
Next Steps in Security for Time Synchronization:
Experiences from implementing IEEE 1588 v2.1

Ezzeldin Shereen1, Florian Bitard1, György Dán1, Tolga Sel2, and Steffen Fries2

1Division of Network and Systems Engineering, EECS, KTH Royal Institute of Technology, Sweden
2Siemens AG, Corporate Technology, Germany

Abstract—The lack of integrated support for security has
been a major shortcoming of Precision Time Protocol version
2 (PTPv2) for a long time. The upcoming PTPv2.1 aims at
addressing this shortcoming in a variety of ways, including
the introduction of lightweight message authentication. In this
paper we provide an overview of the planned security features,
and report results based on an implementation of the proposed
integrated security mechanism based on the open source Linux
PTP, including support for hardware timestamping. Our im-
plementation includes an extension of Linux PTP to support
transparent clocks. We provide results from an experimental
testbed including a transparent clock, which illustrate that the
extensions can be implemented in software at a low computational
overhead, while supporting hardware timestamping. We also
provide a discussion of the remaining vulnerabilities of PTP time
synchronization, propose countermeasures, and discuss options
for key management, which is not covered by the standard.

I. INTRODUCTION

A long-standing weakness of PTPv2 has been the lack
of support for security controls. As PTP is starting to find
adoption in critical infrastructures, e.g., in power systems
as an alternative for GPS-based synchronization of Phasor
Measurement Units (PMUs), concerns about the potential
consequences of a compromise of PTPv2 protocol messages
have become more severe. Recent work has shown that time
synchronization attacks against PMUs could bypass existing
security controls with potentially severe consequences [1, 2].
While recent works on the detection of time synchronization
attacks are able to detect low rate attacks with high accu-
racy [3], defense in depth calls for standards support for PTP
protocol message authentication.

Experimental support for protocol message authentication
for PTP was introduced first in Annex K of PTPv2 [4], but
several works pointed out that the overhead of the proposed
message authentication scheme was too high. Subsequent work
proposed in PTPv2.1 (IEEE 1588 v2.1) [5], which is currently
being standardized in the IEEE, redefined the security scheme
with various options to accommodate protocol internal secu-
rity means for authentication, and protocol agnostic means
provided by the embedding infrastructure. The PTP protocol
internal option targets different authentication options, which
allow adaptation to the target deployment environment.

In this paper we provide an implementation-based feasibility
analysis of the proposed protocol internal security features in
the upcoming PTPv2.1 standard on top of the open-source
Linux PTP implementation of PTP. Compared to previous

studies as [6], our implementation is based on a different
open-source software, includes a transparent clock, supports
hardware timestamping on Layer 2 transport, delayed unau-
thenticated processing, and combined immediate and delayed
processing. We also discuss remaining vulnerabilities in time
synchronization, propose potential countermeasures, and we
highlight potential avenues for future development and stan-
dardization.

The rest of the paper is organized as follows. Section II
describes the security features introduced in PTPv2.1. In
Section III we present the security extensions we implemented
to Linux PTP. In Section IV we demonstrate the effect of
our security extension on the synchronization accuracy and
the computation overhead using a testbed implementation.
Section V discusses the remaining vulnerabilities and open
issues. Section VI concludes the paper.

II. SECURITY IN PTPV2.1

PTPv2.1 (IEEE 1588 v2.1) is currently in the last phase of
specification in IEEE and is expected to become a standard in
2019. In contrast to the predecessor IEEE 1588 v2 describing
security in an experimental Annex K, IEEE 1588 v2.1 goes
one step further and defines a security option integrated into
the Precision Time Protocol directly as well as additional
measures leveraging existing or defining new security means
by the embedding infrastructure to support security.

A. Overview
IEEE 1588 v2.1 addresses security in various ways de-

scribed as prongs and depicted in Figure 1. The following
provides an overview about the prongs.

Fig. 1: IEEE 1588 v2.1 Security Prongs.

