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Abstract—Time Synchronization Attacks (TSAs) against Pha-
sor Measurement Units (PMUs) constitute a major threat to
modern smart grid applications. By compromising the time
reference of a set of PMUs, an attacker can change the phase
angle of their measured phasors, with potentially detrimental
impact on grid operation and control. Going beyond traditional
residual-based techniques in detecting TSAs, in this paper we
propose the use of Graph Signal Processing (GSP) to model the
power grid so as to facilitate the detection and localization of
TSAs. We analytically show that modeling the state of the power
system as a low-pass graph signal can significantly improve the
resilience of the grid against TSAs. We propose TSA detection
and localization methods based on GSP, leveraging state-of-the-
art machine learning algorithms. We provide empirical evidence
for the efficiency of the proposed methods based on extensive
simulations on five IEEE benchmark systems. In fact, our
methods can detect at least 77% more TSAs of significant impact
and localize an additional 70% of the attacked PMUs compared
to state-of-the-art techniques.
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I. INTRODUCTION

Wide Area Monitoring Protection and Control (WAMPAC)
systems rely heavily on Phasor Measurement Units (PMUs) to
enable a plethora of smart grid applications. With streaming
rates of up to tens of measurements per second, PMUs offer
much higher situational awareness than traditional Supervisory
Control And Data Acquisition (SCADA) measurements. To
provide accurate, timestamped, high-rate measurements of
voltage and current phasors, precise time synchronization is
essential for PMUs for which they can rely on space-based
time synchronization (SBTS) or network-based (NBTS) mech-
anisms [1]. In the case of SBTS, a PMU synchronizes itself to
the time reference received from a set of GPS satellites, which
are equipped with accurate atomic clocks. In NBTS, the PMU
clock acts as a slave device and adjusts its time to a reference
received from a master clock device, which is equipped with
an accurate clock. The most prominent protocol for NBTS
is the Precision Time Protocol (PTP), and is able to achieve
sub-microsecond time synchronization accuracy.

A major drawback of both synchronization mechanisms is
the absence of integrated security controls, and therefore, both
mechanisms have been shown vulnerable to Time Synchro-
nization Attacks (TSAs) [2]. Civilian GPS signals used for
SBTS are unauthenticated, and thus vulnerable to spoofing

attacks [3]. PTP used for NBTS is vulnerable to software
compromise [4] and to delay manipulations using, e.g., delay
box insertion [5], despite the support for optional message
authentication in the latest version, PTPv2.1.

In principle, applying Linear State Estimation (LSE) and
associated Bad Data Detection (BDD) methods on the PMU
measurements may detect TSAs [6], [7]. Nevertheless, re-
cent work has shown that LSE is vulnerable to undetectable
TSAs [8], [9], i.e., TSAs can be constructed such that they do
not change the measurement residuals, and thus can bypass
LSE-based BDD methods. The detection and localization of
TSAs, i.e., identifying the attacked PMUs, are thus challenging
open issues, at the same time they are of utmost importance
to power system operators.

In this paper, we address the problem of detecting and
localizing TSAs based on the framework of Graph Signal
Processing (GSP) [10] for power grids [11], [12], and make
three major contributions:

1) We extend the GSP framework for detecting TSAs by
proposing novel detection metrics that capture the effect
of a TSA.

2) We further exploit the GSP framework to propose meth-
ods for effectively localizing an attack.

3) We employ machine learning (ML) algorithms that lever-
age GSP features to further improve the detection and
localization performance.

Unlike most of the previous work in the detection of TSAs,
the proposed approach relies on data that is readily available to
the system operator, works irrespective of the employed time
synchronization mechanism, and does not require the use of
larger system models [13]. Our numerical results show that the
proposed methods outperform state-of-the-art TSA detection
and localization methods.

The rest of this paper is organized as follows. Section II
reviews prior work in the field of TSA detection and lo-
calization, as well as previous work using GSP in power
systems. Section III presents the system and attack models.
Section IV reviews concepts from GSP and motivates its
use for detection and localization. The proposed GSP-based
approaches for detecting and localizing TSAs are described
in Section V, and evaluated and compared to state-of-the-art
methods in Section VI. Section VII concludes the paper.

II. RELATED WORK

The detection, localization, and correction of attacks against
measurement integrity in power systems has received sig-
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nificant attention in recent years [14], including attacks that
bypass residual-based BDD methods, often called False Data
Injection Attacks (FDIAs). FDIAs can target DC state estima-
tion [15], [16], AC state estimation [17], [18], as well as PMU-
based LSE [19]. Moreover, these attacks can bypass BDD
methods even if only a few measurements are manipulated
by the attacker [20], [21]. Research on the detection and
protection against FDIAs focus on physical protection of
strategically chosen sensors [16], [22], detection based on
alternative state estimation models [23], [24], and data-driven
detection [25]. One recent promising approach for detecting
FDIAs is the framework of Graph Signal Processing [11],
[26], which was also proposed for detecting anomalies in
PMU data [27]. Importantly, [12] introduced the Grid-GSP
framework and showcased the performance of GSP in different
smart grid applications.

Due to the special nature of time synchronization attacks,
the detection and localization of TSAs has often been studied
separately from FDIAs. A number of works considered de-
tecting TSAs using data from the PMU clock synchronization
system [28], [29]. These approaches inherently localize the
attacked PMUs, as the detection is per PMU, but are de-
pendant on the underlying synchronization mechanism. For
example, [28] detects GPS spoofing attacks by leveraging the
fact that PMU locations are known, and hence the set of visible
satellites at a given point in time can be estimated, as well as
observing changes in the received GPS signal statistics. For
time synchronization using PTP, [29] proposes the introduc-
tion of devices called “guard clocks” to the network in order
to detect time reference manipulations.

