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Abstract—Secondary control of voltage magnitude and frequency is
essential to the stable and secure operation of microgrids (MGs). Recent
years have witnessed an increasing interest in developing secondary
controllers based on multi-agent reinforcement learning (MARL), in
order to replace existing model-based controllers. Nonetheless, unlike
the vulnerabilities of model-based controllers, the vulnerability of MARL-
based MG secondary controllers has so far not been addressed. In this
paper, we investigate the vulnerability of MARL controllers to false data
injection attacks (FDIAs). Based on a formulation of MG secondary control
as a partially observable stochastic game (POSG), we propose to formulate
the problem of computing FDIAs as a partially observable Markov
decision process (POMDP), and we use state-of-the-art RL algorithms
for solving the resulting problem. Based on extensive simulations of a MG
with 4 distributed generators (DGs), our results show that MARL-based
secondary controllers are more resilient to FDIAs compared to state of the
art model-based controllers, both in terms of attack impact and in terms
of the effort needed for computing impactful attacks. Our results can serve
as additional arguments for employing MARL in future MG control.

I. INTRODUCTION

Microgrids (MG) are emerging as a means of integrating distributed
generators (DG) and energy storage systems (ESSs) into conventional
power systems. A microgrid could include conventional rotating
machinery DGs, e.g., synchronous power generators, but could also
include DC sources such as solar panels and fuel cells. In addition
to working in grid-connected mode where the power generation as
well as voltage and frequency control are supported by the main power
grid, microgrids can work in islanded mode either during planned
maintenance times, or during unexpected faults and outages. While
islanded operation can increase reliability, maintaining voltage and
frequency stability becomes challenging, and has to be achieved relying
on local control loops only [1].

Voltage and frequency control in microgrids are typically hierarchical,
consisting of primary, secondary, and tertiary control. Primary control
uses the droop-control method widely employed with synchronous
generators to create damping in the system. The secondary control
ensures that voltage and frequency deviations caused by primary control
stay within acceptable limits. Tertiary control, utilized in grid-connected
mode, controls the power flow between the microgrid and the main grid.
Primary control is typically implemented locally, as an integrated control
loop in each DG. On the contrary, secondary voltage and frequency
control have been conventionally implemented in a centralized manner
at a microgrid centralized controller (MGCC) [2]. Nonetheless, the
MGCC introduces a single point of failure in the network, and there
is thus a recent interest in distributed secondary controllers that rely
on communications between neighbouring DGs [3, 4].

Early works on distributed secondary control of inverter-based mi-
crogrids followed a model-based approach, and there is a rich literature
on their vulnerability to cyber-attacks on MG sensors, such as false data
injection attacks (FDIAs) [5]. Similarily, effective attack detectors and

fault-tolerant control algorithms have been proposed to mitigate known
vulnerabilities [6, 7]. The main detriment of model-based controllers
is that they rely on complex models, which are often inaccurate, and
hence they are sensitive to system topology and parameter changes [8],
which has led to an increasing interest for multi-agent reinforcement
learning (MARL) based controllers. Unfortunately, even though it is
known that MARL is vulnerable to adversarial attacks against one or
many of the participating agents [9], the vulnerability of MARL-based
secondary controllers has so far been not been investigated.

In this paper, we address this important issue and we make the
following main contributions:
1) We conduct the first study to evaluate the vulnerability of MARL-

based secondary controllers in inverter-based microgrids to FDIAs.
2) We formulate the problem of computing worst-case FDIAs against

MG secondary control as a partially observable Markov decision
process (POMDP).

3) We carry out extensive simulations to assess the impact of FDIAs
on MARL-based secondary controllers, and compare the results
to those obtained on traditional model-based controllers. Our
results represent a first step towards making MARL-based MGs
trustworthy.

The rest of this paper is organized as follows. Section II discusses
the previous work on distributed MG secondary controllers and their
vulnerability. The considered model of an inverter-based MG as well as
the attacker model are presented in Section III. Section IV formulates
the problem of attacking the controller as a partially observable Markov
decision process. Section V shows the effect of different attacks on
MARL controllers. Finally, Section VI concludes the paper.

