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Abstract: In this paper we analyze the cyber security of state estimators in supervisory control
and data acquisition (SCADA) systems for energy management systems (EMS) operating the
power network. Current EMS state estimation algorithms have bad data detection (BDD)
schemes to detect outliers in the measurement data, based on high measurement redundancy.
Although these methods can detect a set of basic cyber attacks, they may fail in the presence of
an intelligent attacker. We explore the latter by considering scenarios where stealthy deception
attacks are performed by sending false information to the control center. We begin by presenting
a recent framework that characterizes the attack as an optimization problem with the objective
specified through a security metric and constraints corresponding to the attack cost. The
framework is used to conduct realistic experiments on a state-of-the-art SCADA EMS software
for a power network example with 14 substations, 27 buses, and 40 branches. To the authors best
knowledge, this is the first such experimental study. The results indicate how state estimators
for power networks can be made more resilient to cyber security attacks.
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1. INTRODUCTION

Examples of critical infrastructures in our society are the
power, the gas and the water supply networks. These
infrastructures are operated by means of complex super-
visory control and data acquisition (SCADA) systems,
which collect measurement data from remote terminal
units (RTUs) installed in the substations, and deliver the
measurement data to the central master station located
at the control center. The measurement data is usually
transmitted through unencrypted communication chan-
nels, making these critical infrastructures vulnerable to cy-
ber attacks, see Giani et al. [2009], Cárdenas et al. [2008].
For a more recent example that also received considerable
media attention, see Symantech [2010].

SCADA systems for power networks are complemented
by a set of application specific software, usually called
energy management systems (EMS). Modern EMS provide
information support for a variety of applications related to
power network monitoring and control. The power network
state estimator (SE) is an online application that uses
redundant measurements and a network model to provide
the EMS with an accurate state estimate at all times.
The SE has become an integral tool for EMS, for instance
for contingency analysis (CA) which, based on the state
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estimate, identifies the most severe consequences in case
of hypothetical equipment outages. A simple schematic
picture of the SCADA system and EMS is shown in Fig. 1,
with measurements denoted by z. Several cyber attacks
on SCADA systems operating power networks have been
reported, see The Wall Street Journal [2009] and CBSNews
[2009], and major blackouts, such as the August 2003
Northeast U.S. blackout, are due to the misuse of the
SCADA systems, see U.S.-Canada Power System Outage
Task Force [2004]. As discussed in Giani et al. [2009],
there are also several vulnerabilities in the SCADA system
architecture, including the direct tampering of RTUs,
communication links from RTUs to the control center, and
the IT software and databases in the control center.

Our work analyzes the cyber security of the SE in the
SCADA system of a power network. In current implemen-
tations of SE algorithms, there are bad data detection
(BDD) schemes designed to detect random outliers in
the measurement data based on high measurement redun-
dancy. However, these methods may fail in the presence of
an intelligent attacker. For instance, it is well known that
for so-called multiple interacting bad data, the BDD system
can fail to detect and locate the faulty measurements,
see Monticelli [1999], Abur and Exposito [2004]. That an
attacker can exploit this fact has been pointed out in
several recent papers, see Liu et al. [2009], Sandberg et al.
[2010], Bobba et al. [2010]. In these papers, it is assumed
that the attacker has an accurate linear model of the power
grid, and the undetectability of certain corruptions a, see
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Fig. 1. The state estimator under a cyber attack

Fig. 1, is proven under this assumption. The real power
network is nonlinear, however, and a nonlinear model is
also typically implemented in the SE. Therefore, it is not
clear how a real SE will react to these stealthy deception
attacks. For example, how large can a be before the SE
does no longer converge? In Teixeira et al. [2010], we have
quantified how the SE residual can be bounded based on
the model errors, but no tests on an actual system were
performed there.

