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Abstract—Vehicular Edge Computing (VEC) systems exploit
resources on both vehicles and Roadside Units (RSUs) to provide
services for real-time vehicular applications that cannot be
completed in the vehicles alone. Two types of decisions are
critical for VEC: one is for task offloading to migrate vehicular
tasks to suitable RSUs, and the other is for resource allocation
at the RSUs to provide the optimal amount of computational
resource to the migrated tasks under constraints on response time
and energy consumption. Most of the published optimization-
based methods determine the optimal solutions of the two
types of decisions jointly within one optimization problem at
RSUs, but the complexity of solving the optimization problem
is extraordinary, because the problem is not convex and has
discrete variables. Meanwhile, the nature of centralized solutions
requires extra information exchange between vehicles and RSUs,
which is challenged by the additional communication delay and
security issues. The contribution of this paper is to decompose the
joint optimization problem into two decoupled subproblems: task
offloading and resource allocation. Both subproblems are refor-
mulated for efficient solutions. The resource allocation problem is
simplified by dual decomposition and can be solved at vehicles in
a decentralized way. The task offloading problem is transformed
from a discrete problem to a continuous convex one by a
probability-based solution. Our new method efficiently achieves
a near-optimal solution through decentralized optimizations, and
the error bound between the solution and the true optimum is
analyzed. Simulation results demonstrate the advantage of the
proposed approach.

Index Terms—Vehicular Edge Computing, task offloading,
multi-server resource allocation, hierarchical decomposition, de-
centralized convex optimization

I. INTRODUCTION

THE substantial increase in the number of connected
vehicles and the latest advances in autonomous driving

lead to the emergence of various services and applications
in the intelligent transportation system, such as online path
planning, real data playback, localization, and perception
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[1]. These high-complexity applications demand extraordinary
computation capacities, but resource-constrained vehicles may
not be capable of serving the ever-increasing computational
needs of new applications within their latency deadlines [2].
Driven by the evolution of wireless communication, Vehicular
Edge Computing (VEC) systems, supported by Mobile Edge
Computing (MEC)1 [4], [5], are recognized as a promising
paradigm in the development of vehicular networks. Owing to
the close proximity to vehicles [6], VEC systems can provide
computing services in Roadside Units (RSUs) with reduced
end-to-end transmission delays.

To facilitate VEC in accelerating task completion and saving
energy, the development of a vehicle computation offloading
policy is crucial. Existing studies focus on the design of
optimal offloading strategies to meet different performance
requirements, such as low latency [7], high energy efficiency
[8], and load balancing [6]. There are mainly two challenges
for task offloading: the offloading decision, which determines
where the task is to be executed, and the resource allocation,
which characterizes how much computation and communica-
tion resources are allocated to the tasks. The formulation of
this problem arises naturally in an intricate structure, which
makes it challenging to obtain an optimal solution, especially
when the number of variables grows exponentially in a high-
dimensional scenario.

To address this challenge, researchers have proposed many
different solution approaches lately. The problem is formu-
lated as a constrained optimization problem in [9]–[13] to
minimize the offloading delay. To investigate a holistic of-
floading solution in a multi-server MEC-assisted network,
Tran et al. [10] decompose the original problem and find
the resource allocation solution by quasi-convex optimization
techniques, where the task offloading problem is tackled by
the proposed heuristic approach. Tang et al. [12] address
the energy-constrained delay minimization problem, which is
solved using the decision tree and dynamic programming. The
total network delay is emphasized in [13], where a Lyapunov
optimization is used for the development of an online multi-
decision making algorithm. Besides the above works that apply
optimization techniques, studies on vehicular offloading policy
also exploit Reinforcement Learning (RL) algorithms [14]–

1We refer to MEC as Mobile Edge Computing in this study, while a more
recent interpretation of MEC is Multi-access Edge Computing [3].
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[18]. For instance, Qi et al. [17] consider the data dependency
in multiple tasks and apply the deep RL algorithm to find
the long-term optimal offloading policy. To minimize the
processing delay in VEC networks, Guo et al. [18] design an
intelligent task offloading scheme based on deep Q learning,
which is a centralized approach that requires all vehicles’
information to be collected at a central RSU.

In the aforementioned studies, the vehicle plays the role only
of a service client, where the offloading strategy is calculated
and determined at the edge device. When the problem is both
formulated and solved in a centralized way, the vehicles must
send task parameters to the RSU and wait for the offloading
decisions returned from the RSU. The potential issues, in
terms of additional communication delay, increased computing
complexity, and security issues caused by the information
exchange, are not fully addressed yet. As an alternative, a
decentralized offloading policy is desired.

Recently, a few studies have also focused on exploiting
the benefits of decentralized computation offloading in VEC
systems [19]–[23]. An adaptive learning-based task offloading
algorithm is proposed in [19] based on multi-armed bandit
theory. It works in a distributed manner and minimizes the
average offloading delay. The vehicle-to-vehicle communica-
tion is considered in [20], where a decentralized resource
allocation mechanism is proposed based on deep RL, and
the global information is not required for each vehicle to
make its decisions. The consensus ADMM-based energy-
efficient resource allocation algorithm is proposed in [21],
where the formulated joint problem is decomposed into a set of
subproblems and solved in parallel. Jošilo et al. [22] develop
a game-theoretical model and allow users to make offloading
decisions autonomously. Liu et al. [23] design a user-centric
control policy to optimize both delay and energy consumption
by formulating the problem as a fully decentralized multi-
agent Markov decision process.

Most of the existing decentralized solutions rely on a trained
deep RL model or reach global coordination through an
iterative way, which still requires high computational power
or synchronous updates among vehicles when implemented
in a real-time offloading application. In the context of ve-
hicular offloading, the high computation power requirements
call for effective energy management at the RSUs, an issue
not emphasized widely. Most existing studies concentrate
on reducing energy consumption at the vehicle but ignore
the corresponding analysis at the edge [24]. Some recent
studies [25]–[27] have investigated this topic by considering
the optimization of both vehicles and RSUs. They optimized
the energy consumption and the execution time of the holistic
vehicular services, including vehicles, RSUs, and base stations.
These works justify the need for optimizing both the vehicles
and RSUs. In addition, because of the high mobility of vehicles
and limited coverage of the RSUs, the vehicle cannot select
offloading destinations arbitrarily. To address these problems,
we develop a decentralized convex optimization approach
that decomposes a holistic Mixed-integer Nonlinear Problem
(MINLP) into a hierarchy of convex optimization problems.
The decomposition is obtained by the dual decomposition and
the probability-based offloading policy.

The main contributions are summarized as follows:
• A decentralized task offloading and resource allocation

problem in a multi-server VEC system is formulated as an
optimization problem. The optimization criteria include
the total latency of all tasks and the energy consumption
in both vehicles and RSUs.

• A hierarchical decomposition approach is designed to
break down the original MINLP into a group of con-
vex subproblems for optimal resource allocation. These
subproblems have low complexity and can be efficiently
solved at the vehicle side. The vehicles only receive
broadcasting messages from RSUs, which enhances user
privacy and reduces information exchange delay.

• A convexification procedure is presented to transform
the discrete optimization problem for task offloading into
a continuous convex one. The integer design variables
of deterministic task offloading targets are replaced by
probabilities for offloading targets.

• To examine the application of the proposed decomposi-
tion approach, we analyze two common RSU deployment
scenarios. The task offloading and resource allocation
methods are studied and evaluated in both scenarios.

The rest of this paper is organized as follows. In Section II,
the system model is presented with the formulation of the joint
task offloading and resource allocation problem. Section III
describes the hierarchical decomposition approach and solves
the resource allocation problem in a single RSU scenario. We
extend the solution to the multi-RSUs scenario and investigate
the task offloading problem for load forecast coordination
in Section IV. The numerical performance evaluation of the
proposed methods is given in Section V, and Section VI
concludes this paper.

II. SYSTEM MODEL

In this section, we present the system model of the VEC net-
work. After that, a vehicle-edge task offloading and resource
allocation problem is formulated.

A. Vehicular Computing System

As illustrated in Fig. 1, we consider a highway scenario with
m RSUs and n vehicles. Let M =

{
1, 2, . . . ,m

}
denote the

index set of RSUs and N =
{
1, 2, . . . , n

}
denote the index set

of vehicles. We use j ∈ M as the index of the RSU and i ∈
N as the index of the vehicle. The edge computing network
consists of RSUs, and each RSU contains an MEC server.
The server provides wireless radio access and computation
resources to the vehicles. The computing tasks of the vehicles
can be offloaded to an RSU so that the driving performance
can be improved by reducing the task execution time. The
notation used in this paper is summarized in TABLE I.