II. RELATED WORK

Vulnerability of MGs: A large body of works has investigated
the security of MGs and their vulnerability to attacks, such as
denial-of-service (DoS) attacks, time delay attacks (TDAs), and false
data injection attacks (FDIAs) [10]. For example, [11] considers DoS
attacks against the most critical DG in an islanded MG. Moreover, the
effect of time delays due to communication delays (or delay attacks)
on the accuracy on MG secondary control is investigated in [12].
However, the most commonly studied attack against inverter-based
MGs is the FDIA. For example, authors in [5] show that FDIAs can
have disastrous impact on frequency and voltage stability in MGs.

Several recent works have considered detecting FDIAs against MGs
using model-based detectors, such as the unknown input observer
(UIO). For example, [6] performed dynamic state estimation of an
islanded MG using a UIO in order to detect and identify FDIAs against
frequency measurements. Authors in [13] proposed a subspace-based
detection technique (similar to a UIO) to detect FDIAs. Contrary
to model-based approaches, few research works considered using



data-driven and machine learning based solutions to detect attacks
against inverter-based MGs. Authors in [14] proposed an entropy-based
attack detection approach for distributed secondary control of MGs,
utilizing the Kullback-Leibler (KL) divergence between the distribution
of control variables before and after the attack. Authors in [15]
developed multiple machine learning models to detect a special type
of FDIAs, called measurement-as-reference (MaR) attacks.

Going beyond attack detection, several works have considered
fault-tolerant and resilient control for inverter-based MGs in order to
alleviate the effect of attacks. These works typically combine attack
detection and mitigation. An example is [16], which considers the
problem of resilient secondary control under communication faults
(including cyber-attacks) and designs a distributed observer for each
DG that estimates the reference voltage and frequency values, and
restores them to the reference values. In [7], every DG keeps a trust
factor (i.e., a score) for each of its neighbouring DGs, which helps
mitigate the effect of the attack. Similarly, [17] proposes a systematic
approach to discard information from non-cooperative DGs. However,
the above two approaches require certain connectivity criterion on
the communication network graph. Moreover, most of the above
works on detection and resilient control are specifically developed for
model-based distributed secondary controllers, and hence might not
be applicable to MGs employing MARL-based controllers.

MARL-based secondary controllers: Several recent works
considered using reinforcement learning (RL) and multi-agent RL
(MARL) for MG secondary control. Recently, [18] used the multi-agent
deep deterministic policy gradient (MADDPG) algorithm for secondary
frequency control of islanded MGs. Authors in [8] proposed another
actor-critic MARL algorithm for voltage control in MGs, and compared
their approach to multiple centralized and distributed RL algorithms.
Despite the recent interest for MARL-based secondary control of
MGs, to the best of our knowledge, this is the first work to assess their
vulnerability to FDIAs.

III. SYSTEM MODEL

A. Model of an Inverter-based Microgrid

We consider a microgrid with a set G of DGs, where N = |G| is
the number of DGs. Furthermore, the microgrid has M lines, B buses
L loads. A microgrid is typically modelled by considering its three
interacting parts: the DGs, the network, and the loads [19]. The DG
model includes the inverter, an LC filter, an output connector, as well
as power, voltage, and current control loops, as shown in Figure 1. The
network model specifies the connectivity of different DGs, and the
load model contains the loads attached to each bus in the network. In
what follows we provide the model for each component.

1) DG Model: Figure 1 shows a block diagram of the DG model us-
ing a voltage source inverter. The power part includes a three-leg inverter,
an output LC filter and a coupling conductor. For this part, the inverter
is typically assumed to be a perfect power source, and the DC bus
dynamics as well as the inverter switching process can be neglected [19].
The control part includes a power control loop, which controls the
voltage magnitude and frequency according to the droop mechanism
mimicking the behaviour of a synchronous generator. It also includes
voltage and current controllers, which are designed to reject high
frequency disturbances and provide damping for the output LC filter.