An independent line of works analyze the effect of TSAs
on PMU and SCADA measurements. Authors in [30] propose
correcting a TSA, assuming that only one measurement is
attacked. They do so by formulating an optimization prob-
lem with the objective of minimizing the SE residuals as
a function of the attack phase angle shift. This approach
is generalized by [6] to the case when multiple measure-
ments are attacked. The proposed solution first identifies the
attacked measurements by analyzing the SE residuals, and
then corrects the phase angles of the identified measurements
similar to [30]. Another residual-based approach is [31] which
proposes the identification of the attacked measurements by
observing the residuals of slightly perturbed measurements.
Moreover, [32] proposes the detection of TSAs by estimating
the rotor angles of the generators using dynamic state estima-
tion utilizing fused PMU and SCADA measurements. Authors
in [33] developed an alternating minimization approach to
reconstruct and correct a TSA. Authors in [34] follow a two-
step approach, which first identifies attacked PMUs using SE
residuals, and then finds the sparsest TSA against the identified
measurements. The paper also provides formal conditions on
the network topology, PMU locations, and the number of
spoofed PMUs, under which TSAs are identifiable using the
proposed approach. The same approach was used in [35] on a
low-dimensional representation of PMU data learned through
Principal Components Analysis. Finally, [36] leverages PMU
measurements at both ends of a transmission line to correct
TSAs by assuming that the line admittance is unchanged

during short periods of time.
Several works proposed combining information from the

time synchronization system and PMU measurements to detect
and localize TSAs. For instance, [37] proposed evaluating the
trustworthiness of a PMU based on analyzing the Carrier-to-
Noise Ratio of the received GPS signals at the physical layer
and employing BDD on the measured data. The approach
proposed in [38] detects TSAs by monitoring the correlation
between frequency adjustments made to the PMU clock and
the changes in phase angle measured by the PMU.

All of the aforementioned works mainly consider the de-
tection and localization of naive TSAs that affect the SE
residuals, but they do not consider the detection of TSAs
that are constructed to be undetectable by traditional BDD
methods [8], [9].

III. SYSTEM MODEL

A. Power System and State Estimation Model

We consider a power system with N buses that is observable
using a set M (|M| = M ) of voltage and current mea-
surements taken by a set T (|T | = T ≤ M ) of PMUs.
Let Mτ denote the set of measurements taken by PMU
τ ∈ T . The relation between the measurements and the system
state (voltage phasors at each bus) is captured by the linear
measurement model

z = Hx+ e, (1)

where z ∈ CM are the measurements from PMUs, H ∈
CM×N is the complex measurement matrix, x ∈ CN is the
system state and e is white Gaussian measurement noise. The
PMU measurements could be nodal voltage phasors, branch
current phasors, or nodal current injection phasors. Based
on (1), Linear State Estimation (LSE) can be performed to
compute a Least Squares (LS) estimate x̂ of the system state

x̂ = (H†H)−1H†z,

where H† is the conjugate transpose of H . The estimation
residual r = Hx̂ − z is typically used by BDD algorithms
(e.g., the Largest Normalized Residual (LNR) and χ2 test [39])
to detect faulty data. Faulty data means that the measurements
do not match the measurement model (1), and thus leads to a
relatively high r. Defining the verification matrix F ∈ CM×M
as

F = H(H†H)−1H† − IM

allows to express the residual as r = Fz, where IM is the
M ×M identity matrix.

B. Attack Model

We consider an attacker that is able to manipulate the time
reference of a set P of PMUs (P ⊆ T , |P| = P ) measuring
the set MP of measurements. The dependence of measure-
ments on the attacked PMUs can be captured by the attack-
measurement matrix Ψ ∈ {0, 1}M×P such that Ψm,p = 1
if measurement m ∈ M is measured by PMU τp ∈ P and
Ψm,p = 0 otherwise. For each attacked measurement m ∈
MP , the TSA will shift the phase angle of the phasor zm by
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an angle αm while leaving the phasor magnitude unchanged.
Thus the attacked measurement becomes zam = zme

jαm .
Note that αm = 0 if m /∈ MP . The resulting measurement
vector za is given by za = (za1 , . . . , z

a
M )> = z � u, where

u = (ejα1 , . . . , ejαM )> is the attack vector, > is the transpose
operator, and � is the Hadamard product. We further define
uP ∈ CP as the subvector of u including only indices in
MP .

In practice, a TSA can be implemented by various means
depending on the utilized time synchronization mechanism.
For SBTS, the attacker can transmit a fake GPS signal that
is stronger than the legitimate GPS signal and cause the GPS
receiver in the PMU to track the wrong signal, thus potentially
losing synchronization. This attack is known in the literature
as the GPS spoofing attack [40]. For NBTS, the attacker
can manipulate synchronization messages sent to PTP slaves
(i.e., PMUs), to include incorrect timing information [4].
Alternatively, an attacker can manipulate a wired network
using PTP by inserting a delay box [5], which is a device
that can be connected to, e.g., a bidirectional optical fiber
connection to create asymmetric delays, by having unequal
fiber length in the two directions.

C. Undetectable TSAs

In general, an attacked measurement vector za is expected
to have a different residual Fza 6= Fz, and the different
residual may trigger an alarm by BDD algorithms. This is,
however, not the case for so called undetectable TSAs.

Definition 1. A TSA against a set P of PMUs is undetectable if
it does not change the measurement residual, i.e., Fz = Fza.

The necessary and sufficient condition for a TSA to be
undetectable can be formulated as follows [8].

Lemma 1. A TSA against a set P of PMUs is undetectable
if and only if the vector uP ∈ CP satisfies

W (uP − 1) = 0, (2)

where W = ΨT diag(z)†F †F diag(z)Ψ is the complex
attack angle matrix, W ∈ CP×P , and is Hermitian, and
1 and 0 are the P -dimensional vectors of ones and zeros,
respectively.

When rank(W ) = 1, undetectable TSAs can easily be
computed [9], as only one row of W has to be considered
in (2). If rank(W ) > 1 then approximately undetectable
attacks can be computed using a rank-1 approximation of
W [8].

In order to quantify the vulnerability of a set P of PMUs,
the singular value decomposition of the corresponding W
matrix is examined. Let σi(W ) be the ith singular value of
W . Authors in [8] introduced the Index of Separation (IoS)
metric as the ratio of the largest singular value and the sum
of singular values of W ,

IoSP =
max
i
|σi(W )|∑P

i=1 |σi(W )|
. (3)

The closer the IoS to 1, the closer rank(W ) is to 1, and the
more vulnerable P is to undetectable TSAs. Note that the IoS
value will depend on the measurement vector z. To quantify
the vulnerability of P irrespective of z, [41] introduced an
analogous metric, the Effective Rank Ratio (ERR), as

ERRP =
max
i
|σi(F̃ )|∑P

i=1 |σi(F̃ )|
, (4)

where F̃ ∈ CM×|MP | is the submatrix of F including only
columns in MP . Again, the closer ERRP to 1, the more
vulnerable P is to undetectable TSAs. Previous works utilizing
IoSP and ERRP have used threshold values between 0.99 and
0.999 as an indication of vulnerability [13], [41].