We consider that vehicles have to solve periodic tasks with
the period ∆T . At every time step t, every vehicle i ∈ N
generates a task. In the offloading system, we assume that the
period ∆T is the longest acceptable delay to finish a task. The
computing task from vehicle-i can be characterized by [Li, Ci],
where Li is the length of interactive transmission data (in bits)
between vehicles and RSUs. We consider that the transmission
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TABLE I: Definitions of notation

Notation Definition
M Set of RSUs, indexed by j, k
m Number of RSUs
N Set of vehicles, indexed by i
n Number of vehicles
∆T Task period and the longest acceptable delay
rj Geographical location of RSU-j
pi Geographical location of vehicle-i
U Set of drivable positions of an area
dj Coverage radius of RSU-j
Li Required transmission data of task from vehicle-i
Ci Required computation resources of task from vehicle-i
ϵ Delay ratio of context transfer among RSUs
∆di Context transfer delay of task from vehicle-i
θj Energy consumption coefficient of CPU on RSU-j
u Scaling ratio of CPU frequency
fj CPU frequency of RSU-j
T o
ij Computation time at RSU-j to finish task from vehicle-i

Eo
ij Computation energy at RSU-j to finish task from vehicle-i

pi Maximal transmission power of vehicle-i
hij Channel power gain from vehicle-i to RSU-j
qij Wireless transmission rate from vehicle-i to RSU-j
r Percentage of maximal transmission power
ω Communication variable after substitution
Bp Pre-allocated channel bandwidth of RSU-vehicle link
δj Power of noise at RSU-j
Ec

ij Communication energy at vehicle-i to connect to RSU-j
ϕij Offloading decision variable
Eo

j Computation energy consumption limit at RSU-j
ηi Weighting parameter between latency and energy consumption
Vj Set of vehicles which offloads to RSU-j
G Graph with RSU nodes to represent the offloading network
A Adjacency matrix associated to G
ajk Estimated workload of vehicles driving from RSU-j to RSU-k
Vjk Set of vehicles which contribute to the workload ajk
P Offloading probability matrix
∆Dj Total estimated context transfer delay at RSU-j

…

m RSUs

n vehicles

…

Fig. 1: Illustration of the offloading scenario.

data consist mainly of the computation instruction, and thus
Li is viewed as a constant. Ci represents the amount of
computation resources (in CPU cycles) required to finish the
task with the mean value of Ci [28].

In this study, a task is viewed as atomic and cannot be
split [10]. Hence, a task cannot be computed partially on
different computation nodes. Particularly, we focus on the
type of computational resource-demanding tasks which have
to be accomplished at the edge side [29], such as high-
complexity motion planning and control modules. Further
potential applications for offloading are, for example, given
by cooperative driving automation scenarios [30]. Thus, we
only consider the pure offloading case where a task is entirely
executed on a single RSU.

B. Traffic scenario model

The traffic system in our study is a bidirectional road
network. To describe the coverage of communication, we
denote by T ⊆ R2 the set of two-dimensional geographical

locations of every drivable position in the system, and by
pi ∈ T the position of vehicle-i. Locations of RSUs are
denoted by rj . The Euclidean distance between two positions
p1 and p2 is estimated by the square norm ∥p1−p2∥ , p1,p2 ∈
T ∪ {r1, . . . , rm}.

We define a circular area in the traffic system as U ,
which can be viewed as the set of all drivable positions
within the area. Suppose the coverage radius of RSU-j is dj ,
U(rj , dj) ≜

{
p ∈ T | ∥rj − p∥ ≤ dj

}
, which represents the

set of positions on the road within the communication range
of RSU-j. In this study, RSU-j is available for receiving a
task from a vehicle only when its position is within U(rj , dj).
For simplicity, we consider that the context transfer among
RSUs is well managed by proactive service migration [31]. We
also assume that the vehicles’ movements and the offloading
workload in an area can be accurately estimated. Therefore, the
context transfer delay across RSUs is considered to be known.
The context transfer delay is assumed to be proportional to the
task computation workload Ci and is estimated to be Ciϵ, for
some ϵ > 0 [12]. Also, we define the expected offloading
demand E(

∑
{i|pi∈U(rj ,dj)} Ci) for the area. Note that the

prediction method and task migration design are not the focus
of this work but will be investigated in the future. State-of-the-
art methods are, for instance, premigration [32] and mobility-
based services migration prediction (MSMP) [33].

We assume that each drivable position on the road is covered
by at least one RSU. If the distance between two RSUs is
smaller than the sum of their coverage radii, the corresponding
service areas will overlap. When solving the RSU deployment
problem in similar scenarios, authors in [34] prove that,
in terms of profit maximization, a non-overlapping solution
performs no worse than an overlapping one. However, the non-
overlapping solution does not consider the demand disparity
under different traffic densities. Due to the heterogeneity of the
RSU capacity, it may fail to handle the overload situation. To
examine our approach in a more complex scenario with high
workload, we thus also consider a deployment architecture
with overlapped areas. More details of the scenario are given
later in Section IV.

C. Computation model

As mentioned in Section II-A, this study focuses on periodic
tasks that cannot be accomplished onboard the vehicles, and
should thus be offloaded to an RSU for execution. We consider
that the computation capacity of the RSU is provided by a CPU
supporting dynamic voltage and frequency scaling (DVFS)
[19]. DVFS is a technique to adjust the frequency of a CPU for
balancing the energy consumption and task execution time. In
practice, the available frequency is restricted to a finite set of
values F = {fj1, fj2, . . . , fjN}, referred to as the available
clock-frequency vector for RSU-j. Similar to [35]–[37], we
assume that the difference between consecutive frequencies is
so small that the frequency can be approximately treated as a
continuous variable. The solution can be viewed as a reference
to the performance upper bound in realistic offloading policies.
We denote by fj the maximum nominal CPU frequency of
RSU-j. Let uij ∈ (0, 1] be the scaling ratio of fj determined
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for vehicle-i to finish the task. Thus, the execution time is

T o
ij(uij) =

Ci

uijfj
, (1)

where the superscript o denotes the computation part in the
sequel.

An important aspect of computation is the energy con-
sumption of task execution. We focus on the dynamic energy
consumption of task execution [38]. Other energy consumption
on the RSU, such as energy consumption at idle mode and
cooling system, is assumed constant. The power consumption
of a CPU is modeled as θjfj

3 per CPU cycle, where θj
is the energy consumption coefficient depending on the chip
architecture [8]. Then, the energy consumption of the task-i
executed at RSU-j is

Eo
ij(uij) = θju

2
ijf

2
j Ci. (2)

D. Communication model

The vehicles can transmit data to the RSUs using wireless
communications. We denote by pi the maximal transmission
power of vehicle, and by rijpi the actual transmission power
used by vehicle-i for transmitting a task to RSU-j, where
rij ∈ (0, 1] is a decision variable. The decision variable rij
allows the vehicle to trade off between energy consumption
and transmission delay [23]. Let hij = g(∥pi − rj∥) be
the channel gain from vehicle-i to RSU-j. The channel gain
includes path loss and fading, and is a function of the distance
∥pi − rj∥ between the RSU-j and the vehicle-i [9]. We
consider that Orthogonal Frequency Division Multiple Access
(OFDMA) is used [22]. If a vehicle tries to communicate
with an RSU, it occupies a fixed bandwidth Bp. If the system
bandwidth is Bj , then at most N̂j = ⌊Bj

Bp
⌋ vehicles can offload

to RSU-j. Given noise power δj , the transmission rate can be
expressed as

qij = Bplog2
(
1 +

rijpihij

δj

)
. (3)

We consider that the transmission delay from the RSU to
the vehicle is negligible since the result of the computation
is typically much smaller than the input data. Thus, given Li,
the transmission delay can be calculated as

T c
ij(rij) =

Li

qij
, (4)

where the superscript c denotes the communication part in the
sequel. If a context transfer occurs, the extra delay is Ciϵ.

The energy consumption of data transmission can be ex-
pressed based on the transmit power and the transmission
delay as

Ec
ij(rij) = rijpiT

c
ij(rij). (5)

We do not account for the communication energy consump-
tion on RSUs.