The main practical contribution of this paper is to test
how sensitive a state-of-the-art SCADA system SE is to
stealthy deception attacks. To the best of our knowledge,
this is the first such experimental study on real software.
Maybe somewhat surprisingly, for the cases we have stud-
ied, the attacks indeed pass undetected for very large
corruptions a. This study is important because it shows the
simplifying assumptions used in the previously mentioned
studies indeed are valid. However, our analysis also shows
that it is possible to make these attacks much more difficult
to perform by allocating new sensors, or by securing some
of them. Secure sensor allocation has also been discussed
in Bobba et al. [2010] and Dán and Sandberg [2010].
The main theoretical contribution of this paper are the
characterization of operating condition changes for which
stealthy attacks remain valid and the extension of the
attacker model to include constraints regarding pseudo-
measurements and saturation limits.

The outline of the paper is as follows. In Section 2 we
present the theoretical concepts behind state estimation
in power networks. Results from previous work are used
in Section 3 to develop the analysis framework and some
novel considerations regarding limitations of linear at-
tack policies are also given. Section 4 contains the main
contribution of this paper, the description and results
of practical experiments conducted in a state-of-the-art
SCADA/EMS software using the previously mentioned
framework. The conclusions are presented in Section 5.

2. PRELIMINARIES

In this section we introduce the power network models and
the theory behind the SE and BDD algorithms.

2.1 Measurement model

For an N−bus electric power network, the n = 2N −
1 dimensional state vector x is (θ>, V >)>, where V =
(V1, . . . , VN ) is the vector of bus voltage magnitudes and
θ = (θ2, . . . , θN ) vector of phase angles. This state vector
is the minimal information needed to characterize the
operating point of the power network. Without loss of
generality, we have considered bus 1 to be the reference

bus, hence all phase-angles are taken relatively to this bus
and θ1 = 0. The m−dimensional measurement vector z
can be grouped into two categories: (1) zP , the active
power flow measurements Pij from bus i to j and active
power injection measurement Pi at bus i, and (2) zQ, the
reactive power flow measurements Qij from bus i to j,
reactive power injection measurement Qi and Vi voltage
magnitude measurement at bus i. The neighborhood set
of bus i, which consists of all buses directly connected to
this bus, is denoted by Ni. The power injections at bus i
are described by

Pi = Vi
∑
j∈Ni

Vj (Gij cos(θij) +Bij sin(θij))
Qi = Vi

∑
j∈Ni

Vj (Gij sin(θij)−Bij cos(θij))
,

and the power flows from bus i to bus j are described by

Pij = V 2
i (gsi + gij)− ViVj (gij cos(θij) + bij sin(θij))

Qij = −V 2
i (bsi + bij)− ViVj (gij sin(θij)− bij cos(θij))

,

where θij = θi − θj is the phase angle difference between
bus i and j, gsi and bsi are the shunt conductance and
susceptance of bus i, gij and bij are the conductance
and susceptance of the branch from bus i to j, and
Yij = Gij + jBij is the ijth entry of the nodal admittance
matrix. More detailed formulas relating measurements z
and state x may be found in Abur and Exposito [2004].

Assuming that the model parameters and the network
topology are exact, the nonlinear measurement model for
state estimation is defined by

z = h(x) + ε, (1)

where h(·) is the m−dimensional nonlinear measure-
ment function that relates measurements to states and
is assumed to be twice continuously differentiable, ε =
(ε1, . . . , εm)> the zero mean measurement error vector,
and usually m � n meaning that there is high measure-
ment redundancy. Here εi are independent Gaussian vari-
ables with respective variances σ2

i indicating the relative
uncertainty about the i−th measurement and thus we have
ε ∼ N (0, R) where R = diag(σ2

1 , . . . , σ
2
m) is the covariance

matrix.

2.2 State Estimator

The basic SE problem is to find the best n-dimensional
state x for the measurement model (1) in a weighted
least square (WLS) sense. Defining the residual vector
r(x) = z − h(x), we can write the WLS problem as

min
x∈Rn

J(x) =
1

2
r(x)>R−1r(x)

such that g(x) = 0

s(x) ≤ 0,

(2)

where the inequality constraints generally model satu-
ration limits, while the equality constraints are used to
include target setpoints and to ensure physical laws such
as zero power injection transition buses, e.g., transformers,
and zero power flow in disconnected branches. Such data
used in the equality constraints is often seen as pseudo-
measurements. For sake of simplicity, we will present the
solution to the unconstrained optimization problem.