The dynamics of each DG is typically given in its own direct-
quadrature (d-q) reference frame. The angle δi of the reference frame of
DG iw.r.t. the common reference frame follows the differential equation

δ̇i=ωi−ωcom, (1)

Figure 1: Block diagram of the control of a voltage-source inverter [20].

where ωi is the angular frequency of the ith DG reference frame,
and ωcom is the angular frequency of the common reference frame,
which is chosen to be one of the DGs (in this paper, ωcom = ω1).
In the following we provide the dynamics for each of the separate
components of the DG model.
Power controller: A traditional synchronous generator will react
to an increase in the load by reducing its rotation frequency. For
inverter-based microgrids, the power controller aims to mimic this
behavior by defining a relation between the frequency and the active
power, and between the voltage magnitude and the reactive power.
First, the active and reactive power follow the dynamics

Ṗ=−ωcP+ωc(vodiiodi+voqiioqi), (2)

Q̇=−ωcQ+ωc(voqiiodi−vodiioqi), (3)

where ωc is the cut-off frequency of two low-pass filters used to
obtain the real and reactive powers corresponding to the fundamental
components, and vodi,iodi,voqi,ioqi are the d and q components of
the output voltage and currents shown in Figure 1. Based on the
values of P and Q, the power controller computes the reference
voltage magnitude v∗oi supplied to the voltage controller, as well as the
frequency supplied to the inverter according to the droop mechanism

ωi=ωni−mPiPi, (4)
v∗odi=Vni−nQiQi, (5)
v∗oqi=0, (6)

where mPi and nQi are droop coefficients, and ωni and Vni are the
reference voltage frequency and amplitude values supplied by the
secondary controller. If secondary control is not implemented, then
ωni ← ωref and Vni ← Vref , where the reference values are the
nominal frequency and voltage values.
Voltage Controller: The voltage controller is responsible for supplying
the reference current i∗li to the current controller and is implemented
as a PI-controller,

i∗ldi=Fiiodi−ωbCfivoqi+Kpvi(v
∗
odi−vodi)+Kiviϕdi, (7)

i∗lqi=Fiioqi+ωbCfivodi+Kpvi(v
∗
oqi−voqi)+Kiviϕqi, (8)

where Fi is a constant, ωb is the nonimal angular frequency (i.e.,
2π∗60 in the US.), Kpvi and Kivi are the proportional and integral
gains of the voltage controller, and ϕdi and ϕqi are the integral error
variables of the PI-controller, following the dynamics

ϕ̇di=v∗odi−vodi, ϕ̇qi=v∗oqi−voqi. (9)



Current Controller: The current controller is responsible for supplying
the reference input voltage v∗ii to the inverter and is implemented as
a PI-controller,

v∗idi=−ωbLfiilqi+Kpci(i
∗
ldi−ildi)+Kiciγdi, (10)

v∗iqi=ωbLfiildi+Kpci(i
∗
lqi−ilqi)+Kiciγqi, (11)

where Kpci and Kici are the proportional and integral gains of the
current controller, and γdi and γqi are the integral error variables of
the PI-controller, following the dynamics

γ̇di=i∗ldi−ildi, γ̇qi=i∗lqi−ilqi. (12)
Output LC Filter and Output Connector: Assuming an ideal inverter
that produces the demanded voltage (i.e., vi= v∗i ), and that DG i is
connected to bus j, the dynamics of the output LC filter and output
connector are given by

i̇ldi=
−Rfi

Lfi
ildi+ωiilqi+

1

Lfi
(vidi−vodi), (13)

i̇lqi=
−Rfi

Lfi
ilqi−ωiildi+

1

Lfi
(viqi−voqi), (14)

v̇odi=ωivoqi+
1

Cfi
(ildi−iodi), (15)

v̇oqi=−ωivodi+
1

Cfi
(ilqi−ioqi), (16)

i̇odi=
−Rci

Lci
iodi+ωiioqi+

1

Lci
(vodi−vbdj), (17)

i̇oqi=
−Rci

Lci
ioqi−ωiiodi+

1

Lci
(voqi−vbqj), (18)

where (Rfi,Lfi,Cfi) are the resistance, inductance, and capacitance
of the LC filter, (Rci,Lci) are the resistance and inductance of the
output connector, and vbi is the bus voltage at bus i.