D. Problem Formulation

Our objective is to detect and localize TSAs, including
undetectable and approximately undetectable TSAs, i.e., TSAs
where IoSP and ERRP are equal to or close to 1, respectively.
Formally, a detector is a function D : CM → {0, 1} that
outputs whether a measurement vector z ∈ CM was compro-
mised by a TSA. Simiraily, localization can be represented
by set valued function L : CM → {0, 1}T , i.e., it outputs
for each PMU τ ∈ T whether or not its time reference has
been compromised, and hence the set P of attacked PMUs. In
Section V, we propose detectors D and localization functions
L based on a combination of Graph Signal Processing (GSP)
and Machine Learning (ML). Before that, we present a brief
review of the GSP Framework for the Power Grid.

IV. RATIONALE FOR DETECTION USING GRAPH SIGNAL
PROCESSING AND METHODOLOGICAL BACKGROUND

Several previous works dealing with PMU data have ob-
served that the state vector x lies in a lower dimensional
subspace [42]–[44]. This observation was leveraged using
principal component analysis (PCA) for the recovery of miss-
ing data [42], event detection [43] and attack detection [44].
PCA does, however, not leverage knowledge of the structure
of the low dimensional subspace. By considering PMU data
as signals on a graph, i.e., the power grid, this structure can
be made explicit and can be utilized for detecting attacks [11].
To make the argument more formal, we now review concepts
from Graph Signal Processing (GSP) [10] that underlie the
detectors we propose.

A. GSP Preliminaries

The GSP framework for power systems, introduced in [12],
models the power grid as an undirected graph G = (N , E),
where nodes (vertices) N are buses, |N | = N and edges E
are transmission lines. A graph signal is defined as a vector
of values indexed by the vertices of the graph. In this context,
the state vector x ∈ CN is a graph signal with respect to the
power grid.

Analogous to the time shift operator considered in discrete-
time signal processing (DSP), a graph shift operator (GSO),
Y ∈ CN×N , is defined for subsequent GSP operations as a
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linear operator, which when applied to a graph signal x, pro-
duces a shifted graph signal Y x whose entries at the vertices
are a linear combination of the values at their corresponding
neighboring vertices. Typically, the graph adjacency matrix or
the graph Laplacian matrix is considered as the GSO [10].
For the power grid, we consider the complex-symmetric bus
admittance matrix, Y ∈ CN×N to be the GSO since the
bus admittance matrix is equivalent to the weighted graph
Laplacian associated with the power grid,

[Y ]ij =

{
−yij , i 6= j, (i, j) ∈ E∑
k|(i,k)∈E yik i = j.

(5)

where yij is the the admittance of the branch connecting
buses i and j. With the help of the GSO, we can define the
graph Fourier transform (GFT) and the graph frequencies by
considering the eigenvalue decomposition of the GSO,

Y = UΛU>. (6)

In the GSP literature, the eigenvector matrix U is defined
as the GFT basis. This concept was adopted so as to be
analogous to DSP, where the Fourier basis corresponds to the
eigenvectors of the Laplacian matrix of a directed circular
graph where each node represents a particular time index
of a periodic signal. Similarly, the eigenvalues of the GSO
on the diagonal of Λ are called graph frequencies to be
consistent with time-domain where the frequency is derived
as a function of eigenvalues of the Laplacian matrix of a
directed circular graph [45]. The ordering of graph frequencies
is based on the total variation (TV) criterion ‖Y x‖1, which
characterizes the smoothness in a graph signal. If neighboring
node values are similar, then the graph signal is considered
smooth. The ascending order of graph frequency magnitudes,
|λ1| ≤ |λ2| · · · ≤ |λN |, corresponds to increasing graph
frequencies1. With that, the GFT of a graph signal x is defined
as

x̃ = U>x, x = Ux̃, (7)

and entries in x̃ are the graph Fourier (GF) coefficients.

Next, we review properties of graph filters that we use in
attack detection. Like in DSP, a linear shift-invariant graph
filter H(Y ) has the property that the application of a GSO Y
to the input of the filter is the same as applying the shift to the
output of the filter, i.e., x = H(Y )s ⇐⇒ Y x = H(Y )Y s.
Such graph filters can be written as a matrix polynomial in
the GSO Y , i.e.,

H(Y ) =

N−1∑
i=0

hiY
i = U

(
N−1∑
i=0

hiΛ
i

)
U>, (8)

where {hi}i are the filter coefficients. The transfer function
of H(Y ) is h(λ) =

∑N−1
i=0 hiλ

i. The graph filtering operation
with input s, i.e. x = H(Y )s, can also be described in the

1When the eigenvalues are complex-valued, the ordering may not be unique
since two distinct eigenvalues may have the same magnitude. Such ties can
be broken by comparing either the real or imaginary parts as applicable.

graph frequency domain by observing from (8) that

U>x = U>H(Y )s =

(
N−1∑
i=0

hiΛ
i

)
U>s (9)

x̃ = h(λ)� s̃, (10)

where h(λ) is the vectorized transfer function of H(Y ) with
[h(λ)]i = h(λi) and s̃ is the GFT of the filter input. In (10),
the graph frequency components of the filtered graph signal
x̃ are the product of the transfer function of the filter and
the graph frequency components of the input signal. With the
help of the graph filter transfer function h(λ), analogous to
its discrete-time counterpart, we can define low, high, and
band-pass graph filters. In this work, we will use low-pass
and high-pass graph filters. The ideal low-pass filter with a
cutoff graph frequency λk is such that h(λi) = 1,∀i < k and
zero otherwise. The ideal high-pass and band-pass filters are
analogously defined.

B. GSP-based Generative Model for the State Vector x

GSP can be used for defining a generative model for the
voltage phasor state vector x [12]. The generative model stems
from rewriting Ohm’s law. By considering the vector of current
phasors as the input s, the state vector can be written as the
output of a graph filter,

x = H(Y )s, H(Y ) , Y −1, h(λ) = λ−1. (11)

Consider now the transfer function h(λ), and note that the
response is inversely proportional to eigenvalues of Y . In
practice, most transmission grids are organized as commu-
nities with weak connectivity [46] and therefore the system
admittance matrix (i.e., the GSO), Y , tends to be sparse. Due
to this, the condition number of Y is high and thereby the
spectrum is such that the magnitude of eigenvalues exhibit a
rapid decaying trend when arranged in descending order as
shown in [12]. Hence, it is reasonable to consider that H(Y )
is an approximate low-pass filter.