Prong A - PTP Integrated Security Mechanism is
described as an option in IEEE 1588 v2.1 section 16.14.
Prong A specifies an Authentication TLV integrated into and
aligned with the PTP message structure to specifically support
environments not featuring security protocols, which also
protect PTP (see Prong B below). This Authentication TLV
is designed to support different modes of operation, namely
immediate or delayed security processing of the message
authentication information. Immediate processing allows for
instant verification of integrity, while delayed authentication
performs the authentication at a later point in time, when
the security parameters for the verification are available. To
achieve this, different types of key management are necessary.
The security provided with the Authentication TLV is always
relying on a symmetric key. Note that based on the security
policy, the delayed authentication can be divided into two
approaches; (1) delayed unauthenticated, in which the message
processing is performed, and in case the delayed authentication
fails, the action is rolled back, and (2) delayed authenticated,
in which the execution is postponed until the delayed authen-
tication has been performed. The requirement of either rolling
back an action or postponing the execution until authentication
was performed provides the boundary conditions for delayed
authentication in general. Applicability depends on the actual
target use case. Note that the Authentication TLV may be
utilized multiple times in the same packet. This also allows the
combination of immediate and delayed authentication modes.
For the management of the key material and the associated
security policy, two different automated key management
schemes are outlined in Annex S of IEEE 1588 v2.1. Immedi-
ate security processing can be supported by utilizing the group-
based key management approach GDOI [7]. Delayed security
processing is supported by the multicast authentication scheme
TESLA [8]. Note that IEEE 1588 v2.1 does not require the
support of these key management approaches and also allows
manual key management.

Prong B – PTP External Transport Security Mechanisms
is part of the informative Annex S and describes the appli-
cation of security means to protect PTP message transport,
which may be already in place. Specifically addressed is the
protection of layer 2 traffic as hop-to-hop protection using
IEEE 802.1x MACsec or using IPsec to provide a secure
tunnel between entities.

Prong C – Architecture Guidance, which is also part of
the informative Annex S provides recommendations for archi-
tectural enhancements in the PTP architecture like redundant
communication paths and/or Grand Master Clocks (GM) to
detect attacks and improve resilience.

Prong D – Monitoring and Management Guidance is
also part of the informative Annex S, and gives additional
recommendations for the embedding infrastructure, which
support the detection of potential attacks (e.g., DoS attacks not
countered by cryptography). Beyond these are the detection of
tampering and degradation (delays) and/or failures of network
equipment and media, the utilization of additional performance
monitoring tools being specified by the Management subcom-

mittee, as well as guidelines for security network management
interfaces. Specifically the latter can also be connected to
Prong B, if IEEE 802.1x is used for link layer authentication
and authorization.

More detailed information about the security approach can
also be found in [9]. Nevertheless, as the focus here is the
implementation of the integrated security option, which has
been updated in IEEE 1588 v2.1 in the meantime, more
insight is provided to the current definition in the following
subsection.
B. Prong A Authentication TLV

The Authentication TLV in the integrated security option
has been changed slightly since the publication of [9] as
a result of reviews and discussions within the IEEE. We
only present the final status here, as it was the base for the
implementation. Figure 2 shows the final definition.

Fig. 2: IEEE 1588 v2.1 Protected PTP Packet

In contrast to the previous version, the security indication
in the PTP header has been deprecated as it was seen as not
contributing to the overall security. In contrast, as it is assumed
that security is enforced by a policy, a wrong statement in the
security indication could have been used as an attack vector.
The Authentication TLV definition itself, shown in Figure 3,
has not been changed.

Fig. 3: IEEE 1588 v2.1 Authentication TLV
III. IMPLEMENTATION

We implemented the integrated security mechanism as de-
fined in Prong A by extending v1.8 of Linux PTP. In order
to be able to test the security mechanism in a complete
configuration, our implementation included the extension of
Linux PTP v1.8 to support acting as a transparent clock. In
terms of the implementation and validation of the security
mechanisms, our focus was on the power profile, i.e., we
implemented all the functionality required for peer-to-peer
timing on top of Layer 2 transport (Ethernet), with support
for hardware timestamping.