The unconstrained WLS problem is posed as

min
x∈Rn

J(x) =
1

2
r(x)>R−1r(x).



The SE yields a state estimate x̂ as a minimizer to
this problem. The solution x̂ can be found using the
Gauss-Newton method which solves the so called normal
equations:(

H>(xk)R−1H(xk)
)

(∆xk) = H>(xk)R−1r(xk), (3)

for k = 0, 1, . . ., where

H(xk) :=
dh(x)

dx

∣∣∣∣
x=xk

is called the Jacobian matrix of the measurement model
h(x). For an observable power network, the measurement
Jacobian matrix H(xk) is full column rank. Consequently,
the matrix

(
H>(xk)R−1H(xk)

)
in (3) is positive definite

and the Gauss-Newton step generates a descent direction,
i.e., for the direction ∆xk = xk+1 − xk the condition
∇J(xk)>∆xk < 0 is satisfied.

Remark 1. Henceforth we consider the covariance matrix
R to be the identity matrix, for simplicity, i.e., all mea-
surements have unitary weights.

For notational convenience, throughout the next sections
we will use H(xk) as H, ∆xk as ∆x, and r(xk) = z−h(xk)
as r.

2.3 Decoupled State Estimation

A useful observation in electric power networks is that of
active-reactive decoupling, i.e., the active measurements
zP (resp. reactive measurement zQ) predominantly affect
the phase angles θ (resp. the voltage magnitudes V ). In
the decoupled state estimation, the approximate values
of the corrections ∆θ and ∆V are then not computed
simultaneously, but independently Wu [1990].

Following (3), the correction to state estimate ∆x =
(∆θ>,∆V >)> at each iteration can be obtained from
the weighted measurement residual r = (r>P , r

>
Q)> as the

solution to the overdetermined system(
HPθ HPV

HQθ HQV

)(
∆θ
∆V

)
=

(
rP
rQ

)
, (4)

where the submatrices HPθ and HPV correspond to active
measurements and HQθ and HQV correspond to reactive
measurements. The traditional version of fast decoupled
state estimation is based on the following decoupled nor-
mal equations, where the coupling submatrices HPV and
HQθ have been set to zero:

∆θk = H†PθrP (θk, V k),

∆V k = H†QV rQ(θk, V k).
(5)

Equations (5) are alternately solved for ∆θk and ∆V k,
where the mismatches rP and rQ are evaluated at the
latest estimates. The submatrices HPθ and HQV are
evaluated at flat start and branch series resistances are
ignored in forming HPθ. By flat start we mean the power
network’s state in which all voltage magnitudes are 1 pu
and all phase angles are 0.

2.4 Bad Data Detection

The measurement residual when random bad data is
present is characterized as follows. Assume there are no
measurement errors, i.e. z = h(x), and that the SE has

converged through the Gauss-Newton method. Recalling
that r(x̂) = z − h(x̂), from (3) we see that the estimate
sensitivity matrix is given by ∂x̂

∂z = (H>H)−1H>. Further-
more, we conclude that the weighted residual sensitivity

matrix is ∂r
∂z = I − ∂h(x̂)

∂x̂
∂x̂
∂z = I − H(H>H)−1H>. Thus

for small measurement errors ε ∼ N (0, I) we have the
following weighted measurement residual

r = Sε, (6)

where S = I −H(H>H)−1H>.

Through BDD the SE detects measurements corrupted by
errors whose statistical properties exceed the presumed
standard deviation or mean. This is achieved by hypoth-
esis tests using the statistical properties of the weighted
measurement residual (6). We now introduce one of the
BDD hypothesis tests widely used in practice, the largest
normalized residual test.

Largest normalized residual test From (6), we note that
r ∼ N (0,Ω) with Ω = S. Now consider the normalized
residual vector

rN = D−1/2r, (7)

with D ∈ Rm×m being a diagonal matrix defined as
D = diag(Ω). In the absence of bad data each element
rNi , i = 1, . . . ,m of the normalized residual vector then
follows a normal distribution with zero mean and unit
variance, rNi ∼ N (0, 1), ∀i = 1, . . . ,m. Thus, bad data
could be detected by checking if rNi follows N (0, 1). This
can be posed as a hypothesis test for each element rNi

H0 : E
{
rNi
}

= 0, H1 : E
{
|rNi |)

}
> 0.