2) Network Model: The network model captures the interaction
between variables in different DGs. An example microgrid with N=4
DGs, M=3 lines, B=4 buses, and L=2 loads is shown in Figure 2.
In general, consider that line i connects buses j and k. The dynamics
of the current iline,i flowing across the line are given as

i̇lineDi=
−Rli

Lli
ilineDi+ωiilineQi+

1

Ll1
(vbDj−vbDk), (19)

i̇lineQi=
−Rli

Lli
ilineQi−ωiilineDi+

1

Ll1
(vbQj−vbQk), (20)

where (Rli, Lli) are the resistance and inductance of line i, and
(ilineDi,ilineDi,vbDj,vbQj) are variables converted to the common
reference frame. To convert variables from each DG’s reference frame
to the common reference frame, Park’s transformation [19] is used,

xDQi=Tixdqi, (21)
where

Ti=

[
cosδi −sinδi
sinδi cosδi

]
, xDQi=[xDi,xQi]

T , xdqi=[xdi,xqi]
T .

(22)
3) Load Model: Considering that load i is attached to bus j, the

dynamics of the current drawn by the load is given by

i̇loadDi=
−RLi

LLi
iloadDi+ωiiloadQi+

1

LL1
vbDj, (23)

i̇loadQi=
−RLi

LLi
iloadQi−ωiiloadDi+

1

LL1
vbQj, (24)

where (RLi,LLi) are the resistance and inductance of load i. Finally,
the voltages at all buses vbDQ ∈R2B could be computed using the
matrix equation

vbDQ=RN(MinvioDQ+MloadiloadDQ+MnetilineDQ), (25)
where RN is a virtual resistance assumed between each bus and
the ground and is chosen to be sufficiently large to have minimum

Figure 2: Single-line diagram of a Microgrid with four DGs [20].

impact on the system stability [19], ioDQ∈R2N , iloadDQ∈R2L, and
ilineDQ)∈R2M . Furthermore, Minv∈{0,1}2B×2N is a mapping ma-
trix which maps the DGs to the network buses. Mload∈{−1,0}2B×2L

is a mapping matrix which maps the load locations (-1) to the network
buses. Finally, Mnet∈{−1,0,1}2B×2M is a mapping matrix which
maps the lines to the network buses. Mnet includes a (+1) if the current
is entering the node, and (-1) if the current is leaving the bus.

B. Secondary control of Inverter-based Microgrids
The main objective of secondary control is to drive the voltage

and frequency deviations caused by primary control to their nominal
values. In what follows we discuss three approaches for implementing
secondary control in inverter-based microgrids; centralized controllers,
decentralized model-based controllers,and decentralized multi-agent
reinforcement learning (MARL)-based controllers.

1) Microgrid Centralized Controller (MGCC): The MGCC focuses
on regulating the voltage and frequency of the so-called critical bus (i.e.,
the bus hosting the most critical loads in the microgrid), and uses a PI-
controller to compute the voltage and frequency compensation terms as

δω=Kpω(ωref−ωcr)+Kiωβω, (26)
δV =KpV (Vref−vocr)+KiV βV , (27)

where (Kpω,Kiω,KpV ,KiV ) are the MGCC PI-controller gains,
(ωcr,vocr) are the inverter output voltage frequency and magnitude
measurements at the critical bus, and (βω, βV ) are the respective
integral error terms following the dynamics

β̇ω=(ωref−ωcr), β̇V =(Vref−vocr). (28)
The compensation terms (δω,δV ) are then sent to all DGs in the
microgrid to adjust their frequency and voltage.

2) Distributed Model-based Controller: The most commonly used
distributed secondary frequency and voltage controller is the model pre-
dictive controller (MPC) [1, 4]. The controller is based on voltage mag-
nitude and frequency measurements communicated between neighbour-
ing DGs. The secondary control references values are then computed as

ω̇ni=−cω

gi(ωi−ωref)+
∑
j∈Ni

aij(ωi+mPiPi−ωj−mPjPj)

, (29)

V̇ni=−cv

gi(vodi−vref)+
∑
j∈Ni

aij(vodi+nQiQi−vodj−nQjQj)

,

(30)
where cω and cv are control gains, gi is the so-called pinning gain of
DG i, Ni is the set of neighbours of DG i, and A=[aij]∈{0,1}N×N

is the adjacency matrix of the communication graph of the MG.
3) MARL Secondary Controller: We consider a MARL controller

akin to those considered in recent literature [8, 18], where each DG acts
as an independent RL agent. The problem of learning a MARL sec-
ondary controller can be formulated as a partially-observable stochastic
game (POSG) given by the tuple Mc≜(N,S,Ai,P,Ri,Oi,γ), where:



Figure 3: The considered attack model against inverter-based
microgrids.