2

Linux computer

Linuxptp

ptp4l

Main program to run
Configuration (cfg.c, default.cfg, pmc) including Transparent Clock (TC) mode
Print debug / notice / warning / error messages in console

phc2sys

Synchronization of PTP Hardware Clock (PHC)
devices
Used in a TC so that the 2 PHCs of the corresponding
logical PTP ports are synchronized

clock.c

PTP clock interface
PTP logical state (known foreign PTP clocks, PTP domains, time synchronization status)
Storage of the residence time for PTP event messages
SPD and SAD belong to the PTP clock

configuration file

port.c / fsm.c

Logical PTP ports of the clock
Handle PTP messages on interfaces
Finite-State Machine for logical PTP
port state evolution
New state allowing the logical PTP
ports to work in TC mode (compute
residence time, modify PTP data in
messages, forward messages)
Handle secured PTP messages and
drop non-compliant ones

bmc.c

Best Master Clock
algorithm

PTP messages data

tsproc.c

Timestamps related
computations

best clock

servo.c

Time correction
computations

SYSTEM
CLOCK

PTP messages buffer

msg.c

Identify PTP message
type and fields
Hton/ntoh format
conversion for message
header and body
Access TLV(s) by index

PTP messages

tlv.c

Identify TLV(s) in PTP
messages suffix
Hton/ntoh format
conversion for message
suffix including security
TLV(s)

PTP messages suffix

frequency,
offset

frequency,
offset

timestamps,
offset, delay

frequency,
leap, step

frequency,
leap, step

LINUX KERNEL
API(s): adjtime, timestamping, socket, packet filter, ...

1 individual PHC per interface

transport.c

Handle PTP messages from Linux
socket

clockadj.c / phc.c

System clock and PHC tick adjustments

byte stream from socket
tick adjustements
and configuration

raw.c / udp.c / udp6.c / uds.c

Specific transport protocols: Ethernet
IEEE 802.3, UDP over IPv4, UDP over
IPv6 and UDS

Ethernet packets
util.c / print.c / hash.c /

version.c / stats.c

Other useful toolboxes

datatypes.h / ddt.h /
ptp_datatypes.h

Data types definitions

pmc

PTP management client
External communication for ptp4l management
(settings, policy, etc.)

PTP management messages (usually via logical PTP port 0)

+ spd.c / spd_cfg.xml

Security Policy Database
Load and interpret the policy to decide what rule applies to a given
PTP message (providing a Security Parameter Pointer to an SA)
Check if PTP messages are compliant with the policy

+ sad.c / sad_cfg.xml

Security Association Database
Load and interpret the SA(s) to be able to check, append or
modify security TLV(s) in a secured PTP message
Security parameters for the chosen authentication mechanisms
Integrity Check Value computation and insertion in security TLV

PTP messages

Secured PTP messages

Fig. 4: Linux PTP architecture, including extensions for transparent clock (brown) and for security processing (blue).

A. Transparent clock extension

Linux PTP is implemented as a finite state machine (FSM),
in which the state transitions depend on the received messages,
timers and the clock type, which can be ordinary, boundary,
management, or through our extension, transparent. In order
to implement the transparent clock, we thus modified the
corresponding transitions of the FSM. In addition to these
modifications, we added support for forwarding Announce,
Sync, Follow Up, PTP management message and Signaling
message messages, including the appropriate modification
of the correction field based on the residence time of the
messages in the transparent clock. We also implemented
functionality to support the creation of Follow Up and Pde-
lay Resp Followup messages, so as to support two-step mode,
which was needed for implementing security processing with-
out hardware support.

In order to support message forwarding we configured
Linux to act as a bridge, using iproute2. In addition, since the
quad-port network interface cards we utilized in our testbed
(Intel i340-T4) use a separate clock for each physical interface,
we decided to synchronize the clocks of the different ports via
the Linux PTP Hardware Clock (PHC) subsystem. In principle,
lack of synchronization between the different ports should

not have a major impact on synchronization accuracy as long
as the the residence times of messages are in the order of
microseconds (as the clock drift between ports is negligible),
but we decided to synchronize the clocks so as to avoid any
unnecessary noise.

Figure 4 shows a block diagram of Linux PTP, including the
modifications made for the implementation of the transparent
clock functionality, marked with brown color.

B. Security processing
We implemented two of the three modes of authentication

discussed in the upcoming IEEE 1588 v2.1 standard: im-
mediate processing and delayed unauthenticated processing.
In addition, our implementation supports the combined use
of these two authentication modes. We also consider the
possibility that a transparent clock may have different security
policies on different ports, and hence the authentication modes
and the security associations might have to be changed when
forwarding protocol messages (Announce, Sync, Follow Up,
PTP management message and Signaling message).