The above observation makes it possible to construct an
approximate model for the system state. Let Hk(Y ) be a low-
pass filter with cutoff frequency λk, with transfer function
hk(λi) = λ−1i , i ≤ k and zero otherwise. Also, let Λk

be the diagonal matrix of eigenvalues with entries λi, i =
{1, 2, . . . , k}. Then, we can write

x ≈ Hk(Y )s = U

[
Λ−1k 0

0 0

] s̃︷ ︸︸ ︷
U>s ≈ UkΛ−1k s̃k, (12)

where Uk ∈ CN×k, k < N is the submatrix of the GFT
basis U or eigenvectors corresponding to the first k graph
frequencies and s̃k are the first k graph frequency components
of the input s (current phasors). From (12), we postulate that
the state vector x lies approximately in a low-dimensional
subspace spanned by Uk. This approximation was empirically
verified in [12] and is confirmed in Section VI.

Consequently, x is approximately a low-pass graph signal,
and the GF coefficients x̃ have negligible magnitude as the
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graph frequency increases, i.e.,

|{x̃}i| � |{x̃}k|, k < i ≤ N (13)

Thus, we can approximate the state vector as

x ≈ Ukx̃k. where x̃k = Λ−1k s̃k, (14)

and we can approximate the measurement model (1) as

z ≈Hkx̃k + e, (15)

where Hk = HUk.
Having reviewed the low-pass GSP generative model for

the state vector, in the following section, we describe the
components of the proposed TSA detection and localization
approach using the aforementioned GSP model.

V. TSA DETECTION AND LOCALIZATION USING GSP

Leveraging the GSP based measurement model in (15), the
state estimation problem can be solved for the vector x̃k,
which is of lower dimension, instead of x. This model restricts
the space of feasible measurements z to a lower dimensional
subspace compared to (1). The corresponding residuals will
thus be

rk = Fkz, Fk = Hk(H†kHk)−1H†k − IM , (16)

and Fk ∈ CM×M is the GSP-based verification matrix. We can
use the GSP based verification matrix to provide an alternative
to Definition 1 for the undetectability of TSAs, as follows.

Definition 2. A TSA against a set P of PMUs is k-
undetectable if and only if it does not change the GSP
measurement residual considering k graph frequencies, i.e.,
Fkz = Fkz

a.

Observe that for k = N the definition above is equivalent to
Definition 12. For k < N the two are not equivalent, however,
as we show in the following. We start with a technical result
concerning the rank of Fk.

Lemma 2. Consider that the system is observable for a set
of M measurements, M ≥ N , i.e., rank(H) = N . Then
rank(Fk) > rank(F ).

Proof. Since rank(H) = N , rank(F ) = M − N as F is a
projection matrix for the space orthogonal to the space spanned
by H . Also, rank(Hk) ≤ min(rank(H), rank(Uk)) =⇒
rank(Hk) ≤ k. Therefore, rank(Fk) ≥M − k. Since k < N ,
rank(Fk) > rank(F ).

Lemma 2 implies that the dimension of the null-space of
Fk is smaller than that of F i.e.

rank(Fk) > rank(F ) =⇒ nullity(Fk) < nullity(F ), (17)

which means that a solution for ∆z = (za − z) that satisfies
Fk∆z = 0 has to lie in a lower-dimensional subspace than a
solution that satisfies F∆z = 0. Consequently, by choosing
a small enough value of k the dimension of the solution can
be brought to zero (i.e. rank(Fk) = M =⇒ nullity(Fk) =

2It is equivalent if U is an invertible matrix. This is true for most power
grid topologies since the admittance matrix Y is generally diagonalizable.

0). This means that even if the attacker knows the value of
k chosen by the operator, they could be constrained by the
dimensionality of the solution ∆z.

Our next result shows that Definitions 1 and 2 are indeed
not equivalent, as k-undetectability implies undetectability, but
the converse need not be true.

Proposition 1. k-undetectability implies undetectability, i.e.,
Fk∆z = 0 =⇒ F∆z = 0, but F∆z = 0 6=⇒ Fk∆z = 0.

Proof. Assume that Fk∆z = 0 =⇒ ∆z = Hkc for some
state c. However,

∆z = Hkc = HUkc︸︷︷︸
,ck

=⇒ F∆z = 0. (18)

Thus, Fk∆z = 0 =⇒ F∆z = 0. Now, let F∆z = 0. This
means that there is a modified state xa such that ∆z = Hxa.
Let us use the GFT basis from (7) for rewriting the modified
state,

xa = Ux̃a = Ukx̃ak +UN−kx̃aN−k, (19)

where UN−k are columns of U corresponding to (k + 1)th

graph frequency or eigenvalue and above. Thus we obtain

∆z = HUk︸ ︷︷ ︸
=Hk

x̃ak +HUN−kx̃aN−k. (20)

Multiplying both sides by Fk we get

Fk∆z = 0 + FkHUN−kx̃aN−k. (21)

Observe that the term FkHUN−kx̃aN−k need not be zero,
and thus F∆z = 0 6=⇒ Fk∆z = 0, which concludes the
proof.

From the proposition above, one can also conclude that
undetectable TSAs against Fk form a subset of those against
Fk+1. If the attacker is aware of the utilization of the GSP
framework for detection, it needs to ensure k−-undetectability
for the attack to be undetectable when the GSP-based veri-
fication matrix Fk is used for k− ≤ k. However, Lemma 2
implies that the attacker is more constrained in finding attack
vectors as the value of k decreases, due to dimensionality
reduction of feasible solutions for ∆z. Thus, smaller k is
desirable to constrain the attacker. However, from (14), we
see that a smaller k translates to higher model approximation
error. Therefore the operator has to choose k by striking a
balance between the two aspects.

A. Detection of TSA using GSP Framework

We now propose four GSP-based methods to detect TSAs.
All proposed methods output a detection score D̂ that corre-
sponds to the certainty of a TSA against the measured data.
The interrelation between the proposed detection methods is
shown in Figure 1

1) GSP Residuals (GSP-R): This method uses the GSP-
based verification matrix Fk to obtain the GSP residual rk

using (16). The detection score is then computed as the largest
magnitude of elements in rk, i.e., D̂ = maxi∈M|rki |.
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Fig. 1: A block diagram showing the interrelation between the proposed detection and localization methods.