• N is the number of agents (i.e., DGs).
• S is the state space of the system, and st ∈S is the state at time

step t. For an inverter-based microgrid, the system state includes
the variables (δi,Pi,Qi,ϕdi,ϕqi,γdi,γqi,ildi,ilqi,iodi,ioqi,vodi,voqi)
for all DGs, the voltages (vbdi, vbqi) at all buses, the current
(ilineDi,ilineQi) flowing in all lines, the current (iloadDi,iloadDi)
flowing in all loads, as well as the load demand (RLi,LLi).

• Ai is the set of each agent’s possible actions, and ait∈Ai denotes the
action of agent i at time step t. We denote the joint action of all agents
by at=[a1t ,...,a

N
t ]∈A, where A=A1×...×AN . In this paper,

we follow [8] and consider only the problem of voltage magnitude
control, and assume that the MPC controller [4] in (29) is used to
control the frequency. Therefore, the action of each agent includes the
reference values (ait=Vni) supplied to the power controller in (5).

• P(st+1

∣∣st, at) is the conditional transition probability between
states, determined by the dynamics explained in Section III-A. The
dynamics is not known to the agents.

• Ri is the reward function of each agent. We adopt the reward of [8]
which is designed to encourage the agents to keep the output voltage
of each DG close to its nominal values as follows

Ri=


0.05−|1−vpuoi |, vpuoi ∈ [0.95,1.05],
−|1−vpuoi |, vpuoi ∈ [0.8,0.95]∪[1.05,1.2],
−20, otherwise,

(31)

where vpuoi is the inverter output voltage in p.u. given as

vpuoi =

√
(vodi)2+(voqi)2

Vref
. (32)

• Oi denotes the observation space of each agent, and oit ∈ Oi is
the observation made by agent i at time t. Although [8] used
the full state of the DG as the observation of each agent (i.e.,
oit = (δi,Pi,Qi,iodi,ioqi,vbdi,vbqi)), we adopted a more realistic
observation inspired by [21]. Our considered observation only
includes the voltage magnitude and frequency measurements
(vodi,ωi) at both time t and t−1 to account for the derivative. Thus,
we consider that oit=(vodi[t],vodi[t−1],ωi[t],ωi[t−1]).

• γ∈ [0,1) is the discount factor.
A policy πi : Oi →Ai for solving Mc can be learned, e.g., using
reinforcement learning [8, 18].

C. Attack Model

The considered attack model is shown in Figure 3. We consider an
attacker that has knowledge of the topology of the attacked microgrid
as well as the underlying communication network. Moreover, the
attacker knows the parameters (Rli,Lli) of all lines, the parameters
(Rfi,Lfi,Cfi,Rci,Lci) of all LC filters and output connectors, the
droop parameters (mPi,nQi), the voltage and current controller gains

(Kpvi,Kivi,Kpci,Kici), as well as the nominal voltage frequency and
magnitude values (ωref ,Vref ). Based on the attacker´s knowledge
about the secondary controller C used by the operator, we distinguish
between two attack models: we refer to an attacker that knows the
controller used by the operator as a strong attacker, while we refer to an
attacker that does not know the controller as a weak attacker. We further-
more assume that the attacker can eavesdrop on the voltage magnitude
and frequency measurements taken by a subset Ge⊆G of the generators.

The attacker can manipulate the measurements taken by a subset
Ga⊆Ge of the generators according to

ωa
i =ωi+aωi , ∀i∈Ga, (33)

vaodi=vodi+avi , ∀i∈Ga, (34)
where (ωa

i ,v
a
odi) are the attacked measurement values, and (aωi ,a

v
i )

are the perturbations. We assume that the perturbations are constrained,
|aωi |≤aωmax, |avi |≤avmax. (35)

The manipulated measurements will be used by the secondary
controller possibly leading to the computation of erroneous reference
values (ωni,Vni), which could potentially cause unstable voltage and
frequency trajectories.

