.

[2] J. Liu, Y. Shi, Z. M. Fadlullah, and N. Kato, “Space-air-ground
integrated network: A survey,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 4, pp. 2714–2741, Fourth Quarter 2018.

[3] C.-Q. Dai, J. Luo, S. Fu, J. Wu, and Q. Chen, “Dynamic user asso-
ciation for resilient backhauling in satellite–terrestrial integrated
networks,” IEEE Systems Journal, vol. 14, no. 4, pp. 5025–5036, Dec.
2020.

[4] I. F. Akyildiz, C. Han, Z. Hu, S. Nie, and J. M. Jornet, “Terahertz
band communication: An old problem revisited and research di-
rections for the next decade,” IEEE Transactions on Communications,
vol. 70, no. 6, pp. 4250–4285, May 2022.

[5] C. Chaccour, M. N. Soorki, W. Saad, M. Bennis, P. Popovski, and
M. Debbah, “Seven defining features of terahertz (THz) wireless
systems: A fellowship of communication and sensing,” IEEE
Communications Surveys & Tutorials, vol. 24, no. 2, pp. 967–993,
Secondquarter 2022.

[6] A. Shafie, N. Yang, C. Han, J. M. Jornet, M. Juntti, and T. Kurner,
“Terahertz communications for 6g and beyond wireless networks:
Challenges, key advancements, and opportunities,” IEEE Network,
Sep. 2022.

[7] I. F. Akyildiz, C. Han, and S. Nie, “Combating the distance
problem in the millimeter wave and terahertz frequency bands,”
IEEE Communications Magazine, vol. 56, no. 6, pp. 102–108, Jun.
2018.

[8] Y. Yuan, Y. Zhao, B. Zong, and S. Parolari, “Potential key tech-
nologies for 6g mobile communications,” Science China Information
Sciences, vol. 63, pp. 1–19, May 2020.

[9] L. Xu, M. Chen, M. Chen, Z. Yang, C. Chaccour, W. Saad, and
C. S. Hong, “Joint location, bandwidth and power optimization for
THz-enabled UAV communications,” IEEE Communications Letters,
vol. 25, no. 6, pp. 1984–1988, Jun. 2021.

[10] Y. M. Park, S. S. Hassan, Y. K. Tun, Z. Han, and C. S. Hong,
“Joint resources and phase-shift optimization of MEC-enabled
UAV in IRS-assisted 6G THz networks,” in Proc. IEEE/IFIP Network
Operations and Management Symposium, Budapest, Hungary, Apr.
2022, pp. 1–7.

[11] Y. K. Tun, Y. M. Park, N. H. Tran, W. Saad, S. R. Pandey, and C. S.
Hong, “Energy-efficient resource management in UAV-assisted
mobile edge computing,” IEEE Communications Letters, vol. 25,
no. 1, pp. 249–253, Jan. 2021.

[12] Y. Zhu, W. Bai, M. Sheng, J. Li, D. Zhou, and Z. Han, “Joint UAV
access and GEO satellite backhaul in IoRT networks: Performance
analysis and optimization,” IEEE Internet of Things Journal, vol. 8,
no. 9, pp. 7126–7139, May 2021.

[13] S. Mao, S. He, and J. Wu, “Joint UAV position optimization and
resource scheduling in space-air-ground integrated networks with
mixed cloud-edge computing,” IEEE Systems Journal, vol. 15, no. 3,
pp. 3992–4002, Sep. 2021.

[14] Y. Chen, B. Ai, Y. Niu, H. Zhang, and Z. Han, “Energy-constrained
computation offloading in space-air-ground integrated networks
using distributionally robust optimization,” IEEE Transactions on
Vehicular Technology, vol. 70, no. 11, pp. 12 113–12 125, Nov. 2021.

[15] C. Zhou, W. Wu, H. He, P. Yang, F. Lyu, N. Cheng, and X. Shen,
“Delay-aware IoT task scheduling in space-air-ground integrated
network,” in Proc. IEEE Global Communications Conference (GLOBE-
COM), Waikoloa, HI, USA, Dec. 2019, pp. 1–6.