E. Problem Formulation

Our objective is to minimize the total task response times
and communication energy at vehicles while satisfying the
computation energy constraints at the RSUs. We focus on a
single time step, as a building block for solving the finite
horizon version of the problem, which we leave as the subject
of future work. In what follows, we refer to response time as
the total task completion time, including computation, com-
munication, and context transfer delay. Note that the response
time is used for simplicity sake, which does not rigorously
follow the definition in the real-time scheduling theory [39],
since the task preemption and blocking are omitted in this
study.

We denote by ϕϕϕ the offloading decision variables:

ϕij =

{
1, if vehicle-i offloads a task to RSU-j
0, otherwise.

To estimate the possible context transfer delay, we con-
sider the decision matrix ϕϕϕ′ at the next time step. Note
that ϕϕϕ′ may not reflect the actual offloading decision, but
is only used to check the offloading availability at the next
time step based on the vehicle position. The fundamental
assumption is that if vehicle-i offloads a task to RSU-j at
the current step-t and is still within U(rj , dj) at the next
time step, then the vehicle maintains the same offload target,
i.e., (ϕij = 1) ∧ (∥rj − pi(t+∆T )∥ ≤ dj) ⇒ ϕ′

ij = 1.
Otherwise, it must start communication with a different RSU,
i.e., (ϕij = 1) ∧ (∥rj − pi(t+∆T )∥ > dj) ⇒ ϕ′

ij = 0.
Under the latter situation, the context transfer occurs, and the
additional communication delay must be counted. Since the
road network is fully covered by all RSUs, there must be some
j′ ̸= j such that ∥rj′ − pi(t+∆T )∥ ≤ dj′ and ϕ′

ij′ = 1. The
exact value of j′ is irrelevant for the optimization problem,
because we count the context transfer delay for vehicle-i as
∆di =

∑
j∈M Ciϵ

|ϕij−ϕ′
ij |

2 .
Thus, we can formulate the joint problem of task placement

and resource allocation with the objective of minimizing the
weighted sum of overall task response times and communica-
tion energy consumed at vehicles. ηi in the objective function
is the weighting parameter used for the balance between delay
and energy saving. The problem is defined in (P0):

(P0) min
u,r,ϕϕϕ

n∑
i=1

[ m∑
j=1

ϕij

(
T o
ij(uij) + T c

ij(rij) + ηiE
c
ij(rij)

)
+∆di

]
(6a)

s.t.

∑n
i=1 ϕijT

o
ij(uij)

∆T
≤ Uj , ∀j (6b)∑n

i=1 ϕijE
o
ij(uij) ≤ Eo

j , ∀j (6c)∑m
j=1 ϕij(T

o
ij(uij) + T c

ij(rij)) ≤ ∆T −∆di, ∀i (6d)
uij , rij ∈ [0, 1], ∀i, j (6e)
uij + rij = 0, ∀(i, j) ∈ {N ×M | ϕij = 0} (6f)∑m

j=1ϕij = 1, ∀i (6g)

ϕij ∈
{
0, 1

}
, ∀i, j (6h)∑n

i=1ϕij ≤ N̂j , ∀j (6i)
ϕij(dj − ∥rj − pi(t)∥) ≥ 0, ∀i, j, (6j)
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with variables u = {uij |i ∈ N , j ∈ M}, r = {rij |i ∈ N , j ∈
M} and ϕϕϕ = {ϕij |i ∈ N , j ∈ M}.

In the set of constraints, (6b) states the total computation
utilization on each RSU, where Uj represents the upper
bounds on CPU utilization. Constraint (6c) regulates the
energy consumption at the RSU, where Eo

j denotes the energy
consumption limit at RSUs. (6d) guarantees the time constraint
satisfaction while (6e) determines the ranges of the control
variables. For each task, a vehicle can only have one RSU
to offload. Thus, the sum of ϕij over all RSUs should be 1,
which is reflected in (6f) ∼ (6h). (6i) defines the upper limit
for offloading, and (6j) examines the RSU service availability
due to vehicle mobility.

III. HIERARCHICAL DECOMPOSITION AND RESOURCE
ALLOCATION PROBLEM SOLVING

Problem (P0) is nonlinear and has the binary variables ϕij .
It is an MINLP and generally difficult to solve. To address
this issue, we propose a hierarchical decomposition approach
in this section, which achieves a close-to-optimal solution that
can be computed in a decentralized way.

Fig. 2 gives an overview of the hierarchical decomposition
approach. The essential idea is to decompose the original
problem into several decoupled subproblems, each of which
is represented as a block in the figure. They have lower
complexities and can be solved efficiently. All methods to
perform the decomposition in this study are labeled in grey.
The signals on the dashed lines connecting different blocks
are solutions from the prior problems, which are used for
coordination or problem-solving in sequential problems.

The domain of the variables of (P0) is huge and not con-
tinuous, and it requires the simultaneous exploration of three
groups of decision variables. One way to simplify the problem
is to search for the optimal solutions for the three groups of
variables sequentially via the Tammer decomposition method
[10]. If we first fix an arbitrary task offloading decision,
then (P0) becomes an optimization problem only with free
variables u and r. Note that the context transfer delay ∆di
is independent of u and r. Then (P0) is reduced to the
subproblem

J∗(ϕϕϕ) = min
u,r

m∑
j=1

n∑
i=1

ϕij

[
T o
ij(uij) + T c

ij(rij) + ηiE
c
ij(rij)

]
(7)

s.t. (6b) ∼ (6f).

Note that if the given task offloading decision ϕϕϕ is infeasible,
then no solution of u and r may satisfy all constraints of
(6b) ∼ (6f). In that case, let J∗(ϕϕϕ) =∞. Since the reduced
optimization problem (7) has only u and r as free variables,
it is called the resource allocation (RA) problem.

Subsequently, the searching for the optimal task offloading
decision is named the task offloading (TO) problem

min
ϕϕϕ

J∗(ϕϕϕ) +
∑n

i=1 ∆di (8)

s.t. (6g) ∼ (6j).

The decomposition of the overall problem (P0) into the TO
and the RA problems is illustrated at the top of Fig. 2.

Multi-agent Offloading Problem  (P0)

Task Offloading (TO) 
Problem  (8)

Resource Allocation (RA) 
Problem (7)

(P1) at RSU-j …

Convex RA Subproblem (P2)

(P1) at RSU-j’

Convexification

RA at vehicle-i RA at vehicle-i’…

Dual Decomposition

Computation 
subproblem (P3)

Communication 
subproblem (P4)

Decoupling

Probabilistic Computation 
Time Optimal Problem (P5)

Probabilistic Strategy

Tammer Decomposition

(15)

Fig. 2: Hierarchical decomposition for the task offloading and
resource allocation problem.

By the definition of the RA problem in (7), since the value
of ϕϕϕ is given, we can determine the set of vehicles offloading
to each RSU-j as Vj = {i ∈ N | ϕij = 1}. According to
constraint (6g), Vj ∩ Vj′ = ∅ if j ̸= j′. Then the objective
function of the RA problem in (7) becomes:

J∗(ϕϕϕ) =
m∑
j=1

min
u,r

∑
i∈Vj

[
T o
ij(uij) + T c

ij(rij) + ηiE
c
ij(rij)

]
. (9)

The RA problem is equivalent to the subproblems of finding
the optimal resource allocation at each RSU. The individual
problem at RSU-j is defined in (P1):

(P1) min
u,r

∑
i∈Vj

[
T o
ij(uij) + T c

ij(rij) + ηiE
c
ij(rij)

]
(10a)

s.t.

∑
i∈Vj

T o
ij(uij)

∆T
≤ Uj (10b)∑

i∈Vj

Eo
ij(uij) ≤ Eo

j (10c)

T o
ij(uij) + T c

ij(rij) ≤ ∆T ′
i , ∀i (10d)

0 < uij ≤ 1, ∀i (10e)
0 < rij ≤ 1, ∀i. (10f)

In (P1), we simplify the problem by removing ϕϕϕ-related
elements. Since only one RSU-j is considered, dimensions of
variables are decreased, and u, r ∈ (0, 1]|Vj |. Time constraint
is replaced by ∆T ′

i in (10d) to compensate context transfer
delay with: ∆T ′

i = ∆T − ∆di. Once the decision variable
ϕϕϕ is given, the corrected values ∆T ′

i are known at the
vehicles. As illustrated in Fig. 2, the RA problem for the
entire transportation system is reduced to the decentralized
RA problems at individual RSUs.