For this particular case, as shown in Monticelli [1999], the
largest normalized residual (LNR) test corresponds to a
threshold test where the threshold τ is computed for a
given false alarm rate and H0 is accepted if

‖D−1/2r‖∞ ≤ τ, (8)

and rejected otherwise.

3. STEALTHY DECEPTION ATTACKS

Using the theory and models described in the previous
section, we present the framework used throughout the
next sections to study the cyber security of SCADA EMS
software and algorithms.

3.1 Attacker Model

The goal of a stealthy deception attacker is to compro-
mise the telemetered measurements available to the SE
such that: 1) The SE algorithm converges; 2) The attack
remains undetected by the BDD scheme; and 3) For the
targeted set of measurements, the estimated values at
convergence are close to the compromised ones introduced
by the attacker.

Let the corrupted measurement be denoted za. We assume
the following additive attack model

za = z + a, (9)

where a ∈ Rm is the attack vector introduced by the
attacker, see also Fig. 1. The vector a has zero entries
for uncompromised measurements.



The BDD scheme for SE is based on a threshold test.
Thus the attacker’s action will be undetected by the BDD
scheme provided that the following condition holds:

2) The measurement residual under attack ra :=
r(x̂a) = za − h(x̂a), satisfies the condition (8).

We will occasionally use the notation x̂a(za) to emphasize
the dependence on za.

Finally, consider that the attacker aims at corrupting
measurement i. This means the attacker would like the
estimated measurement ẑai := hi(x̂

a(za)) to be equal to
the actual corrupted measurement zai . Therefore, we arrive
at the following condition which will additionally govern
the synthesis of attack vector a:

3) The attack vector a is chosen such that |zai − ẑai | = 0.

The aim of a stealthy deception attacker is then to find
and apply an attack a that satisfies conditions 1), 2), and
3). This problem can be posed as

find a

s.t. a ∈ G ∩ C ∩ U , (10)

where G is the set of goals in condition 3), C the set
of constraints ensuring condition 1) is met and that no
protected or pseudo-measurements are corrupted, and U
the set of stealthy attacks satisfying condition 2).

3.2 Security Metric

In general a stealthy attack requires the corruption of more
measurements than the targeted one, see Liu et al. [2009]
and Sandberg et al. [2010]. Such requirement relates to the
fact that a stealthy attack must have the attack vector a
fitting the measurement model.

Considering that the system’s state is x∗ and the attacks
are sufficiently small, the measurement model can be
linearized around x∗, obtaining

z =
dh(x)

dx

∣∣∣∣
x=x∗

(x∗ + c) = H(x∗ + c), (11)

where c is the perturbation added to x∗. Previous results
show that the class of stealthy attacks for this linear model
is characterized by a ∈ Im(H), which is equivalent to have
a = Hc, for some c 6= 0. Based on this linear model, we
present a security metric αk for each measurement k. This
metric corresponds to the minimum cost of a valid attack
satisfying (10) and targeting to corrupt measurement k by
adding it one unit, i.e., ak = 1. It is computed by solving
the problem

αk = min
a
‖a‖0

s.t. a ∈ G ∩ C ∩ U ,
(12)

where here a ∈ G corresponds to having ak = 1, a ∈ C to
ai = 0 ,∀i if measurement i is a pseudo-measurement, and
a ∈ U to a ∈ Im(H). Note that ‖ · ‖0 is a pseudo-norm
corresponding to the cardinality, i.e., number of non-zero
entries, of the argument. Hence the cost αk corresponds to
the minimum number of sensors that need to be corrupted
for a valid attack.

3.3 Limitations of Linear Policies

In this section we comment on the limitations of the linear
attack policies described in Section 3.2. Recall that the

core of the linear policies is to have a ∈ Im(H). Two main
limitations arise from this policy, which are now discussed.