[16] Y. Shi, J. Zhang, Y. Gao, and Y. Xia, “Inter-server computation
offloading and resource allocation in multi-drone aided space-air-
ground integrated IoT networks,” Journal of Communications and
Networks, vol. 24, no. 3, pp. 324–335, Jun. 2022.

[17] G. Wang, S. Zhou, and Z. Niu, “Radio resource allocation for
bidirectional offloading in space-air-ground integrated vehicular
network,” Journal of Communications and Information Networks,
vol. 4, no. 4, pp. 24–31, Dec. 2019.

[18] S. Yu, X. Gong, Q. Shi, X. Wang, and X. Chen, “Ec-sagins: Edge-
computing-enhanced space–air–ground-integrated networks for
internet of vehicles,” IEEE Internet of Things Journal, vol. 9, no. 8,
pp. 5742–5754, Apr. 2022.

[19] B. Chen, N. Li, Y. Li, X. Tao, and G. Sun, “Energy efficient hy-
brid offloading in space-air-ground integrated networks,” in Proc.
IEEE Wireless Communications and Networking Conference (WCNC),
Austin, TX, USA, Apr. 2022, pp. 1319–1324.

[20] Y. K. Tun, T. N. Dang, K. Kim, M. Alsenwi, W. Saad, and C. S.
Hong, “Collaboration in the sky: A distributed framework for task
offloading and resource allocation in multi-access edge comput-
ing,” IEEE Internet of Things Journal, Jul. 2022.

[21] M. T. Mamaghani and Y. Hong, “Terahertz meets untrusted uav-
relaying: Minimum secrecy energy efficiency maximization via
trajectory and communication co-design,” IEEE Transactions on
Vehicular Technology, vol. 71, no. 5, pp. 4991–5006, Feb. 2022.

[22] J. Du, F. R. Yu, G. Lu, J. Wang, J. Jiang, and X. Chu, “MEC-assisted
immersive VR video streaming over terahertz wireless networks:
A deep reinforcement learning approach,” IEEE Internet of Things
Journal, vol. 7, no. 10, pp. 9517–9529, Oct. 2020.

[23] X. Liu, Y. Deng, C. Han, and M. Di Renzo, “Learning-based pre-
diction, rendering and transmission for interactive virtual reality
in RIS-assisted terahertz networks,” IEEE Journal on Selected Areas
in Communications, vol. 40, no. 2, pp. 710–724, Feb. 2022.

[24] C. Chaccour, M. N. Soorki, W. Saad, M. Bennis, and P. Popovski,
“Can terahertz provide high-rate reliable low latency communica-
tions for wireless VR?” IEEE Internet of Things Journal, Jun. 2022.

[25] C. Chaccour, R. Amer, B. Zhou, and W. Saad, “On the reliability
of wireless virtual reality at terahertz (THz) frequencies,” in Proc.
IFIP International Conference on New Technologies, Mobility and Secu-
rity (NTMS). IEEE, Canary Islands, Spain, Jun. 2019, pp. 1–5.

[26] S. Xie, H. Li, L. Li, Z. Chen, and S. Li, “Reliable and energy-
aware job offloading at terahertz frequencies for mobile edge
computing,” China Communications, vol. 17, no. 12, pp. 17–36, Dec.
2020.

[27] C. Chaccour and W. Saad, “On the ruin of age of information
in augmented reality over wireless terahertz (THz) networks,” in
Proc. IEEE Global Communications Conference, Taipei, Taiwan, Dec.
2020, pp. 1–6.

[28] S. A. Busari, K. M. S. Huq, S. Mumtaz, J. Rodriguez, Y. Fang,
D. C. Sicker, S. Al-Rubaye, and A. Tsourdos, “Generalized hy-
brid beamforming for vehicular connectivity using thz massive
MIMO,” IEEE Transactions on vehicular Technology, vol. 68, no. 9,
pp. 8372–8383, Sep. 2019.

[29] Y. Pan, K. Wang, C. Pan, H. Zhu, and J. Wang, “Self-sustainable
reconfigurable intelligent surface aided simultaneous terahertz
information and power transfer (STIPT),” IEEE Transactions on
Wireless Communications, Jul. 2022.