Given the above knowledge and attack capabilities, the attacker
could implement a FDIA against the microgrid as follows:
1) Develop a dynamical model of the microgrid based on the known

system topology and parameters.
2) Develop a model-based or RL secondary controller C′ for the

microgrid.
3) Use the dynamical model and the controller C′ within a

reinforcement learning framework to learn optimal FDIAs against
the microgrid.

4) Apply the learned attacks against the real microgrid.
Although the above assumes a powerful attacker, recent attacks on

smart grids have shown that attackers are capable of obtaining critical
information and launching crafted and sophisticated attacks [22].
For example, the system topology and parameters could be
obtained through insiders, by employing reconnaissance activities,
or by exploiting publicly available data [23]. Eavesdropping and
manipulating measurements could be possible due to the use of public
communication networks and the lack of authentication mechanisms
in smart grid communications.

IV. RL-BASED ATTACKS ON MICROGRID SECONDARY CONTROL

To assess the resilience of MARL-based MG secondary controllers,
in what follows we propose to formulate the problem of computing
worst-case attacks as a partially observable Markov decision process
(POMDP), and propose to use reinforcement learning for obtaining a
close to optimal attack policy. Our proposed POMDP formulation of the
attacker´s problem is given by the tuple Ma≜(S̄,Ā,P̄,R̄,Ō,γ̄), where
• S̄ is the state space of the system, and s̄t∈S̄ is the state at time step
t. The state here is the same as that in the operator’s problem, in
addition to the secondary control references (ωni,Vni).

• Ā is the set of possible actions for the attacker, and āt ∈Ā is the
action of the attacker at time step t. The attacker’s action consists of
the measurement perturbations (aωi ,a

v
i ),∀i∈Ga, as specified in (33)

and (34), respectively.
• P̄(s̄t+1

∣∣s̄t,āt) is the conditional state transition probability.
• R̄ is the reward function of the attacker. We propose to use the

reward function R̄=−
∑N

i=1R
i. That is, the attacker is attempting

to maximize the total voltage deviation of all DGs.
• Ō denotes the observation space of the attacker, and ōt ∈ Ō is

the attacker’s observation at time t. The attacker can observe
the observations oit of DGs i ∈ Ge. In addition, the attacker can



observe both the attacked and unattacked measurements. In other
words, ōt = {(vodi[t],vodi[t− 1],ωi[t],ωi[t− 1],vaodi[t],v

a
odi[t−

1],ωa
i [t],ω

a
i [t−1]):∀i∈Ge}.

• γ̄∈ [0,1) is a discount factor.
The above POMDP can be solved using a single-agent RL algorithm
with continuous state and action space, such as the proximal policy
optimization (PPO) algorithm [24].

V. NUMERICAL RESULTS

In what follows we evaluate the vulnerability of MARL MG
controllers based on simulations.

A. Simulation Methodology
We consider the microgrid shown in Figure 2, with the parameters

given in [20]. We consider that the reference voltage frequency and
magnitudes are ωref =2π×60Hz and vref =380 v, respectively, The
utilized base load values were RL1=2.5Ω, LL1=1mH, RL2=3Ω,
and LL2 = 2mH. The inverters, network, and load dynamics were
simulated according to the differential equations in Section III-A. For
secondary control, we considered that the operator uses the MPC
controller in (29) [4] for frequency control, and considered two
alternatives for secondary control of the voltage magnitude: (i) The MPC
controller [4], and (ii) MARL controller trained on the POSG defined
in Section III. For the MPC controller, we considered two variants. The
first variant is the MPC controller (i.e., (30)) with the the adjacency
matrix A of the communication graph and other control parameters as
specified in [25]. The second variant is the robust extension proposed
by [17], which discards neighbouring DG measurements that are too
high or too low. The extension (refered to as MPC-R) requires the
communication graph to be ”r-robust”, and that the number of attacked
agents |Ga| be known a priori to the controller. Our considered MG
does not satisfy r-robustness, hence MPC-R corresponds to fully
distributed MPC (i.e., based on local measurements only). For the
MARL controllers, we also considered two variants: the first variant was
trained using the proximal policy optimization (PPO) [24] algorithm,
the second using the advantage actor-critic (A2C) [26] algorithm. Both
algorithms are based on the actor-critic architecture, and represent
the state-of-the-art in solving RL problems for environments with
continuous action spaces, which is the case in our considered POSGMc.
To implement PPO and A2C, we used the multi-agent versions of the
algorithms in the RL-lib Python library [27] using the default algorithm
parameters in RL-lib. We experimented with other state-of-the-art RL
algorithms, such as soft actor critic (SAC) and deep deterministic policy
gradient (DDPG), but those did not yield satisfactory results despite
initial attempts for hyper-parameter tuning in RL-lib.