Note that (P0) and (P1) suffer a common disadvantage
that they are formulated and solved in a centralized manner,
which requires the entire observation of all vehicles connected
to the same RSU. Such an approach allocates the decision
algorithms at the RSUs, where they acquire the detailed task
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information from each vehicle and then calculate the solution.
This introduces an extra communication burden and may
cause security and privacy concerns by its nature. Moreover,
the optimization problem may become intractable for large-
scale systems since an excessive delay is included. Thus,
in Section III-B, we formulate a decentralized strategy to
overcome this issue via dual decomposition.

A. Convexification of the RA problem

The objective function and constraints in (P1) are continu-
ous and twice differentiable in their domains. However, by the
properties of quasiconvexity (see, e.g., [40] Sec. 3.4.2), it can
be found that Ec

ij(rij) in (10a) is quasilinear but not convex.
In order to hold convexity, we can transform the problem by
substituting the variable rij . Note that the transmission rate
qij is always a non-zero value, which ensures the feasibility
of the substitution. Let us introduce ωij , where

ωij =
1

qij
⇒ rij =

δj(2
1

Bpωij − 1)

pihij
. (11)

Then problem (P1) can be rewritten as

(P2) min
u,ωωω

∑
i∈Vj

[
T o
ij(uij) + T c

ij(ωij) + ηiE
c
ij(ωij)

]
(12a)

s.t. (10b), (10c), (10e),
T o
ij(uij) + T c

ij(ωij) ≤ ∆T ′
i , ∀i (12b)

1 ≤ 2
1

Bpωij ≤ Zij , ∀i, (12c)

with variables u = {uij |i ∈ Vj},ωωω = {ωij |i ∈ Vj}. In
constraint (12c), Zij=

pihij+δ
δ .

Lemma 1. (P2) is a convex optimization problem.

Proof. Please refer to Appendix A. ■

B. Decomposition of the RA problem

In (P2), the objective function (12a) can be viewed as
the sum of the objectives of all vehicles. Also, each vehicle
has its own constraints in (10e), (12b), and (12c). How-
ever, constraints (10b) and (10c) are coupled among different
vehicles, in which the restrictions on CPU utilization and
energy consumption can be viewed as the aggregate amount
on RSU-j. These coupled constraints hinder us from solving
the optimization problem for individual vehicles. To tackle this
issue, we form the dual problem by introducing the Lagrange
variables λλλ = (λ1, λ2) ∈ R2

+ for the inequality constraints
(10b) and (10c). For RSU-j, we denote by λλλj the Lagrange
variables. This results in the Lagrangian function:

L(u,ωωω,λλλj) =
∑

i∈Vj

[
T o
ij(uij) + T c

ij(ωij) + ηiE
c
ij(ωij)

]
+λj1

[∑
i∈Vj

T o
ij(uij)

∆T − Uj

]
+ λj2

[∑
i∈Vj

Eo
ij(uij)− Eo

j

]
.

(13)

Correspondingly, the dual function g(λλλj): R2
+ → R, as the

infimum value of the Lagrangian function over u,ωωω for λλλj ∈
R2

+, can be expressed as

g(λλλj) = inf
u,ωωω

{
L(u,ωωω,λλλj)

∣∣∣(10e), (12b), (12c)
}
. (14)

The dual function can be evaluated separately on each
vehicle with the Lagrangian variables. Moreover, the op-
timization objective comprises two parts: computation and
communication. They have an independent structure of the
objective and constraint functions, but are coupled by (12b) in
(P2) as the time constraints. To analyze the problem appro-
priately, we can further break down the problem into single-
commodity [41] for each vehicle. Assume that the optimal
computation time of vehicle-i’s task at the RSU-j is T o∗

ij , and
T o∗
ij <∆T ′

i should always hold; otherwise (P2) does not have a
feasible solution. Then, the communication delay must satisfy:
T c
ij(ωij) ≤ ∆T ′

i − T o∗
ij .

With T o∗
ij as an auxiliary parameter, we can decompose the

problem by separating the computation and the communication
part of each vehicle. Accordingly, the dual function is

g(λλλj) =
∑
i∈Vj

goi (λλλj) +
∑
i∈Vj

gci , (15)

where

goi (λλλj) =inf
uij

{
T 0
ij(uij) + λj1

[
T 0
ij(uij)

∆T − Uj

|Vj |

]
+λj2

[
E0

ij(uij)−
E0

j

|Vj |

]∣∣∣0 < uij ≤ 1
}
,

(16)

gci = inf
ωij

{
T c
ij(ωij) + ηiE

c
ij(ωij)

∣∣∣∣∣ T c
ij(ωij)≤∆T ′

i−T o∗
ij

1≤2
1

Bωij ≤Zij

}
. (17)

goi (λλλj) and gci represent the dual functions of computation
and communication subproblems at vehicle-i. Note that (17)
is independent of the primal coupling constraints (10b) and
(10c). By the definition, the corresponding subproblems are

(P3) min
uij

T o
ij(uij) + λj1

T o
ij(uij)

∆T
+ λj2E

o
ij(uij)

s.t. 0 < uij ≤ 1,

(18a)

(18b)

and

(P4) min
ωij

T c
ij(ωij) + ηiE

c
ij(ωij)

s.t. T c
ij(ωij) ≤ ∆T ′

i − T o∗
ij

1 ≤ 2
1

Bpωij ≤ Zij .

(19a)

(19b)

(19c)

Problems (P3) and (P4) are computation and communica-
tion subproblems at the vehicle side. Note that the variation of
|Vj | in (16) does not influence the optimal solution. Similar to
(P2), both subproblems can be verified to be convex, and the
duality gap is zero. Hence, the dual optimum obtained by (P3)
and (P4) is equivalent to the primal solution of (P2), which
enables us to solve the centralized primal problem through the
decentralized dual subproblems.
Proposition 1. Given an RSU-j and n vehicles, when the
optimal solutions of the dual subproblems in (P3) and (P4)
at vehicles converge to the primal global optimum in (P2),
the values of Lagrangian variables (i.e., λλλj ∈ R2

+) are only
influenced by the total amount of computation workload (i.e.,∑

i∈Vj
Ci) and energy constraints (i.e., θj and Eo

j ), and:

λλλj = (λj1, λj2) =

(
0,

√
θj(

∑
i∈Vj

Ci)3

4(Eo
j )

3

)
(20)
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Proof. Please refer to Appendix B. ■

Remark 1. Proposition 1 reveals that the associated Lagrangian
variable is only influenced by the energy-related parameters
and the total amount of task load. Therefore, it enables an
RSU to predict Lagrangian variables from the estimated total
workload at the RSU.

Even with the closed-form expression of Lagrangian vari-
ables, the future workload

∑
i∈Vj

Ci is a posteriori knowledge,
which is only available after the optimal task offloading
decision ϕϕϕ has been determined. However, as shown in (8), the
solution of the TO problem requires the solution of the RA
problem. We need to break the circular dependency between
the TO and the RA problems. In Section II-B, we assume that
the offloading demand of an area can be accurately estimated.
Therefore, we apply E(Cj) as the load forecast on RSU-j
to replace

∑
i∈Vj

Ci when deriving Lagrangian variables and
calculating the corresponding objective function. It is given as

λλλj = (λj1, λj2) =

(
0,

√
θj [E(Cj)]3

4(Eo
j )

3

)
. (21)

Note that in this paper, λj1 is always treated as 0, since
the existence of Eo

j implies a more stringent constraint on the
task response time, and thus the schedulability limit is viewed
as relaxed. If the value of Eo

j is unrealistically large, then λj1

is not zero, and the time constraint becomes dominant. This
extreme case is not explored in this study.

A major argument in Appendix B is (35): u∗=
1|Vj |

(2θjλ∗
j2)

1
3 fj

,

where 1|Vj | is an 1× |Vj | vector of all ones. The closed-form
expression of u∗

ij is independent of the task load Ci. It shows
that within the task period [t, t+∆T ), the RSU works with a
fixed CPU frequency for all tasks from the connected vehicles.
With (21) and (35), the optimal computation time T o

ij(u
∗
ij) in

(P2) is

T o
ij(u

∗
ij) = Ci

√
θjE(Cj)

Eo
j

. (22)

T o
ij(u

∗
ij) in (22) corresponds to T o∗

ij introduced in (19b).
Consequently, all terms in (P4) can be explicitly expressed.
Since (P4) does not include Lagrangian variables, its optimal
solution ω∗

ij can be determined independently by convex
optimization. Therefore, we have shown that the optimization
problems (P3) and (P4) can be efficiently solved with the given
λλλj . As depicted in Fig. 2, they give the fully decentralized
RA solution for the convex RA subproblem (P2), and thus the
RA subproblem (P1). Accordingly, the computing-intensive
optimization at the edge can be circumvented by leveraging
the unidirectional communication from RSUs to vehicles with
the updated values of Lagrangian variables. Meanwhile, as the
resource provider, the RSU coordinates vehicles by predicting
and adjusting the values of Lagrangian variables.