[30] X. Liu, H. Zhang, K. Long, M. Zhou, Y. Li, and H. V. Poor,
“Proximal policy optimization-based transmit beamforming and
phase-shift design in an IRS-aided isac system for the THz band,”
IEEE Journal on Selected Areas in Communications, vol. 40, no. 7, pp.
2056–2069, Jul. 2022.

[31] C. Huang, Z. Yang, G. C. Alexandropoulos, K. Xiong, L. Wei,
C. Yuen, Z. Zhang, and M. Debbah, “Multi-hop RIS-empowered
terahertz communications: A DRL-based hybrid beamforming

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3516655

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

design,” IEEE Journal on Selected Areas in Communications, vol. 39,
no. 6, pp. 1663–1677, Jun. 2021.

[32] D. Fan, F. Gao, B. Ai, G. Wang, Z. Zhong, Y. Deng, and
A. Nallanathan, “Channel estimation and self-positioning for UAV
swarm,” IEEE Transactions on Communications, vol. 67, no. 11, pp.
7994–8007, Nov. 2019.

[33] R. Guo, K. Wang, Z. Deng, W. Lin, and R. Song, “A prediction
model for channel state information in satellite communication
system,” in In Proc. IEEE 31st Annual International Symposium on
Personal, Indoor and Mobile Radio Communications, London, UK,
2020, pp. 1–6.

[34] G.-Y. Chang, C.-K. Hung, and C.-H. Chen, “A csi prediction
scheme for satellite-terrestrial networks,” IEEE Internet of Things
Journal, May 2023.

[35] J. M. Jornet and I. F. Akyildiz, “Channel modeling and capacity
analysis for electromagnetic wireless nanonetworks in the tera-
hertz band,” IEEE Transactions on Wireless Communications, vol. 10,
no. 10, pp. 3211–3221, Oct. 2011.

[36] Y. K. Tun, K. T. Kim, L. Zou, Z. Han, G. Dán, and C. S. Hong,
“Collaborative computing services at ground, air, and space: An
optimization approach,” IEEE Transactions on Vehicular Technology,
Aug. 2023.

[37] Y. K. Tun, N. H. Tran, D. T. Ngo, S. R. Pandey, Z. Han, and C. S.
Hong, “Wireless network slicing: Generalized kelly mechanism-
based resource allocation,” IEEE Journal on Selected Areas in Com-
munications, vol. 37, no. 8, pp. 1794–1807, Aug. 2019.

[38] Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han, “Matching
theory for future wireless networks: Fundamentals and applica-
tions,” IEEE Communications Magazine, vol. 53, no. 5, pp. 52–59,
2015.

[39] A. E. Roth, “Deferred acceptance algorithms: History, theory,
practice, and open questions,” international Journal of game Theory,
vol. 36, no. 3, pp. 537–569, 2008.

[40] M. Hong, M. Razaviyayn, Z.-Q. Luo, and J.-S. Pang, “A unified
algorithmic framework for block-structured optimization involv-
ing big data: With applications in machine learning and signal
processing,” IEEE Signal Processing Magazine, vol. 33, no. 1, pp.
57–77, Jan. 2016.

[41] A. Bandi, S. Chatzinotas, B. Ottersten et al., “A joint solution for
scheduling and precoding in multiuser miso downlink channels,”
IEEE Transactions on Wireless Communications, vol. 19, no. 1, pp.
475–490, Jan. 2020.

[42] Z. Li, Y. Wang, M. Liu, R. Sun, Y. Chen, J. Yuan, and J. Li,
“Energy efficient resource allocation for UAV-assisted space-air-
ground internet of remote things networks,” IEEE Access, vol. 7,
pp. 145 348–145 362, Oct. 2019.

[43] Z. Hu, F. Zeng, Z. Xiao, B. Fu, H. Jiang, H. Xiong, Y. Zhu, and
M. Alazab, “Joint resources allocation and 3d trajectory optimiza-
tion for uav-enabled space-air-ground integrated networks,” IEEE
Transactions on Vehicular Technology, Nov. 2023.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3516655

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