For incoming messages, Linux PTP performs network to
host byte order (N2HBO) conversion in situ in the message
buffer. In order to implement security processing, we thus have
to create a copy of the incoming message before N2HBO

3

ptp4l phc2sys ptp4l

Master NIC
(PHC)

TCNIC
(PHC)

NIC
(PHC)

SlaveNIC
(PHC)

phc2sy -rr phc2sys -r

NIC = Network Interface Card
PHC = PTP Hardware Clock

synchronized to

Fig. 5: Illustration of the experimental testbed, consisting of a
master clock, a transparent clock, and a slave clock.

conversion is done. After the N2HBO conversion we then
process the PTP header, we look up the security policy in
the Security Policy Database (SPD), and check whether the
AUTHENTICATION TLV headers correspond to the policy. If
yes, we process the AUTHENTICATION TLV, starting from the
last one present in the message. In the case of an AUTHEN-
TICATION TLV specifying immediate processing, we use the
previously stored copy of the message for the Integrity Check
Value (ICV) calculation. For delayed unauthenticated process-
ing in the slave, we add the copy of the message to a linked
list and perform authentication upon key disclosure. In case
of a failed ICV check we add an error message to the system
log. We do not perform delayed unauthenticated processing
in the transparent clock. We note that the variable structure
of the AUTHENTICATION TLV increases the complexity of
processing incoming messages significantly.

For creating the AUTHENTICATION TLV for outgoing mes-
sages we add the AUTHENTICATION TLV header(s) before
host to network byte order (H2NBO) conversion is done,
we then compute the ICV value after H2NBO conversion,
and set it in the AUTHENTICATION TLV after performing
H2NBO on the ICV. For creating the AUTHENTICATION
TLV for forwarded messages we compare the security policy
of the outgoing message to that of the incoming message.
If delayed unauthenticated processing is used then we copy
the corresponding AUTHENTICATION TLV from the incom-
ing message, since the transparent clock does not perform
verification. In the case of immediate processing we do not
copy the incoming AUTHENTICATION TLV, but we create a
new AUTHENTICATION TLV based on the SPD, the Secu-
rity Association Database (SAD), and the message content.
Doing so facilitates supporting different security policies on
different ports. Figure 4 shows the modifications made for the
implementation of security processing marked with blue color.

C. Key management
We implemented manual key management in the form

of two modules, one for the SPD and one for the SAD.
Both databases are stored in XML format, specifying the
authentication mode and the security association per source
port, destination port and message type. The SAD for delayed
unauthenticated mode contains the value of the head (trust
anchor) of the hash chain for the master, and the tail (actual
value) for the slave, together with the hash algorithm, the
length of the hash chain, and the disclosure interval. The
transparent clock does not verify messages with delayed au-

-5 -4.5 -4 -3.5

Clock Frequency Adjustment (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

No Security

Immediate

Delayed+Immediate

Fig. 6: CDF of the implemented frequency adjustments with-
out security, with immediate processing and with combined
delayed-immediate processing.

thentication, and thus it only checks if the AUTHENTICATION
TLV is present as mandated by the SPD.

IV. EXPERIMENTAL EVALUATION

In what follows we show results from our implementation
of the AUTHENTICATION TLV in two-step mode. We created
a testbed that consists of a Master Clock, a transparent clock,
and a slave clock. Each clock runs on an HP ProLiant ML
G9 server equipped with an Intel i340-T4 quad port NIC card
capable of hardware timestamping, on Ubuntu 16.04.1 LTS.
Figure 5 shows the testbed components and their connections.
In the experiments we considered three scenarios:

1) No Security: all security features are disabled.
2) Immediate: immediate security processing for all mes-

sages.
3) Mixed (Delayed + Immediate): immediate processing

for peer delay messages, delayed unauthenticated pro-
cessing for Announce and Sync messages, and both
mechanisms for Follow Up messages.

Synchronization Accuracy: Figure 6 shows the cumula-
tive distribution function (CDF) of the frequency adjustments
computed by the clock servo of the slave clock for the three
scenarios. The adjustments were collected over 10 interleaved
intervals of 30 minutes each, in order to suppress the im-
pact of natural clock frequency variations. The figure shows
that the distribution of the adjustments is not affected by
security processing. To confirm this, we performed a two-
sample Kolmogorov-Smirnov test pairwise on the empirical
distributions, and the data passed the test at a confidence level
α = 0.05, which indicates that the data for the three scenarios
come from the same probability distribution. Based on these
results, we can conclude that the security extension has no
effect on the synchronization accuracy.