In this section, the problem is restricted to the single RSU
scenario with the RA solution. In what follows, we extend our
solution by considering the multiple RSUs scenario and solve
the top-level TO problem in (P0).

Road segment

RSU coverage Coverage stripRSU position

(a) non-overlapped architecture

Overlapped area

RSU-(j-1) RSU-j RSU-(j+1)

Exclusive covered area

……

(b) overlapped architecture

Fig. 3: Comparison between non-overlapped and overlapped
architecture, the reference scenario is a straight road segment,
adapted from [42].

IV. LOAD FORECAST FOR TASK OFFLOADING

In (21) and (22), the optimal computation resource alloca-
tion is influenced by E(Cj). Therefore, load forecast is essen-
tial to vehicles when making the offloading decision. However,
even though we assume that the computational workloads
of all vehicles in the transportation system can be estimated
from a priori knowledge, we still cannot predict the estimated
workload on each RSU, because some vehicles may have the
flexibility of offloading to multiple RSUs. For instance, if
vehicles offload with the pure greedy strategy, then all the
vehicles in the service overlapped area will offload towards
the RSU with the smallest predicted workload. Consequently,
the selected RSU may quickly have a high workload or even
become overloaded. All vehicular tasks offloaded to the RSU
will suffer longer response times or even miss the deadline.
The greedy offloading strategy is neither optimal nor stable.

This problem brings the challenge of reaching global co-
ordination on load forecast in multiple RSUs scenarios. To
accurately determine the expected offloading demand, as il-
lustrated in Fig. 3, we consider the following two cases with
different RSU deployment architectures, categorized based on
whether the coverage of RSUs is overlapped or not [42].

A. Non-overlapped RSUs scenario

Consider a VEC system with m RSUs. Recall that each
RSU is characterized by a deployment location rj and a cover-
age range dj . For the non-overlapped architecture, the RSU has
its distinct service area, and each drivable position is covered
by only one RSU, i.e., U(rj1 , dj1) ∩ U(rj2 , dj2)=∅,∀j1, j2 ∈
M. Under this condition, the vehicle only has one feasible
offloading destination. Therefore, in non-overlapped scenarios,
the original problem (P0) degenerates to m independent (P1),
and the problem can be trivially decoupled. The RA problem
can be estimated efficiently by solving (P3) and (P4), while
the TO problem can be omitted. Meanwhile, since there are
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no overlapped areas, RSU-j can explicitly estimate its load
within the covered area by

E(Cj) = E(
∑

i∈S Ci), (23)

where S = {i ∈ N| pi ∈ U(rj , dj)}.
The Lagrangian variables can be estimated with a high-

accuracy load estimation system, and the proposed decentral-
ized offloading strategy via decomposition can be achieved.
Thus, with the non-overlapped deployment architecture, an
optimal offloading solution can be realized.

B. Overlapped RSUs scenario

In the non-overlapped scenario, the single available offload-
ing destination within an area can be a bottleneck. The offload-
ing availability of the RSU gets exacerbated by the increase
in traffic density. Therefore, in order to provide alternative
offloading solutions, we assume that the coverage of different
RSUs can overlap. When an area is covered by several RSUs,
the problem is quite complex in general when performing
decentralized coordination. As shown in Fig. 3(b), we restrict
the scenario that an area can be covered by at most two
RSUs. Despite this simplification, the combinatorial structure
of the problem is still challenging to solve in polynomial
time [10]. The complexity of the exhaustive search is at most
O(2n), which is hard to perform by enumerating all possible
solutions. Moreover, to tackle this problem, existing heuristic
search algorithms (e.g., [9], [10]) require global information
from vehicles and execute in an iterative manner, which
is contradictory to our decentralized ideas. To analyze the
problem, we make the following two assumptions:
Assumption 1. An overlapped area has a similar distance to
adjacent RSUs. For a vehicle in the overlapped area, the
optimal values of (P4) to adjacent RSUs are similar. Thus,
the offloading decision of vehicles in the overlapped area is
dominated by the result of (P3).
Assumption 2. An overlapped area is located at the boundaries
of two RSUs’ coverage regions. For vehicles in overlapped
areas, context transfer delay only occurs when offloading to
the receding RSU.

Assumption 1 is reasonable because OFDMA is used in
Section II-D as the communication feature with RSUs. With a
fixed task and RA solution, (P4) only depends on the channel
power gain, which is influenced by the distance. Note that
Assumption 2 is also used in [12] for the position offset
consideration, and is helpful in estimating the context transfer
delay based on vehicle mobility.

Fig. 4: Graph presentation of the overlapped scenario.

As shown in Fig. 4, we use a directed graph G consisting of
m RSU nodes to represent the offloading network considering

the vehicle mobility. Let Vjk be the set of vehicles driving from
RSU-j to RSU-k in the overlapped area of the two RSUs, ajk
be the estimated total computation workload of all these ve-
hicles, i.e., ajk=

∑
i∈Vjk

Ci. In addition, A=[ajk] ∈ Rm×m

is the adjacency matrix of G and ajk is the weight of the
edge from RSU-j to RSU-k. Thus, on the bidirectional road,
akj is distinct from ajk owing to driving directions. If RSU-k
and RSU-j have a shared region, then ajk, akj ≥ 0, otherwise
ajk=akj =0. The self-loop is denoted by ajj and represents
the workload in the exclusive areas.

Finding the binary task offloading decisions for vehicles in
the overlapped areas has exponential complexity. To avoid the
binary optimization problem, we propose a probabilistic task
offloading strategy. As shown in Fig. 2, the strategy determines
the probabilities of allocating tasks to the adjacent RSUs,
which helps with the calculation of E(Cj) to solve (P2). The
advantage of this approach is to replace the original binary
decision problem by a continuous optimization problem.

The task offloading decision is made by optimizing the TO
problem in (8), where the cost function J∗(ϕϕϕ) is evaluated
from the optimal values of (P3) and (P4). According to
Assumption 1, the cost function J∗(ϕϕϕ) is primarily determined
by (P3). Furthermore, the solution to (P3) is the optimal
computation time of a task at an RSU, as estimated by (22).
The equation implies that, for all vehicles in the same area, the
optimal computation time of a task monotonically increases
with the total workload at the connected RSU. In addition,
Assumption 2 implies that the offloading probability is also
related to the driving direction of the vehicle. Therefore, all
vehicles in Vjk which are on the same edge in G should have
an identical offloading probability distribution.

Thus, we denote by P = [Pjk] ∈ [0, 1]m×m the offloading
probability matrix, which has the same dimension as A.
The element Pjk denotes the probability for vehicles in Vjk

offloading tasks to RSU-k. Correspondingly, the probability
for these vehicles to offload tasks to RSU-j is 1−Pjk. All
elements on the main diagonal of P are 1, due to the unique
offloading choice in the exclusive areas.

From the adjacency matrix A and the offloading probability
matrix P, the offloading workload on RSU-j can be shown as

E(Cj) = A(:, j)⊤P(:, j) +A(j, :)(1m − P(j, :))⊤, (24)

where (:, j) and (j, :) are the j-th column and row vectors of
the matrix. To count context transfer delay ∆di of all vehicles
offloading to RSU-j, Assumption 2 yields the total estimated
context transfer delay at RSU-j, denoted by ∆Dj , through the
probability-based workload in overlapped areas:

∆Dj =
∑

i ∈ [Vj(j−1) ∪ Vj(j+1)]
∆di = ϵA(j, :)(1m − P(j, :))⊤. (25)

We can further approximate the constraint (6i) on the
maximal connected vehicles at an RSU by a new constraint
on the maximal expected workload at the RSU with

E(Cj) ≤ Ci N̂j , (26)

where Ci is the mean computational workload of vehicle tasks.
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Combining the results in (22) and (24), the optimal compu-
tation time for all vehicles offloading on RSU-j, denoted by
T o∗
j , can be estimated as

T o∗
j =

∑
k∈{j−1,j,j+1}

[ ∑
i∈Vkj

PkjT
o
ij(u

∗
ij)

+
∑
i∈Vjk

[1− Pjk]T
o
ij(u

∗
ij)

]
=

√
θj
Eo

j

[
E(Cj)

] 3
2 .