We trained the PPO and A2C controllers for 25,000 episodes each,
with an episode length of 1.2 seconds, as this was a sufficient time for
stabilizing the voltage in the non-attacked case. During the first 0.2
seconds of an episode, only primary control is active and the secondary
control references are computed as (ωni = ωref ,Vni = vref ). The
secondary controller becomes active after t=0.2 seconds. The sampling
time was Ts=0.005 s, thus each episode includes 240 samples. To
simulate varying loads in each episode, we considered a mean load resis-
tance and inductance per episode that varies within±20% of the base
values (RL1, LL1, RL2, LL2) mentioned earlier. Within each episode,
the instantaneous loads vary uniformly within±5% of the mean values.

We evaluated the MPC and MARL controllers under three scenarios:
First, a system without attacks, i.e., aωi =avi =0,∀i∈G. Second, a ran-
dom attack where measurement perturbations follow a uniform distribu-
tion aωi ∼U(0,aωmax),a

v
i ∼U(0,avmax),∀i∈Ga. Third, an optimal, RL-

based attack, where (aωi ,a
v
i ) are computed as the actions of the POMDP

Figure 4: Training curves for the RL attacks against the PPO, A2C
and MPC controller.

given by the tupleMa in Section IV. To train the RL attacks, we utilized
the single-agent PPO implementation in the RL-lib Python library,
trained for 20,000 episodes. Unless otherwise specified, we considered
the following: attacks target all agents (i.e., Ga=Ge=G), aωmax=0.01
p.u. (i.e., 2π× (0.6 Hz)), and avmax=0.1 p.u. (i.e., 38 Volts).

B. Training Curves
Figure 4 shows the training curves of the RL-based attacks (RLAs)

against the three considered MG secondary controllers, obtained as the
average of five independently trained agents. The bold lines show the
mean reward per episode and the shaded regions show the maximum
and minimum rewards among the trained agents. We can observe that
the training of all four attacks is very stable, as the variation between the
trained agents is small, especially towards the end of the training. The
results also show that the MPC and MPC-R controllers are more vulner-
able to attacks than the MARL controllers, both in terms of the controller
reward and in terms of the number of training episodes required to train
a powerful attack. This can be explained by the fact that the output of
MARL controllers are more stochastic compared to the MPC controllers,
which makes learning an optimal attack against MARL controllers more
difficult. Among the two MARL controllers, the PPO controller proves
to be more resilient, both in terms of attack impact and in terms of the
required attack training duration. This is consistent with results obtained
on Atari2600 games in [28], where trust region policy optimization
(TRPO), an algorithm from the same family as PPO, was shown to be
more resilient to attacks than A3C, which in turn is similar to A2C.

C. Attack Impact on Voltage Stability
Figure 5 shows the maximum voltage deviation ∆v

max achieved
under the three attack scenarios, obtained as the average of the max-
imum voltage deviation across the 4 DGs over 50 episodes. The RLA
results were obtained using the best performing agent among the five
agents trained (c.f., Figure 4). The results confirm the results in Figure 4
in that the MARL controllers (and especially the PPO controller) are
more resilient to FDIAs than the model-based controllers. Interestingly,
random attacks against the MPC controller can cause more damage
to the MG than the optimal RL attacks against the MARL controllers,
highlighting the resilience of MARL-based control. Furthermore, the
results show a significant difference between the impact of random
attacks and that of RL attacks, which highlights the importance of using
an RL attack for vulnerability and impact assessment.