Varying operating conditions. The power network is a
dynamical system and its state is frequently changing.
Thus it might be the case that the attacker has previously
obtained a linear model H̃ for a state x̃ and the attack
is performed only when the system is in a different state
x∗ where the linear approximation is H. Hence for small
attack vectors or for cases where x∗ ≈ x̃, the residual will
be small and the attack may pass undetected. For larger
attacks, however, this might not hold. These scenarios can
be analyzed using the framework presented in Teixeira
et al. [2010]

One interesting fact to observe is that, under certain
assumptions, the attack vector a and the security metric α
will be the same, independently of the system’s state. We
now present a useful lemma and the required assumptions
to formulate this result.

Lemma 1. Consider an optimal attack a∗ that is unde-
tectable with respect to H, i.e., a∗ ∈ Im(H) and has
minimum cardinality. Denote by U the set of measure-
ments not affected by a∗, i.e., a∗i = 0 ∀i ∈ U and
a∗i 6= 0 ∀i 6∈ U . Let the Jacobian matrix be partitioned
as H = [H>U H>

Ū
]>. Recalling that n is the number of

states and that rank(H) = n, then rank(HU ) = n−1, and
for every i 6∈ U we have rank(HU∪{i}) = n.

Proof. See Dán and Sandberg [2010].

Assumption 1. For any measurement element zi we have
∂hi(x)
∂xj

∣∣∣
x=x∗

= 0 if and only if ∂hi(x̃)
∂xj

∣∣∣
x=x̃

= 0, for all

j = 1, . . . , n.

Proposition 2. Denote F as the set of power flow measure-
ments. Consider H = HPθ(θ)|θ=θ∗ , H̃ = HPθ(θ)|θ=θ̃, and
let a be a stealthy deception attack vector with respect to
H. Denote the set of measurements not corrupted by a as
U . Then for all the line parameter perturbations and state
changes from θ∗ to θ̃ that satisfy Assumption 1 and do not
affect measurements j ∈ F \ U , we have that a is also a

stealthy attack with respect to H̃.

Proof. In the following we consider the matrix HPΘ and
use H instead to simplify the notation. We consider a
perturbation in the linear model, e.g., due to varying
operating conditions, such that for a measurement k ∈ F
corresponding to a transmission line we have H̃k = bHk.
Let us denote the buses at the two ends of the transmission
line by k1 and k2. For the power injection at bus k1 (closest

to measurement k) we have H̃k1 = Hk1 + (b − 1)Hk, for

bus k2 we have H̃k2 = Hk2 − (b − 1)Hk. In the following
we show that if k ∈ F ∩ U , then for every a ∈ Im(H)

there is ã ∈ Im(H̃) such that a = ã. Since this also holds
for minimum cardinality attack vectors, we have that the
security metric α is the same for both linearized models.

For the case when k ∈ U we can prove the proposition by
performing elementary row operations on H̃U . If k1 ∈ U we
subtract (b−1)/bH̃k from H̃k1 . We proceed similarly for k2.

Finally, we divide H̃k by b. Clearly, after these operations
we obtained HU , which, following Lemma 1, proves that
rank(H̃U ) = n− 1. Observe that since we used elementary
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Fig. 2. Power network considered in the experiment.

row operations, the kernel of H̃U is the same as that of HU .
Consequently, the same attack vectors can be used despite
the perturbation of the model, i.e., a ∈ Im(H)∩ Im(H̃).

Hence we conclude that if the state or parameter perturba-
tions do not affect power flow measurements compromised
by the attack before the change, then the same attack
vector is still valid after the parameter or state change.
Note that this is ensured if the measurements affected
by the parameter change are far from the region of the
network where the attack is performed, indicating that
attacks can be performed locally in the power network.