2) GSP-based High-pass Filter (GSP-HP): Since the true
state vector x is approximately low-pass, TSAs can be de-
tected if the calculated energy of the estimated state after
passing it through a high-pass graph filter is high. Consider
the estimated state using the attacked measurements za,

x̂a = (H†H)−1H†za, x̂a ∈ CN (22)

Define an ideal high-pass filter with cut-off frequency index
j < N , HHPF(Y ) so that hHPF(λi) = 1, i > j and zero
otherwise. Let x̂a be input to HHPF(Y ). Then,

da , HHPF(Y )x̂a, d̃a = hHPF � (U>x̂a), (23)

where d̃a is the graph frequency response of da. Since
the high-pass filter is ideal, d̃a contains the high-frequency
(i > j) coefficients of U>x̂a. Consider now the test metric
or detection score

D̂ , ‖hHPF �U>x̂a‖22 (24)

= ‖hHPF �U>(H†H)−1H†z‖22. (25)

Since x is an approximately low-pass graph signal, D̂ is lower
when there is no attack as compared to when measurements
are attacked.

3) Machine Learning using GSP Residuals (ML-GSP-R):
Despite the evident advantage of using the GSP residuals
rk computed using (16) and graph frequency components
U>x̂ over traditional LSE residuals r in detecting TSAs,
changes in the GSP metrics may often be too small to raise
an alarm. As a solution to this problem, we propose to use a
supervised machine learning model for attack detection. We
performed initial experiments with Artificial Neural Network
(ANN) classifiers and Random Forest (RF) classifiers [47].
We found that ANNs did not outperform RFs, and we thus
opted for RF due to its shorter training time and its robustness
to over-fitting. Given feature vectors F ∈ R2M , i.e., the
real and imaginary parts of the GSP resdiduals rk, computed
using (16), and corresponding ground-truth detection labels
D ∈ {0, 1}, the random forest is trained to produce a detection
score D̂ ∈ [0, 1], s.t., D̂ ≈ D.

4) Machine Learning using Graph Fourier Transform (ML-
GFT): Similar to ML-GSP-R, the detection is done using a

RF classifier, but with the real and imaginary parts of the
GFT of the state estimate, i.e., U>x̂, hence the input features
F ∈ R2N .

B. Localization of TSA using GSP Framework

We propose three TSA localization methods based on GSP.
Similar to the TSA detection methods, the proposed TSA
localization methods output a localization score L̂τ for each
measurement / PMU τ reflecting the certainty that τ is
attacked. The interrelation between the proposed localization
methods is shown in Figure 1

1) GSP-R: The localization score L̂ ∈ RM is computed as
the magnitude of the GSP residuals, i.e., L̂τ = |rki |.

2) ML-GSP-R: The localization score is computed by an
ANN, which takes as input features F ∈ R2M the real
and imaginary parts of the GSP residual rk computed using
(16), and is trained to perform multi-label classification with
labels L ∈ {0, 1}T and scores L̂ ∈ [0, 1]T . For a PMU
τ ∈ {1, . . . , T}, L indicates whether τ is attacked (Lτ = 1)
or not attacked (Lτ = 0). The model is trained to produce
L̂ ≈ L.

3) ML-GFT: Similar to ML-GSP-R, the localization is
done using an ANN, but using as input features the real and
imaginary parts of the GFT of the state estimate, i.e., U>x̂,
hence the input features F ∈ R2N . The labels are the same
as for ML-GSP-R.

VI. NUMERICAL RESULTS

In this section we evaluate the proposed detection and
localization algorithms, and compare them to the state-of-the-
art methods in the field. All simulations were carried out on
a notebook with Intel Core i7-8550 CPU @ 1.8 GHz and 16
GB of RAM.

A. Evaluation Methodology

We considered two IEEE benchmark power systems for the
evaluation of the proposed TSA detection and localization
approaches, namely the IEEE 14-bus system (N = 14) and
the IEEE 39-bus system (N = 39).
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For the IEEE 14-bus system, we considered a PMU allo-
cation with M = 16 measurements taken by T = 10 PMUs;
8 nodal voltage measurements at buses {1, 2, 4, 7, 8, 11, 12,
14}, and 8 current injection measurements at buses {2, 4, 6,
7, 8, 9, 11, 12}.

For the IEEE 39-bus system, we considered a PMU alloca-
tion with M = 47 measurements taken by T = 33 PMUs; 24
nodal voltage measurements at buses {1, 6, 8, 12, 13, 14, 15,
16, 17, 19, 20, 23, 24, 25, 28, 30, 31, 32, 33, 34, 35, 37, 38,
39} and 23 current injection measurements at buses {2, 3, 5,
6, 8, 9, 10, 13, 16, 17, 19, 21, 22, 23, 24, 25, 27, 28, 34, 35,
36, 37, 38}. For both systems, the considered PMU allocations
ensure the observability of the system, i.e., rank(H) = N .
Moreover, no single measurement is allowed to be a critical
measurement, i.e., the removal of any single measurement
will not render the system unobservable. Formally, this last
constraint means that the removal of any row of H will
not decrease its rank. Moreover, we assume that voltage and
current measurements taken by the same PMU share the same
time reference. Thus, an attack targeting such a PMU will shift
the phase angle of both measurements with the same attack
angle α.

To model the two systems with GSP, the values of the
cut-off frequency index k were chosen to achieve the best
separation between attacked and non-attacked measurements
in our datasets, as shown in Figure 2. The procedure for
generating the dataset is shown later. In the figure, the average
`2-norm of the GSP residual over the datasets is shown as a
function of the parameter k. As seen from the figure, most
values of k achieve good separation between attacked and non-
attacked samples in the IEEE 14-bus system. We choose the
value of k = 8 as an intermediate value. On the contrary,
for the IEEE 39-bus system, only 32 ≤ k ≤ 38 can achieve
acceptable separation between the attacked and non-attacked
measurements. Therefore, we choose the value k = 35.

To characterize the vulnerability of the considered allo-
cations, we computed the vulnerability metric ERR for all
possible combinations of triplets (P = 3) of PMUs based
on F and based on Fk. Figure 3 shows the distribution of
ERR based on F and Fk. It allows us to conclude that the
ERR values computed with respect to Fk are significantly
lower, suggesting the GSP-based residual Fkz is more likely
to change significantly due to a TSA. This is also aligned
with the implications of Lemma 2 and Proposition 1 which
characterize the difficulty an attacker has in constructing
attacks when Fk is used as the verification matrix.