Security Processing Delays: Figure 7 shows the CDF of
the residence time (time between receiving and forwarding the
message) in the transparent clock for Sync messages sent by
the Master Clock. The figure shows that the use of immediate
processing mode can significantly increase the residence time,
which is expected since the ICV is verified for every received
message and is recomputed for every message before it is

4

0 50 100 150 200 250 300 350 400

Residence Time of SYNC messages (s)

0

0.2

0.4

0.6

0.8

1
C

D
F

No Security

Immediate

Delayed+Immediate

Fig. 7: CDF of the residence time of Sync messages in the
Transparent clock without security, with immediate processing
and with combined delayed-immediate processing.

forwarded. We observe on average 70µs extra delay introduced
by immediate processing. At the same time, the mixed use of
immediate and delayed authentication processing introduced
relatively little extra delay (on average 10µs, compared to No
Security), as the ICV is only computed for a subset of the
messages. It is to be noted that although the messages are
further delayed in the transparent clock, the synchronization
performance is not affected as the increased residence time
is accounted for by the correction field. We observe similar
behavior in Figure 8 for the peer delay messages, used to
estimate the delay between neighbouring clocks. The figure
shows the CDF of the time between receiving a Pdelay Req
message and sending a Pdelay Resp message measured at the
NICs of the following devices: (1) port 1 of the transparent
clock, (2) port 2 of the transparent clock, (3) the Master
Clock, and (4) the slave clock. For all the ports, we observe
an additional delay of 70µs on average, similar to the delay
experienced by Sync messages (c.f., Fig. 7).

CPU Usage: To measure the CPU usage of Linux PTP at
the slave clock we disabled 15 of the 16 threads of the Intel
Xeon E5-2620V4 CPU, and reduced the CPU frequencey to
its minimum (1.2 GHz). We then used pidstat to measure the
average CPU usage over one minute intervals. Without security
we measured a user space CPU usage of 8ms per minute.
With immediate security processing the corresponding time
was 24ms, and it was 27ms in the mixed scenario. The three
fold increase is mostly due to the ICV computation, and related
overhead, and should be accounted for in dimensioning the
computing power of embedded devices. Security processing
did not affect the CPU usage of the kernel, as expected, as the
system calls are mainly related to message transmission and
reception using the Linux socket API.

V. REMAINING VULNERABILITIES AND CHALLENGES

The proposed AUTHENTICATION TLV is clearly a sig-
nificant step forward in securing PTP time synchronization.
Nonetheless, there are several remaining threats and issues
that should be considered when planning deployments in
adversarial environments.

0 100 200 300 400 500 600 700 800

Response Time of Peer Delay Message (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

TC Port 1

TC Port 2

Master

Slave

Immediate

No security

Fig. 8: CDF of the response time for peer delay messages
without security and with immediate processing, when sent
by the TC, the Master and the Slave in the testbed.

A. Hardware Implementation Challenges
Besides the complexity of managing the variable length AU-

THENTICATION TLV in hardware, it is unclear how integrated
security processing would affect timing accuracy in one-step
mode. One potential solution for accurate hardware transmit
timestamping in one-step mode would be to use constant
time execution cryptographic functions for computing the ICV,
so that the transmit timestamp of messages can be known
before sending. An alternative would be to use cryptographic
functions with bounded worst case execution time combined
with a hard-real time scheduler on the NIC, which allows tight
control of the message transmission time.
B. Known Vulnerabilities

By its design, delayed processing does not allow to verify
the integrity of the correction field, which is updated in every
transparent clock upon forwarding Follow Up messages. Thus,
the integrity of the correction field can only be verified using
immediate processing.

Group key compromise: Immediate processing relies, how-
ever, on symmetric key cryptography through the application
of a group key. It is thus vulnerable to the compromise of
any of the PTP nodes using the same security association.
To mitigate this threat, the number of devices using the same
security association should be minimal. One possibility would
be to use a different security association between every pair
of PTP nodes. While seemingly not scalable, typical physical
network topologies are rather sparse, and hence the number
of edges (i.e., keys) is likely to be in the order of the number
of nodes. Our implementation of the AUTHENTICATION TLV
shows that it is feasible to use different security associations on
different ports of the same node without major overhead. As a
complement, key material could be protected by using a secure
cryptoprocessor, such as a Trusted Platform Module (TPM),
for storing the symmetric keys and for ICV calculation.