Saturation limits. The linear measurement model (11)
is obtained by linearizing the nonlinear model (1) at a
given state x∗ and so the linear model only approximates
the nonlinear one well in a region close to x∗. This fact is
particularly important when the saturation occurs. From
considering (11) alone we do not have any limits on the
size of a = Hc. However, the nonlinear model clearly
shows that the measurements have saturation limits. For
instance, disregarding the line and shunt conductances gij
and gsi we have Pij = −ViVjbij sin(θij), where we see
that the theoretical maximum for this power flow is given
by Pij = −ViVjbij . Hence for a stealthy attack it is not
enough to require that a ∈ Im(H) but it is also essential
to impose saturation limits on the attacked measurements,
included in the set of constraints C, in general reducing the
set of valid attacks.

4. EXPERIMENTS ON THE SCADA EMS SYSTEM

During the previous sections we referred to recent work
where the authors analyzed stealthy deception attacks
on SE based on linearized models and derived a new
result characterizing operating condition changes for which
stealthy attacks remain valid. However, the results ob-
tained so far do not clarify how sensitive the real SCADA
EMS software is to these attacks or if a system operator
should even care about these scenarios. In this section we
present the results obtained by carrying out a stealthy
deception attack on a real SCADA EMS software. By
analyzing these results, we hope to answer the previous

open questions and also to provide recommendations to
increase the security of SCADA EMS software against
deception attacks. Before analyzing the results, we briefly
describe the experimental setup.

4.1 Experimental Setup

The software was supplied with the test network presented
in Fig. 2, similar to the IEEE 39 bus network. This net-
work consists of 14 substations and the bus-branch model
has 27 buses and 40 branches. Several measurements are
available at each substation, which are kept in the software
database. We have used a static network simulator to carry
out the data corruption by directly changing the mea-
surement data in the database. The presented results thus
relate to data corruption attacks and the consequences of
such attacks on the EMS software components.

Specific EMS components, such as SE and BDD, are con-
figured with unitary weights for all the measurements. The
SE solves the nonlinear weighted least-squares problem us-
ing the fast-decoupled algorithm with equality constraints,
while the BDD algorithm uses the LNR test. Both ap-
proaches correspond to standard algorithms presented in
Section 2.

As described in previous sections, some information about
the power network is needed to compute stealthy deception
attacks. Here we consider a particular class of such infor-
mation, namely the bus-branch model of the network. In
this experiment, we exported this information to MAT-
LAB using the MATPOWER toolbox, Zimmerman et al.
[2009]. A simplified attack was considered in which only
the DC model of the network was used. This corresponds
to including only active power measurements in the set
of corrupted measurement data, disregarding the reactive
measurements, the current operating state, the coupling
between the active and reactive power, the line conduc-
tances, and the shunt admittances. Hence all voltage mag-
nitudes were assumed to be 1 pu and the phase-angles 0.
Only a simplified version of the HPθ submatrix in (4) was
used, hereby denoted HDC .

The algorithm in Dán and Sandberg [2010] was used
to compute the security metrics for each measurement.



Table 1. Example: adding 100MW to target
measurement 33

Measurement Normalized Correct value False value
index, k attack, āk (MW), z∗k (MW), zak

4 -1 1005.7041 905.7042
21 -0.7774 157.8541 80.1103
24 0.9665 507.7171 604.3638
27 2.7439 40.0006 314.3911
33 1 -14.7971 85.2029
62 0.7774 -123.3764 -45.6327
104 -0.9665 -334.8826 -431.5293

Information regarding which measurements were assumed
to be tamper-proof, i.e. pseudo-measurements, was taken
in account.

The result is presented in Fig. 3. Given the current con-
figuration of the SCADA EMS, specifically which mea-
surements are available, we computed the security metric
αk (the red full circles) as defined in Section 3.2. We see
that the result is very heterogeneous. Recalling that αk is
the minimum number of measurements needed to perform
a stealthy attack on measurement k, we conclude that
measurements with low αk are relatively easily attacked
while the ones with αk =∞ are fully protected.

Increasing the redundancy of the system by adding more
measurements to the SCADA system increases the security
level, as we see by looking at how ᾱk is larger than
αk, since ᾱk is the security metric computed assuming
that all possible measurements are being taken. However,
note that this does not guarantee full protection, as all
measurements with finite αk still have finite ᾱk.