(27)

And the computation time for all vehicles in the system under
optimization is∑

j∈M T o∗
j =

∑
j∈M

√
θj
Eo

j

[
E(Cj)

] 3
2 . (28)

Eq. (28) corresponds to the objective function of the com-
putation part in (P0), and is determined by the offloading
probabilities in the overlapped areas. From Assumption 1,
with an optimal RA solution determined by (P3) and (P4),
the TO problem in (8) can be transferred to derive the
offloading probability distribution that provides the minimal
task computation time plus the context transfer delay
(P5) J(P) = min

P∈[0,1]m×m

∑
j∈M

(√
θj
Eo

j

[
E(Cj)

] 3
2 +∆Dj

)
(29)

s.t. (24) ∼ (26).

Note that (P5) is not identical to (8) since the communica-
tion part is ignored. However, the focus of (P5) is to derive a
probability-based offloading solution, which can be leveraged
to estimate offloading workload E(Cj) through (24). And thus,
the Lagrangian variables λλλj can be evaluated with (21), which
contributes to the decentralized RA approach in Section III.

Problem (P5) can be solved at RSUs in a coordinated
way before offloading periods. Its convexity can be confirmed
similarly to Lemma 1 by verifying the Hessian being positive
semidefinite. Thus, the proof is omitted for the sake of
brevity. The value of P can be determined either by convex
optimization, or by solving linear equations in the matrix
form derived from the first-order optimality condition. Both
methods are efficient and give vehicles in the overlapped areas
a probability-based TO solution.
Proposition 2. The difference between the optimal solution
J(P∗) of (29) using stochastic offloading and the optimal
solution J∗(ϕϕϕ) of (8) using the binary offloading matrix is
bounded by the following inequality

Pr

(
|J(P∗)− J∗(ϕϕϕ)| ≥

∑
j∈M var(Cj)σ

√
Eo

j

θjE(Cj)

)
≤ 1

σ2
, (30)

where var(Cj) is the variance of estimated workload on RSU-
j with the expression of var(Cj) =

∑
k∈{j−1,j+1}[Pkj(1 −

Pkj)akj + Pjk(1− Pjk)ajk], σ>1.

Proof. Please refer to Appendix C. ■

Remark 2. Eq. (30) gives a bound on the optimality error in our
probability-based offloading approach. σ denotes the number
of standard deviations away from the mean. For instance, when
σ=2, the probability-based offloading approach has more than
a 75% chance of being within two standard deviations of the
true optimal value J∗(ϕϕϕ). A general trend in the optimality
error can be observed. Notice that var(Cj) is affected by P,
which is correlated with delay ratio ϵ and workload distribution

A. With a higher value of ϵ and uneven distribution of
workload in the exclusive areas (i.e., the variance of main
diagonal elements on A), we can see that Pjk approaches
either 0 or 1. Such a scenario gives a minor var(Cj), and our
task approach tends to reach the optimal point more closely.
Especially, when Pjk = {0, 1},∀j, k ∈ M, the overlapped
scenario degenerates to the non-overlapped one described in
Section IV-A. The influence of ϵ is also examined numerically
in Section V-D.

C. Overall solution algorithm

Based on the analysis in the above sections, we summarize
the overall solution and present the algorithms on vehicles and
RSUs, respectively.

Algorithm 1: TO coordination at RSU-j
Data: Updated location of the vehicle pi

Result: Probability P(j, :), P(:, j) and Lagrangian
variable λλλj

1 Collect the updated adjacency matrix A through the
offloading workload prediction;

2 Obtain offloading probability matrix P by solving (P5);
3 Update E(Cj) and λλλj through (24) and (20);
4 Broadcast P(j, :), P(:, j) and λλλj to the vehicles in

U(rj , dj);

Algorithm 2: TO and RA at vehicle-i
Data: Computation workload Ci, transmission data Li

Result: Control variable ϕij , uij and ωij

1 Collect the value of P(j, :), P(:, j) and λλλj from the
adjacent RSUs;

2 Select the probability-based offloading action ϕij ;
3 Obtain uij and T o∗

ij by solving (P3);
4 Obtain ωij by solving (P4);
5 Send requests to the corresponding RSU;

Algorithms 1 and 2 present the pseudo-code for the decen-
tralized joint task offloading and resource allocation solution in
one task period. The RSUs need to finish the coordination task
in Algorithm 1 first and broadcast the updated information
to the vehicles in their coverage areas, so that the vehicle
can determine the task offloading and resource allocation
action when the task arises. Note that all control variables
are determined in Algorithm 2 at the vehicles, which enables
the decentralized control with high efficiency.

V. PERFORMANCE EVALUATION

We simulate a stretch of a 1 km highway with 10 evenly
distributed RSUs. Each RSU is equipped with 10 Nvidia Jetson
TX2 NX modules2 as the edge computing server [11]. The
computing capacity of each module is 1 Gcycle/s, and the

2https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%
20Driver%20Package%20Development%20Guide/power management tx2
32.html

https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_tx2_32.html
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_tx2_32.html
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_tx2_32.html
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power consumption when fully utilized is 25W. Based on these
numbers, we can estimate the values of the corresponding
parameters shown in TABLE II. We set the allocated commu-
nication bandwidth of each vehicle as Bp =2 MHz, and the
average noise power δj=2× 10−13W. According to [15], the
nominal channel gain is expressed by the free-space path loss
model hij =g(||pi − rj ||)=Ad([3 · 108]/[4πfc||pi − rj ||])de ,
where Ad = 4.11 as the antenna gain, fc = 915 MHz as the
carrier frequency, and de = 2.8 as the path loss exponent. The
channel gains used in our model are then generated based on
Rayleigh fading channel model as hij = hijα, where α is
the independent random channel fading factor following an
exponential distribution with unit mean.

For realistic evaluation, we adopt the real-time energy man-
agement control module proposed in [43], where the power
and thermal management problem in a connected hybrid elec-
tric vehicle (HEV) system is investigated based on a model-
based optimization approach. Based on the type of task in [43],
the amount of data to be processed is known before starting the
execution, and the amount of data to be transmitted is Li=1
Mbits. From the numerical results shown in [43], we estimated
and selected the average required CPU cycle Ci of a task by
three levels with {1.5, 1.75, 2.0} Gcycles, where each level
represents a different planning horizon length. A random value
in the range of [−0.1Ci, 0.1Ci] is added to Ci to simulate the
uncertain convergence times for the optimization task. Without
loss of generality, the update of a motion planning iteration
is set to 2s, and it defines the task period and the completion
deadline ∆T . Similar simulation settings can be found in [6],
[19], [44], showing that the parameters defined in our task
model are realistic and have practical relevance. According to
[39], the limit on schedulability is approximately Uj=0.7.

To evaluate the efficiency of the proposed Decentralized
Offloading approach, we compare its performance against the
following baselines.

1) Random Offloading: Each vehicle is randomly assigned
an available offloading decision. Then each RSU inde-
pendently performs optimization on communication and
computation resources [45].

2) Myopic Offloading: Each vehicle is offloaded to the
nearest RSU. Then each RSU independently performs
resource optimization [9].

3) Enumeration method: An exhaustive search is per-
formed on all possible offloading decisions to find the
global optimum. Only scenarios with limited vehicles
are evaluated for this method due to its high computa-
tional complexity.

For each set of parameters, we randomly generate 50 traffic
scenarios. Only overlapped scenarios are evaluated and shown,
since the non-overlapped ones can be trivially decoupled. All
the optimization algorithms in the case study were executed
on a laptop PC with Intel(R) Core(TM) i5-8300H CPU @2.30
GHz, 4 cores, and 16.0 GB installed memory (RAM). After
simulations, the average performance is shown.

A. Analysis of Lagrangian variables
In Proposition 1, we study the Lagrangian variable and give

a closed-form expression. To validate the correctness, we first

TABLE II: Parameter value selection

Parameter Value
Number of RSUs, m 10
Number of vehicles, n [10, 80]
Required transmission data, Li 1 Mbits
Average computation workload, Ci {1.5, 1.75, 2.0} Gcycles
Effective switched capacitance of CPU, θj 2.5× 10−28

CPU frequency of RSU-j, fj 10 Gcycles/s
Maximal transmission power, pi 400 mW
Allocated channel bandwidth to vehicle-i, Bp 2 MHz
Average power of noise at RSU-j, δj 2× 10−13 W
Context transfer delay ratio, ϵ 0.05 s/Gcycles

compare values with the converged solution obtained by the
primal-dual gradient method, which is often applied in the
decomposition-based approach [46]. Note that our problem in
(P1) can also be adequately solved with the gradient method.
However, such approaches generally require a relatively long
time to converge to high accuracy iteratively; hence, we utilize
the primal-dual gradient method only for validation.