Moreover, Figure 6 shows the the maximum voltage deviation
∆v

max caused by the attacks (in p.u.) as a function of the maximum



Figure 5: Maximum voltage deviation achieved by the attacks against
the MPC, PPO and A2C controllers.

Figure 6: Maximum voltage deviations achieved by the attacks against
the considered controllers, as a function of the attack intensity.

attack budget avmax, for a value of aωmax = 0.01 p.u. Each curve
shows the average of 50 episodes. Somewhat surprisingly, the results
show that the attack impact increases approximately linearly with the
maximum allowed voltage perturbation under both attack scenarios.
Compared to the x=y line, the figure also shows that the marginal
gain of increased voltage perturbation of an RL attack against the MPC
and MPC-R controllers is always above one, but this is not the case
for MARL controllers. Thus, the MARL controllers are overall more
robust to voltage perturbation attacks.

D. Impact of Attack Model

In what follows we investigate the impact of reduced attacker
capabilities and limited information availability on the vulnerability
of the controllers.

1) Attacking a Few Agents Would Suffice: Figure 7 shows the
maximum voltage deviation ∆v

max caused by the attacks (in p.u.)
as a function of the number of attacked DGs (i.e., |Ga|). Each curve
shows the average of 50 episodes. Importantly, the figure shows that
the attack impact is concave in the number of attacked DGs, |Ga|. For
almost all considered scenarios, an attack affecting only two DGs can
achieve almost the same impact as an attack against all DGs. These
results further illustrate the threat of FDIAs against MGs, as an attacker
with limited access to DGs can inflict significant impact on the MG.

Figure 7: Maximum voltage deviations achieved by the attacks against
the considered controllers, as a function of the number of attacked
agents (DRs).

Test Controller (C)
MPC MPC-R PPO A2C

Training Controller (C′
)

MPC 0.166 0.133 0.066 0.089
MPC-R 0.169 0.133 0.064 0.087

PPO 0.143 0.105 0.048 0.064
A2C 0.144 0.114 0.056 0.068

Table I: Voltage deviation ∆v
max caused by an RL attack trained

for secondary controller C′
when applied to secondary controller C.

Attacker can manipulate the measurements of all DGs.

Furthermore, the figure confirms the clear superiority of the MARL
controllers compared to the MPC controller in terms of resiliency,
irrespective of the number of attacked DGs.

2) Attacks Trained with Inaccurate Controller Model May Be More
Impactful: Finally, we evaluate the transferability of the RL attack
across controllers, i.e., how does an RL attack trained for a controller C′

perform when the operator uses controller C. The results in Table I show
the attack impact, with the diagonal values (in bold) corresponding
to the case (C′

= C). Surprisingly, the attacks with C′
= C are not

always the most impactful. The results clearly show that attacks trained
against the MPC and MPC-R controllers are more impactful than
other attacks, even when the employed controller is a MARL controller.
We attribute this phenomenon to that the response of the MPC and
MPC-R controllers is smoother and less stochastic compared to that of
the MARL controllers, which facilitates the training of the RL attack.

Overall, these results show that even attacks trained using incomplete
information could pose a significant threat to the stability of microgrids.
Moreover, the results confirm the superior resilience of the MARL
controllers, which is evident when comparing values in the same
row of the table. (i.e., the impact achieved by attacks trained on the
same C′

). We can thus conclude that employing MARL for secondary
voltage control in microgrids could be a significant step towards more
attack-resilient MGs.

VI. CONCLUSION

In this paper, we conducted the first study on the vulnerability of
MARL-based microgrid secondary control to false data injection attacks.
We formulated the problem of MG secondary control as a POSG, and
formulated the problem of computing FDIAs against secondary control
as a POMDP, and used state-of-the-art RL algorithms to solve the two
problems. Our results indicate that traditional model-based secondary
controllers are more vulnerable to FDIAs than MARL controllers,



even when the attacker knowledge or capabilities in terms of the
number of compromised DGs are limited. Our results show that MARL
controllers are significantly more resilient to FDIAs than model-based
controllers, and thus could constitute a significant step towards more
attack-resilient MGs. Potential future work could further investigate
the resilience of MG secondary control by (i) considering different
MG topologies, (ii) comparing a broader set of control algorithms, and
(iii) evaluating the performance of different FDIA detection schemes.
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