0 10 20 30 40 50 60
0

5

10

15

20

Target measurement index

Security metric

Fig. 3. Security metrics for each measurement k: αk (red
full circles) was computed taking into account which
measurements are available in the SCADA EMS,
while ᾱk (blue rings) was computed assuming that
all possible measurements are taken. Both represent
the minimum number of measurements needed to
stealthily attack the target measurement k.

4.2 Attack Scenario

To conduct our experiment we considered measurement
number 33, corresponding to the active power flow on the
tie-line between TROY and BLOO substations, to be the
target measurement that the attacker desires to corrupt. In
order to do so without being detected, the attacker needs
to perform a coordinated attack by corrupting the value
of other power measurements. Following the framework
presented in Section 3, the set of such malicious changes
is encoded in the attack vector a, and za follows from (9).

Using HDC , we computed the additive normalized attack
vector required to stealthily change the target measure-
ment by 1 MW, presented in Table 1. As seen in Fig. 3,
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Fig. 4. Stealthy deception attack

such attack only corrupts 7 measurements in total, which
are taken from 5 substations, namely TROY, BLOO,
JUNE, MONR, and CROS, all situated in the right side
of Fig. 2. Hence we see that to stealthily attack a single
measurement, a local coordinated attack suffices, even for
such a large system. Additionally, as discussed in Dán
and Sandberg [2010], note that usually all measurements
within a given substation are gathered at a single RTU.
This means that by breaking into the substation’s RTU
the attacker gains access to all those measurements, so
we can argue that although 7 measurements need to be
corrupted, only 5 RTUs need to be compromised.

4.3 Experimental Results

The normalized attack vector ā, whose non-zero entries are
shown in Table 1, was used to corrupt the measurement
data according to the attacker’s objective. For instance, in
Table 1 we can see the correct value of the compromised
measurements, denoted by z∗, and the false values sent to
the control center, za, when the objective was to induce a
bias of 100MW in the target measurement, having za =
z∗ + 100ā.

In Fig. 4 we show the results obtained by performing
stealthy deception attacks as described before and naive
deception attacks where only the target measurement is
compromised. In both cases, the bias in the target mea-
surement was sequentially increased by 10MW at each
step. From these results we see that the naive attack was
undetected up to a bias of 20MW, while for bias above
30MW this attack was detected and the compromised mea-
surement removed. The coordinated stealthy attack, how-
ever, remained undetected for all the bias values showed
in the figure. Furthermore we see that the naive attack did
not influence the estimate as much as the stealthy one. For
the stealthy attacks relationship between the false and the
estimated values is an almost unitary slope.

Table 2 shows the results obtained for large bias, where the
attacks were performed sequentially with steps of 50MW.
We observe that the stealthy attacks were successful with
no BDD alarm triggered up to a bias of 150MW, beyond
which the SE no longer converged.

Although the SE did not converge for attacks above
200MW, it is still surprising to see that attacks based on



Table 2. Results from the stealthy attack for
large bias

Target bias, False value Estimate #BDD #CA
a33 (MW), za33 (MW), ẑa33 Alarms Alarms

0 -14.8 -14.8 0 2
50 35.2 36.2 0 2
100 85.2 86.7 0 10
150 135.2 137.5 0 27
200 185.2 - - -

the linearized model as large as 150MW are successful. To
better understand what such quantity indicates, note that
the nominal value of the targeted tie-line is 260MW. Thus
the attack was able to induce a bias of more than 50% of
the nominal value, which reveals that the SCADA EMS
software is indeed sensitive to stealthy deception attacks.
Furthermore, notice that the number of warnings given by
the CA component increase with the size of the attack. The
increased number of CA warnings could lead the operator
to take corrective actions. Therefore, we conclude that
operators and utilities should care about these scenarios.

We also want to highlight that these results were achieved
with a simplified linear model where several parame-
ters, including the correct operating conditions and cross-
coupling effects between active and reactive measure-
ments, were disregarded. However in these scenarios we
assumed the attacker had a large amount of resources
such as a rather detailed knowledge regarding the net-
work model, the available measurements, and the pseudo-
measurements, and access to several RTUs. Most likely, an
attacker with such resources could find easier alternative
attacks on the power network than the one considered in
this paper.