As shown in Fig. 5, when assigned with different energy
constraints (i.e., Eo

j ) and task loads (i.e.,
∑n

i=1 Ci), the
Lagrangian variable λj2 varies. The initial value of λj2 is
set to 0.1 with the initial step size SSk0

= 0.002. To better
illustrate the figure, we also halve the initial step size when
Eo

j >120 J to avoid oscillation and reach faster convergence.
To guarantee the convergence, we apply a diminishing step
size with SSk = SSk0

k−0.5+γ , where k is the iteration
number and γ = 0.3 is a positive constant. A larger γ gives
a larger step size and may lead to stronger oscillation. The
stopping criterion is based on ϵ-suboptimal [40], and the
relative tolerance is set to ϵrel=1×10−4. Some of the curves
have larger overshoots than others, mainly because the same
initial value of λj2 is applied. By examining the values from
(20), it can be confirmed that our derived values coincide with
the results from the primal-dual gradient method.

B. Optimization result and runtime comparison

To evaluate the optimality of our proposed method, we
compare its performance with other methods mentioned above.
Since the Enumeration method searches all possible offload-
ing decisions, and its runtime grows exponentially with the
increase of vehicle number, the number of vehicles is set to
30, and the number in overlapped areas is limited up to 15.
The response time is shown in Fig. 6. We respectively set
Ci=1.5, 1.75 and 2.0 Gcycles, and report the task response
time in 50 scenarios for each approach. With the increase of
the task workload, the task response time becomes longer.
Our proposed Decentralized Offloading performs closely
to Enumeration method, which searches over all possible
offloading decisions and has the best performance. Compared
to Myopic Offloading, Decentralized Offloading achieves
slightly shorter task response times in a decentralized way.

The average runtime per scenario finished by each algo-
rithm is reported in TABLE III. The Enumeration method
consumes the longest time, around 1000 times longer than
Decentralized Offloading, even for this light traffic scenario.
Decentralized Offloading runs faster than Myopic Offload-
ing, mainly because the resource allocation step is performed
decentralized in parallel at vehicles instead of at the RSU.
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Fig. 5: Comparison of λj2 under different conditions, SSk0
=

0.001 when Eo
j >120 J, otherwise SSk0

=0.002.

Fig. 6: Comparison of the response time per task for different
approaches, with error bars representing the ranges of perfor-
mance in 50 random scenarios and Eo

j =150 J.

TABLE III: Runtime comparison

Algorithm Runtime (s)
Random Offloading 0.152
Decentralized Offloading 0.190
Myopic Offloading 0.432
Enumeration method 212.6
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Fig. 7: Comparison of average response time per task with
different numbers of vehicles, Eo

j = 250 J. The average
workload Ci increases from 1.5 Gcycles to 2.0 Gcycles. (D:
Decentralized, M: Myopic, R: Random)

C. Effect of the number of vehicles

Fig. 7 shows the offloading behavior with different num-
bers of vehicles. When the number of vehicles is less than
40, the average response times of Decentralized Offloading
and Myopic Offloading differ slightly. In general, Myopic
Offloading has an advantage over Decentralized Offloading
when the number of vehicles is lower than 20, mainly because
in light traffic situations, every vehicle can share adequate
computing resources. In this regard, communication time has
a more significant influence on the performance compared
to computation time. Myopic Offloading offloads vehicle
tasks to the nearest RSU; thus, the communication delay
is minimized. However, when more vehicles offload under
the same constrained computation resources, Decentralized
Offloading has a better performance with a shorter completion
time. Especially when the number exceeds 50, vehicles in
overlapped areas can collaboratively select the offloading
destination and prompt load balancing among RSUs.

Since the energy, computation, and communication re-
sources are constrained in the above scenarios, with the
increase of vehicles, RSUs cannot serve all tasks and satisfy
the timing requirement simultaneously. Service outage [11]
happens when a task cannot be completed by the selected
RSU, which is evaluated by the number of failure cases over
the total number of vehicles. We consider it as the indicator
to assess the quality of service (QoS) loss. Fig. 8 shows the
service outage with different numbers of vehicles. Scenarios
with Ci=1.75 and 2.0 Gcycles are plotted as representatives.
When the number of vehicles increases, RSUs fail to handle
all tasks within the time constraint. The stochastic vehicle
locations and unbalanced traffic distribution can exacerbate the
problem. Random Offloading and Myopic Offloading have
similar outage rates with the absence of demand coordination
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and balancing. With the load forecast coordination, Decentral-
ized Offloading outperforms others significantly, especially
when the traffic density is high. This shows that our approach
can scale well with the number of vehicles.
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(b) Ci = 2.0 Gcycles

Fig. 8: Comparison of average service outage with different
number of vehicles, with Eo

j = 250 J. (D: Decentralized, M:
Myopic, R: Random)

D. Effect of RSU capacity and user preference

In this section, we fix the number of vehicles to 40, so that
the service outage problem when the task workload is high can
be mitigated. We try to examine the offloading performance
with varied RSU capacities in terms of CPU frequency fj and
energy consumption constraint Eo

j . Results are checked under
different task computation workloads Ci. Two types of RSU
configuration, homogeneous and heterogeneous servers [10],
are evaluated and compared. In the homogeneous scenario,
all servers have the same CPU speed of 10 Gcycles/s, while
the CPU speeds in the heterogeneous scenario are randomly
selected from {5, 10, 15} Gcycles/s. With the change of CPU
speed, energy constraint Eo

j is adjusted accordingly with
{125, 250, 375} J to keep the same level of stringency.

Average response times with the increase of Ci are shown in
Fig. 9. The performance obtained from the homogeneous sce-
nario is better than that in the heterogeneous scenario, mainly
because the latter scenario has an unbalanced deployment of
computation resources. Meanwhile, there is an increasing gap
between Decentralized Offloading and others with the growth
of task workload in both scenarios, and it is more apparent in
the heterogeneous scenario. This is because when vehicles are
close to RSUs with low computation capacities, Myopic Of-
floading selects the nearest one but Decentralized Offloading
may choose a further RSU to balance the workload. Thus the
latency performance gets improved.

The effect of user preference ηi in (6a) and context transfer
delay ratio ϵ are also studied, and the results are shown in
Fig. 10. We vary the values of weighted-sum parameter ηi in
Fig. 10(a). With the increase of ηi, the energy-saving demand
on communication is emphasized; thus, the advantage of De-
centralized Offloading over Myopic Offloading is decreased.
Fig. 10(b) shows the impact of the context transfer delay
ratio ϵ on the response time. Both Myopic Offloading and
Random Offloading experience a near proportional increase
with a higher ϵ, while Decentralized Offloading differs with
a sub-linear growth. It nearly reaches stabilized after ϵ > 0.2,
mainly because the solution of the task offloading optimization

1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5

Av
era

ge 
res

po
nse

 tim
e (

s)

A v e r a g e  t a s k  w o r k l o a d  ( G c y c l e s )

 D
 M  
 R

(a) Homogeneous RSUs

1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 . 00 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5
0 . 4 0
0 . 4 5

Av
era

ge 
res

po
nse

 tim
e (

s)

A v e r a g e  t a s k  w o r k l o a d  ( G c y c l e s )

 D
 M
 R

(b) Heterogeneous RSUs

Fig. 9: Comparison of average response time per task with
different task workloads, with Eo

j = 250 J and 40 vehicles.
(D: Decentralized, M: Myopic, R: Random)

(a) Comparison of average re-
sponse time with different ηi.

(b) Comparison of average re-
sponse time with different ϵ.

Fig. 10: Comparison of average response time with different
ηi and ϵ, with Eo

j =250 J, Ci=2.0 Gcycles and 40 vehicles.
(D: Decentralized, M: Myopic, R: Random)

problem tends to avoid offloading tasks to the receding RSU
to reduce the chance of context transfer.