To generate PMU measurements for both the power sys-
tems, we used MATPOWER [48] base load power injections
for the IEEE 14-bus and IEEE 39-bus cases and modified
the power injections at a number of load buses in order to
simulate a variety of system states. The number of modified
load buses followed a discrete uniform distribution with end
points 0 and N , and the injected powers, both real and reactive,
were changed by scaling the base load power by a factor
sampled from a uniform distribution with end points 0.5 and
1.5. Then, through a load flow analysis, the system state x was
recomputed. The voltage and current injection measurements
were generated according to the measurement model H and

ERR
IEEE 14-bus IEEE 39-bus
≤ 0.99 > 0.99 ≤ 0.99 > 0.99

I ≥ 100 606 655 1293 121
10 ≤ I < 100 1026 713 1837 209

I < 10 2423 2077 3010 1030

TABLE I: Number of sampled TSAs categorized based on the
vulnerability index ERR and the attack impact.

noise was added to the phasors according to the level of noise
of 0.1-class PMUs. For each power system, we generated a
non-attacked dataset containing 15000 measurement samples.
Next, the following procedure was adopted to simulate TSAs.
For each measurement sample in the non-attacked dataset,
we randomly sampled a set P of P = 3 PMUs to attack
from the T available PMUs, resulting in 3 ≤ |MP | ≤ 6
attacked measurements. Note that attacks on P > 3 PMUs
have been successfully demonstrated in previous work [9] but
we use P = 3 in this work for simplicity. Also, the proposed
TSA detection and localization methods are independent of
the number of attacked PMUs P .

To generate a TSA for P and a measurement sample, we
compute the corresponding Ψ and W matrices, and choose
the three attack angles (α1, α2, α3) of the TSA as follows.
First, the feasible range for the angle α3 is identified from
the rank-1 approximation of W according to Proposition 1
in [9]. The attack angle α3 is then chosen from a uniform
distribution over the feasible range. Next, the angles (α1, α2)
are computed for the chosen α3 according to Proposition 2
in [9]. In case two tuples (α1, α2) are possible, one tuple is
chosen at random. We used this procedure for generating an
attacked dataset containing 15000 samples. The non-attacked
and the attacked datasets were each split into training and test
datasets, each consisting of 7500 samples.

To facilitate analysis, both the ERR metric and the attack
impact were recorded for each sample, To compute the attack
impact for each data sample, we first computed the estimated
system state based on both the attacked and the non-attacked
measurements. Using the estimated state, the apparent power
flow on each transmission line can be computed using the
power flow equations [39]. Next, the absolute difference
between the apparent power flow with and without the TSA is
computed for each transmission line. The maximum of those
differences across all transmission lines is then defined as the
impact of the TSA. Simulations performed using the total
phase angle shift as attack impact led to similar results as
the ones reported in the paper, and we omit them for brevity.
Table I shows the distribution of attacks based on the ERR
and the attack impact (I) in the test dataset.

For both non-attacked and attacked data samples, we then
computed the measurement residuals r = Fz and the GSP
residuals rk = Fkz (again, with k = 8 and k = 35 for the
IEEE 14-bus and 39-bus systems, respectively). Furthermore,
we computed the GFT of the system state, i.e. U>x̂. Figure 4
shows the magnitude of U>x̂ for the IEEE 14-bus and the
IEEE 39-bus systems, for both non-attacked and attacked data
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Fig. 2: LSE and GSP residual vs. the cut-off frequency index k for IEEE 14 and 39 bus test cases.
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Fig. 3: ERR and the GSP-based ERR vulnerability metrics
for triplets of PMUs in the IEEE 14-bus and the IEEE 39-
bus systems. GSP-based ERR has significantly lower values,
which indicates less vulnerable sets of PMUs.

samples. It can be observed that the attacked samples show
large magnitude of coefficients corresponding to the higher
graph frequencies even when ERR is very high, suggesting that
they can be easily distinguished from non-attacked samples
using a high-pass graph filter.

To illustrate that the task of detecting TSAs is harder than
that of detecting FDIAs, we implemented the FDIA detection
method proposed in [12], which uses the `2-norm of the GSP
residual vector rk as the detection score. Figure 5 shows the
distribution of the above mentioned metric for FDIAs and
TSAs. To have a fair comparison, we simulated FDIAs and
TSAs targeting the same number of PMUs (i.e., three PMUs).
The FDIAs were simulated by manipulating the measurements
as zFDIA = z + a s.t. a = Hc for some c ∈ CN for each
sample in the dataset [15], [16], where |a| followed a uniform
distribution (i.e., |a| ∼ U(1, 100)). The figure shows that TSAs
generate lower residuals than FDIAs, making them harder to
distinguish from non-attacked measurements.

Fig. 4: Absolute values of the GFT of the estimated state,
U>x̂ for non-attacked and attacked measurements. Note the
clear effect of TSAs as a change in the GFT of the estimate
state, particularly the presence of high frequency components.

B. Performance Metrics: AUC and FNR

Given the ground truth labels Lτ for localization, the
localization score L̂τ , and a set threshold η, each decision
can result in one of four outcomes:

1) True Positive: if Lτ = 1 and L̂τ > η
2) False Positive: if Lτ = 0 and L̂τ > η
3) True Negative: if Lτ = 0 and L̂τ ≤ η
4) False Negative: if Lτ = 1 and L̂τ ≤ η
Note that these definitions can easily be applied for the TSA

detection problem, by substituting Lτ by D and L̂τ by D̂. Let
TP, FP, TN, and FN denote the number of true positives, false
positives, true negatives, and false negatives in the dataset,
respectively. For both detection and localization, We can then
compute the True Positive Rate (TPR) and the False Positive
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Fig. 5: GSP residual of FDIAs and TSAs for the considered
PMU allocations in the IEEE 14-bus and the IEEE 39-bus
systems. TSAs have significantly lower residual values making
them harder to detect via simple metrics.

Rate (FPR),

TPR =
TP

TP + FN
,

FPR =
FP

TN + FP
.

The TPR is the ratio of the number of attacked measurements
that are detected by a localization method to the total number
of attacked measurements, while the FPR is the ratio of false
alarms raised by the localization method to the total number
of non-attacked measurements.