5. CONCLUSIONS

In this paper we presented a comprehensive framework
to analyze and study a class of stealthy deception at-
tacks specifically targeting the SE component of SCADA
EMS software through measurement data corruption. This
framework provides attacker and attack cost models, pos-
sible attack synthesis policies, and system security metrics.
Results obtained using this framework indicate that local
attacks are possible. The system security metric can be
used by the utility to strengthen the security of the sys-
tem by allocation of new sensors. Some limitations of the
linear attack policies were briefly discussed. To validate
this framework, we took a novel approach and conducted
a set of deception attacks to a state-of-the-art SCADA
EMS software. The results obtained by this experiment
show that computations based on linear models of the
system provide valid attacks that successfully corrupt the
target measurements without triggering any BDD alarms.
The results also indicate that linear models can be used
for large attacks as well, although otherwise expected.
Additionally, we showed that besides the measurement
model, information concerning pseudo-measurements and
saturation limits is needed for a successful stealthy attack.
This fact can be used by the utility to protect the system.
This study also shows that improved BDD schemes and
methods to ensure measurement and data protection are
desirable.

ACKNOWLEDGEMENTS

The authors would like to thank Mr. Moustafa Chenine
and Mr. Nicholas Honeth for their helpful technical sup-
port.

REFERENCES

A. Abur and A.G. Exposito. Power System State Estima-
tion: Theory and Implementation. Marcel-Dekker, 2004.

R. Bobba, K. M. Rogers, Q. Wang, H. Khurana, K. Nahrst-
edt, and T. Overbye. Detecting false data injection
attacks on DC state estimation. In Preprints of the
First Workshop on Secure Control Systems, CPSWEEK
2010, Stockholm, Sweden, April 2010.

A.A. Cárdenas, S. Amin, and S.S. Sastry. Research
challenges for the security of control systems. In Proc.
3rd USENIX Workshop on Hot topics in security, July
2008.

CBSNews. Cyber war: Sabotaging the system. CBSNews,
November 8th 2009. URL http://www.cbsnews.
com/stories/2009/11/06/60minutes/main5555565.
shtml.

G. Dán and H. Sandberg. Stealth attacks and protection
schemes for state estimators in power systems. In Proc.
of IEEE SmartGridComm, October 2010.

A. Giani, S. Sastry, K. H. Johansson, and H. Sandberg.
The VIKING project: an initiative on resilient control
of power networks. In Proc. 2nd Int. Symp. on Resilient
Control Systems, Idaho Falls, ID, USA, August 2009.

Y. Liu, M. K. Reiter, and P. Ning. False data injection
attacks against state estimation in electric power grids.
In Proc. 16th ACM Conf. on Computer and Communi-
cations Security, New York, NY, USA, 2009.

A. Monticelli. State Estimation in Electric Power Systems:
A Generalized Approach. Kluwer Academic Publishers,
1999.

H. Sandberg, A. Teixeira, and K. H. Johansson. On
security indices for state estimators in power networks.
In Preprints of the First Workshop on Secure Control
Systems, CPSWEEK 2010, Stockholm, Sweden, April
2010.

Symantech. Stuxnet introduces the first known rootkit
for industrial control systems. August 6th 2010.
URL http://www.symantec.com/connect/blogs/
stuxnet-introduces-first-known-rootkit-scada-
devices.

A. Teixeira, S. Amin, H. Sandberg, K. H. Johansson, and
S. S. Sastry. Cyber security analysis of state estimators
in electric power systems. In Proc. of 49th IEEE Conf.
on Decision and Control, December 2010. To appear.

The Wall Street Journal. Electricity grid in U.S. pen-
etrated by spies. The Wall Street Journal, April 8th
2009.

U.S.-Canada Power System Outage Task Force. Final
report on the August 14th blackout in the United States
and Canada. Technical report, April 2004.

F. F. Wu. Power system state estimation: a survey. Int.
J. Elec. Power and Energy Systems, April 1990.

R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J.
Thomas. MATPOWER’s extensible optimal power flow
architecture. In Power and Energy Society General
Meeting. IEEE, July 2009.