E. Effect of energy constraint

In Fig. 11, the influence of the energy constraint on op-
timization performance is analyzed. We fix the number of
vehicles to 50 and Ci = 2.0 Gcycles. The values on the
horizontal axis decrease along the positive direction, indicating
a more constrained scenario. Fig. 11(b) compares the average
energy consumption at the RSUs, which is an indicator of load
balancing at the edge devices. Since there are 10 RSUs, from
(1) and (2), the average energy consumption per RSU is 250 J.
In Fig. 11(b), when Eo

j =500 J, all tasks can be executed with
the maximal frequency (i.e, uij =1), and the average energy
consumption reaches 250 J for all three policies. When the
energy constraint becomes more stringent, owing to the uneven
workload distribution among RSUs, tasks cannot be equally
solved with the same frequency, and the average utilization
gradually decreases. Among the three policies, Decentralized
Offloading has the best load balancing performance due to
the advantage in the task offloading. Fig. 11(a) evaluates the
average task response time when the energy constraint varies.
When the energy limit is high, all tasks can be computed with
adequate resources, and the average response time is short. In
such a scenario, Myopic Offloading performs slightly better
than Decentralized Offloading because Myopic Offloading
has a lower communication latency. However, when Eo

j gets
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(b) Energy consumption per RSU

Fig. 11: Comparison of time consumption and actual energy
consumption with different energy constraints, with Ci = 2.0
Gcycles and 50 vehicles. (D: Decentralized, M: Myopic, R:
Random)

smaller, Decentralized Offloading shows better performance
in terms of load balancing with a more rapid response time.

VI. CONCLUSION AND FUTURE WORK

This study investigates the optimal computation task of-
floading and resource allocation problem in vehicular edge
computing systems. A decentralized strategy is proposed to
minimize the overall response time while guaranteeing the
deadline and energy limitations. The original MINLP is con-
verted into tractable convex subproblems through hierarchical
decomposition, and it enables the problem to be solved in
a decentralized way at the vehicle side. Besides, we study
the coordination problem among RSUs with two deployment
architectures. A global coordination on load estimation in
multiple RSUs scenarios is reached. The probability-based
approach provides a near-optimal solution with high efficiency,
and the simulation results verify that our approach outperforms
baseline methods. In future work, the system’s reliability will
be investigated with the consideration of disturbances and
stochastic behaviors. We will also investigate how to deal with
offloading of safety-related tasks.

APPENDIX A
PROOF OF THE LEMMA 1

In (P1), the non-convexity manifests due to Ec
ij(rij). After

the substitution in Section III-A, rij is expressed by ωij . From
(11), we have

Ec
ij(ωij) = rijpiT

c
ij =

δjLiωij(2
1

Bpωij − 1)

hij
. (31)

By taking the second-order derivative of Ec
ij(ωij), we have

d2Ec
ij(ωij)

dωij
2 =

ln22 δjLi

hijBp
2

2
1

Bpωij

ωij
3

. (32)

From (10f), we can get the feasible range of ωij :

ωij ∈
(
0,
(
Bplog2

(pihij

δj
+ 1

))−1
]
. (33)

Since ωij is positive, we know (32) is always positive. Be-
sides Ec

ij(rij), other rij related elements, such as T c
ij(rij) in

(10a) and (10d), will be linear to ωij after the substitution.
Therefore, in (P2), the objective function and the inequality

constraints are all convex. Thus, (P2) is a convex problem. It
allows us to solve the primal via the dual.

APPENDIX B
PROOF OF THE PROPOSITION 1

We focus on the computation subproblem (P3) since the
communication part is not correlated with λλλj . The convexity
of (P3) can be examined similarly as in Lemma 1 by ex-
amining the Hessian as positive semidefinite. Let u∗ be the
optimal solution to the primal problem and λλλ∗

j be the optimal
solution to the dual problem. The Karush-Kuhn-Tucker (KKT)
conditions for the corresponding problem are

d(
∑

i∈Vj
T o
ij(u

∗
ij))

du∗ + λ∗
j1

d
(∑

i∈Vj
T o
ij(u

∗
ij)/∆T

)
du∗

+ λ∗
j2

d
(∑

i∈Vj
Eo

ij(u
∗
ij)

)
du∗ = 0,

(34a)

(10b), (10c),

λ∗
j1

(∑i∈Vj
T o
ij(u

∗
ij)

∆T
− Uj

)
= 0 (34b)

λ∗
j2

(∑
i∈Vj

Eo
ij(u

∗
ij)− Eo

j

)
= 0. (34c)

Eqs. (34b) and (34c) state the complementary slackness
conditions. In our problem, the energy constraint is lower
than the nominal power, which means it is always tighter than
the utilization constraint. Thus, the energy consumption will
exceed Eo

j before the utilization reaches the maximal threshold
Uj . We first assume the strong inequality holds for (10b)
by considering it as an inactive constraint. Since it does not
bind, we can conclude that λ∗

j1 = 0. Meanwhile, since (10c)
is an active constraint, to satisfy complementary slackness
conditions, we have:

∑
i∈Vj

Eo
ij(uij) − Eo

j = 0. From (34a),
we can obtain

u∗ =
1|Vj |

(2θjλ∗
j2)

1
3 fj

. (35)

Since ui ∈ (0, 1],∀ui ∈ u, we have

0 <
1n

(2θjλ∗
j2)

1
3 fj

≤ 1 ⇒ λ∗
j2 >

1

2θjfj
3 . (36)

Also, to make sure our assumption above holds, u∗ should
satisfy the strong inequality in (10b):∑

i∈Vj

Ci

u∗
ijfj

< Uj∆T ⇒ λ∗
j2 <

1

2θj

(
Uj∆T∑
i∈Vj

Ci

)3

. (37)

Therefore, the dual subproblem can be expressed as

max
λj2

g(λj2) = 3 · (2− 2
3 )

∑
i∈Vj

Ci(θjλj2)
1
3 − Eo

jλj2(38a)

s.t. (36), (37),

with variable λj2 ∈ R+. Thus, the optimal dual variable can

be found by: ∇g(λ∗
j2) = 0 ⇒ λ∗

j2 =

√
θj(

∑
i∈Vj

Ci)3

4(Eo
j )

3 .
In our problem, to meet the schedulability requirement,

the total computation task cannot exceed an upper bound

of:
∑

i∈Vj
Ci <

[
Eo

j (Uj∆T )2θ−1
j

] 1
3

, which is the maximal
capacity of an RSU under the energy constraint. Also, (36)
gives a lower bound of λj2. The satisfaction of both constraints
is examined in Section V.
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APPENDIX C
PROOF OF THE PROPOSITION 2

In the graph G, RSU-j connects to RSU-(j-1) and RSU-
(j+1). Expand (24) with only the nonzero elements, we have

E(Cj) = ajj + a(j−1)jP(j−1)j + a(j+1)jP(j+1)j

+ aj(j−1)[1− Pj(j−1)] + aj(j+1)[1− Pj(j+1)].
(39)

Besides the self edge ajj , the offloading workload on
RSU-j is from four connected edges. With the probability-
based offloading policy, it can be seen that, each of them
follows the binomial distribution, e.g., a(j−1)jP(j−1)j ∼
B(a(j−1)j , P(j−1)j). Eq. (39) gives the total offloading ex-
pected demand on RSU-j, and its summation follows the
Poisson binomial distribution, with the mean value of µ(Cj) =
E(Cj), and the variance is calculated as

var(Cj) = A(:, j)⊤[P(:, j) ◦ (1− P(:, j))]

+A(j, :)[P(j, :) ◦ (1− P(j, :))]⊤

=
∑

k∈{j−1,j+1}
[Pkj(1− Pkj)akj + Pjk(1− Pjk)ajk],

(40)

where operator ◦ denotes Hadamard product.
The ideal computation delay in J∗(ϕϕϕ) is represented by

(27) with the expected workload E(Cj), and the actual of-
floading workload Cj is expressed as a Poisson binomial
distribution.With Assumption 1, an approximate optimal value
difference between J(P∗) and J∗(ϕϕϕ) can be written as

J(P∗)− J∗(ϕϕϕ) ≃
∑
j∈M

√
θjE(Cj)

Eo
j

(
Cj − E(Cj)

)
. (41)

From Bienaymé-Chebyshev inequality [47], we can find an
estimate of the optimal value error:

Pr

(
|J(P∗)− J∗(ϕϕϕ)| ≥

∑
j∈M var(Cj)σ

√
Eo

j

θjE(Cj)

)
≤ 1

σ2
, (42)

where σ > 1 is a parameter to represent the number of
standard deviations from the mean value.
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