Using the above quantities, we use two performance metrics
for evaluating the proposed detection and localization solu-
tions. The first metric is the Area Under the Curve (AUC),
which is a widely used metric for evaluating detection models.
The AUC is computed based on the Receiver Operating Char-
acteristic (ROC) curve, which captures the trade-off between
the TPR and the FPR, and is obtained by varying the detection
threshold η across its domain.

The second metric is the FNR (i.e., 1−TPR) for a particular
FPR rate, and aims to reflect the practical usefulness of
the algorithms. Due to the high streaming rates of PMUs,
we considered the desired FPR to be very low (less than
the reciprocal of the number of samples in the dataset).
Unfortunately, finding the corresponding FNR for such low
FNR is not a straightforward task. Therefore, we computed the
best quadratic curve that fits the ROC curve for the interval
0 ≤ FPR ≤ 0.1 and used the fitted curve to get the FNR at
the required FPR.

C. TSA Detection
We first present results for the detection methods proposed

in Section V-A. To compute D̂ in (24) for the GSP-HP
method, we utilized cutoff frequencies of j = 4 and j = 10
for the high-pass graph filters for detection in the IEEE
14-bus and the IEEE 39-bus systems, respectively. In other
words, we excluded the lowest 4 and 10 graph frequency
components from U>x̂. For the ML-based methods, the RF
classifier consisted of 20 trees, with a maximum allowed
tree depth of 10. We compared our methods to two state-
of-the-art baseline detectors. The first baseline is the Largest

Normalized Residual (LNR) test [39], where the maximum
LSE residual over all measurements is used as the detection
score D̂ = maxi∈M|rNi |, where rNi is the normalized residual
obtained by dividing the residual of measurement i by its
standard deviation. We refer to this as LSE-LNR. The second
baseline is an RF classifier applied to the LSE residuals r as
input features F . We refer to this as ML-LSE-R.

Figure 6 shows the AUC obtained by applying the six
detection methods on the datasets for the IEEE 14-bus system
(Figure 6a) and the IEEE 39-bus system (Figure 6b). For the
sake of clarity, each subplot shows the results for a certain
range of ERR and the attack impact. For each subplot, the
ROC curve was computed using a set of samples, including
the attacked samples in this category (ERR, Impact), as well
as an equally-sized random subset of the non-attacked data.
The figures clearly show that the detection performance of
all methods is positively correlated with the attack impact.
Moreover, the detection performance is negatively correlated
with the ERR. However, the effect of the ERR on the detection
performance is different for different methods. While LSE-
LNR (and hence ML-LSE-R) work very well for relatively
low ERR values, they fail for high ERRs. This was expected
since a TSA with high ERR will not significantly change the
LSE residual. On the contrary, the GSP-based methods (and
their ML equivalents) perform almost equally well irrespective
of the ERR. Interestingly, the GSP-HP can almost perfectly
detect TSAs regardless of the ERR when the attack impact is
fairly high (above 10 p.u.). However, it performs poorly for
attacks with smaller impacts. For such subtle attacks, the ML
methods based on GSP features (i.e., ML-GSP-R and ML-
GFT) can achieve significantly better performance.

Figure 7 shows the FNR achieved by the detection meth-
ods for the IEEE 39-bus system (Results for the IEEE 14-
bus system are excluded for brevity). The figure shows the
fraction of attacks that will bypass detection when the system
operator sets the FPR to be one false alarm per day (FNR =
1/(50∗60∗60∗24) = 2.315∗10−7 assuming 50 measurements
per second). For ML methods trained on GSP features, the
achieved FNR is very low except for TSAs with very little
impact. In fact, more that 94% (FNR < 0.06) of TSAs with
impact greater than 100 p.u. and more than 80% (FNR < 0.2)
of TSAs with impact greater than 10 p.u. can be detected by
the proposed methods, even when using such an extremely
low FPR. This holds true even for TSAs targeting PMUs with
high ERR. Compared to LSE-LNR and ML-LSE-R which can
detect at most 3% (FNR > 0.97) of attacks with impact greater
than 10 p.u. and high ERR, the proposed methods can detect
at least 77% more attacks in this category. The figure shows
however that the GSP-based detection methods without ML
are not as efficient, e.g., GSP-HP can only detect around 50%
of TSAs with impact higher that 10 p.u.. This low value of
TPR is mainly due to the extremely low value of the desired
FPR. Raising the desired FPR might improve the detection
performance, but may lead to alarm fatigue.

D. TSA Localization
We now turn to evaluating the localization performance.

To implement the proposed ML-based localization methods in
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Fig. 6: The relation between the Area under the ROC curve for the considered TSA detection methods, the vulnerability of
the attacked PMUs, and the attack impact, for the (a) IEEE 14-bus system and (b) the IEEE 39-bus system. The proposed
methods outperform state-of-the-art methods, performing equally good irrespective of ERR.

Fig. 7: The relation between the FNR (at one false positive
per day) for the considered TSA detection methods, the
vulnerability of the attacked PMUs, and the attack impact,
for the IEEE 39-bus system. The proposed methods are able
to detect more attacks, especially when ERR is high and when
the TSA has non-negligible impact.

Section V-B, the ANN was implemented using the Pytorch
Python library [49]. The dimension of the ANN input layer
depended on the considered method (2M for ML-GSP-R and
2N for ML-GFT). The ANN consisted of one hidden layer of
200 neurons using ReLU as activation function, and an output
layer of T neurons using Sigmoid as activation function.
We used three state-of-the-art methods as a baseline for the
evaluation. The first baseline computes the localization score
L̂ ∈ RM as the magnitude of the normalized LSE residual,
i.e., L̂τ = |rNτ |. We refer to this as LSE-R. The second
baseline computes the localization score L̂ ∈ RM via an
alternating minimization algorithm as proposed in [33]. The
algorithm (Alg. 3 in [33]) recovers the state vector x and the
attack vector u by alternating between their estimation while
keeping one of them constant. We refer to this as Alternating
Minimization based on the LSE Residuals (AM-LSE-R). The
localization score is given by the magnitude of u − 1, since

a value of 1 at a certain measurement index of u indicates
no attack, i.e., L̂ = |u− 1|. The third baseline uses an ANN
multi-label classifier based on the LSE residuals r as input
features F . We refer to this as ML-LSE-R.

Figure 8 shows the AUC obtained by applying the six
localization methods on the datasets for the IEEE 14-bus
system (Figure 8a) and the IEEE 39-bus system (Figure 8b).
Similar to Figure 6, each subplot shows the results for a
certain range of the ERR and the attack impact. Comparing to
Figure 6, we observe that the AUC values for localization are
in general slightly lower than for detection. This is expected,
as localization is significantly more challenging due to the
number of decisions involved (notice that the performance on
the IEEE 39-bus is therefore slightly inferior to the IEEE
14-bus system). Comparing the different TSA localization
methods, the relative performance is very similar to that in
Figure 6. First, the two state-of-the-art methods (LSE-R and
AM-LSE-R) show very similar performance since they both
rely on LSE. Even though their performance is acceptable
when ERR is relatively low, they fail in localizing the TSAs
when the ERR is high. The proposed GSP-based methods
perform consistently better, and in general we can observe that
using ML significantly improves the accuracy of localization,
even for the cases when the TSA impact is relatively low and
the ERR is relatively high.

Finally, Figure 9 shows the FNR achieved by the local-
ization methods for the IEEE 39-bus system. Unlike TSA
detection, the shown values are the fraction of attacked mea-
surements / PMUs that will be declared as non-attacked when
the system operator sets the false alarm rate (i.e., FPR) to
5% (that is, 5% of non-attacked measurements are deemed
to be attacked). Observe that we set the desired FPR to be
higher than in Section VI-C since TSA localization is not
needed unless a TSA is detected by a detection algorithm.
Therefore, allowing a higher FPR should not lead to alarm
fatigue. Focusing on the proposed methods (ML trained on
GSP features), the achieved FNR is very low except for TSAs
with very little impact. For example, at least 79% of attacked
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Fig. 8: The relation between the Area under the ROC curve for the considered TSA localization methods, the vulnerability
of the attacked PMUs, and the attack impact, for the (a) IEEE 14-bus system and (b) the IEEE 39-bus system. The proposed
methods yield higher AUC values compared to state-of-the-art methods, especially for high values of ERR.

Fig. 9: The relation between the FNR (at 5% False positive
rate) for the considered TSA localization methods, the vulner-
ability of the attacked PMUs, and the attack impact, for the
IEEE 39-bus system. The proposed localization methods detect
more attacks than the state-of-the-art, especially for higher
ERR values.

PMUs will be correctly detected (FNR < 0.21) when the
attack impact is at least 10 p.u. and ERR is high, when
allowing a 5% false alarm rate. Compared to the baseline
methods which can detect at most 9% (FNR > 0.91) of
attacked PMUs for the same category, the proposed methods
can detect at least 70% more attacked PMUs.

Overall, we can conclude that the proposed ML methods
based on GSP show excellent performance in detecting TSAs,
and they perform significantly better in localization of the
TSAs compared to state-of-the-art methods based on residuals.

E. Evaluation on Large Benchmark Systems

To investigate the scalability of the proposed detection and
localization methods, we conducted experiments on three large
systems, namely the IEEE 118-bus, the IEEE 300-bus, and the
2383-bus with winter peak (Polish) benchmark systems. We

placed the minimum number of PMUs needed for observabil-
ity by following the optimal placement procedure proposed
in [50], as opposed to the random placement used for the
smaller systems. For the IEEE 118-bus system, T = 32 PMUs
were deployed making a total of M = 158 measurements
for observability. Each PMU measures the bus voltage phasor
as well as all incident branch current phasors. We then used
k = 95 to compute the GSP residuals, and the value j = 10
for the high-pass graph filter. The results in Figure 10a
show excellent detection performance for the proposed TSA
detection methods.

For TSA localization (Figure 10b), even though the pro-
posed localization methods clearly outperform the state-of-the-
art methods, the results suggest that the performance of the
proposed methods might be less satisfactory for large power
systems, especially for high ERR. This is due to that the
number of choices involved in localization increases linearly
with the size of the system, making it challenging to create
appropriate training data sets for large systems. To alleviate
this problem, one could partition the system into multiple
interconnected areas, as is done for example in distributed
state estimation [51], [52], and implement the GSP-based
localization methods in each partition. For each area, one
needs to consider the corresponding part of the state vector,
and use an appropriate GSO for the sub-graph. We intend to
explore this approach in the future, including the development
of an appropriate GSO. Therefore, for the IEEE 300-bus
system as well as the 2383-bus Polish system, we do not show
results for localization.

For the IEEE 300-bus system, the deployment strategy
placed T = 99 PMUs making a total of M = 419 mea-
surements for observability. Using k = 260 and j = 10,
the detection results in Figure 11 show that our proposed
detection methods can significantly improve the TSA detection
performance compared to the LSE-based methods. Finally, for
the 2383-bus polish system, the deployment strategy placed
T = 811 PMUs making a total of M = 3079 measurements
for observability. Using k = 1500 and j = 10, the detection
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results in Figure 12 show that our proposed detection methods
can accurately detect TSAs for this large system.

F. Execution Time

Finally, we evaluate the execution time of the proposed
TSA detection and localization methods. Figure 13 shows
the results for the IEEE 14, 39, 118, 300, and 2383-bus
systems. Note that due to the very high execution time of the
baseline AM-LSE-R method for the 2383-bus system, its the
execution time is not reported. Observe also that the reported
time for the ML methods is the testing time and does not
include the time to train the ML model, since training can
be done offline. The figure shows that the proposed methods
take at most a few milliseconds, and can thus support real-
time detection and localization of TSAs. Interestingly, the
inference time of the proposed localization methods is at least
one order of magnitude less than that of the AM-LSE-R state-
of-the-art method [33]. Furthermore, our results show that
the computation times increase linearly with the size of the
system.

VII. CONCLUSION

In this paper we proposed methods for the detection and lo-
calization of TSAs against PMUs using tools from graph signal
processing. Our analytical results indicate that modeling the
power system using GSP has great potential in improving its
security against TSAs, which we leveraged by combining GSP
and machine learning algorithms. We evaluated the proposed
methods on the IEEE 14, 39, 118, and 300-bus systems as well
as the 2383-bus polish system. Our results showed that among
TSAs of non-negligible impact, the proposed methods can
outperform state-of-the-art methods based on LSE residuals.
An interesting direction of future work would be to extend
the detection and localization methods to the time domain,
by incorporating appropriate dynamical models of the power
system, e.g., based on Kalman filter.
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