Software compromise: The above countermeasures do not
mitigate the threat of a compromised transparent clock. Since
immediate processing does not protect the correction field
while within the clock, an attacker could manipulate it unno-
ticed, so as to create asymmetric one way delays. This threat

5

could be mitigated by storing and processing all data related
to PTP in a trusted execution environment, such as Intel SGX
or ARM TrustZone, but we are not aware of implementations
supporting this, yet. We thus argue that it is important to target
transparent clocks in the security assessment for the intended
operational environment to derive the applicable security re-
quirements and based on this the appropriate measures. This
is important also when a certain security level according to
IEC 62443-3-3 is to be met in industrial automation systems.

Delay attack: The cryptography-based security control de-
fined in Prong A does not counter delay attacks. Thus, a
composition of the different Prongs defined in IEEE 1588 v2.1
is necessary to provide appropriate protection.

C. Key Management and Profiles
From a standard evolution perspective, IEEE 1588 v2.1 will

provide protocol integrated security options as well as external
security measures. But it will also leave room for further
specification. In particular, the application of the two named
key management approaches, GDOI and TESLA, needs further
specification to allow for interoperable implementations.

GDOI as defined may not be directly applicable out of the
box to IEEE 1588 v2.1. It was defined targeting IPsec and
therefore the defined payloads match what is needed for IPsec.
Investigations to what payload definitions are necessary to
transport the parameters for protecting PTPv2.1 are required.
As GDOI has been enhanced with key data payloads to support
application in the power system automation domain as IETF
RFC 8052 [10], analysis is necessary, if the defined key data
payloads may be directly reused. This would lower the effort
for specification and potentially also for implementation effort.

TESLA on the other hand may be applied for the setup
of the hash chain and the key calculation. Nevertheless,
for applying TESLA it is also required to distribute further
information like the anchor value, the key disclosure interval
and further settings. There exists already an IETF standard
RFC 4442 [11] defining the bootstrapping of TESLA utilizing
a different group supporting key management protocol called
MIKEY (Multimedia Internet Keying). To not mix too many
key management protocols, the approach described in RFC
4442 may be directly transferred to GDOI allowing it to
provide both security parameter information for immediate
processing, and security parameter provisioning for TESLA
to enable delayed security processing of PTP messages.

In addition, as several other domain specific standards
profiling the options provided by IEEE 1588, a security profile
may be necessary. This could be a generic security profile
as an extension to the upcoming IEEE 1588 v2.1 combining
different security options and key management choices into
one profile. Alternatively, there already exist domain specific
standards profiling PTP for different applications for different
verticals. Examples are

• PTP Power System Application Profile (defined in IEEE
C37.238 and IEC 61850-9-3)

• PTP Industry Profile (IEC 62439-3)
• PTP Telecom Profile for Phase/Time (ITU-TG.8265.1).

As these profiles are already defined, they may need to be
enhanced to profile the security options of IEEE 1588 v2.1
for their specific application domain.

VI. CONCLUSION

We presented an experimental evaluation of the AUTHENTI-
CATION TLV to be introduced in PTPv2.1. Our implementa-
tion shows that the proposed extension can be implemented
in software with a relatively low computational overhead,
while making use of hardware timestamping, thus without
affecting the achievable synchronization accuracy. In addition,
we discussed remaining threats and potential work items for
standardization to pave the road for adopting PTP and PTP
security in different application domains.

REFERENCES

[1] S. Barreto, M. Pignati, G. Dán, J. L. Boudec, and
M. Paolone, “Undetectable timing-attack on linear state-
estimation by using rank-1 approximation,” IEEE Trans.
on Smart Grid, vol. 9, pp. 3530–3542, Jul. 2018.

[2] S. Barreto, J. L. Boudec, E. Shereen, G. Dán, M. Pignati,
and M. Paolone, “A continuum of undetectable timing-
attacks on PMU-based linear state-estimation,” in Proc.
of IEEE SmartGridComm, Oct. 2017.

[3] E. Shereen and G. Dán, “Correlation-based detection of
PMU time synchronization attacks,” in Proc. of IEEE
SmartGridComm, Oct. 2018.

[4] IEEE Instrumentation and Measurement Society. TC-
9 Sensor Technology, “Standard for a precision clock
synchronization protocol for networked measurement and
control systems,” IEEE 1588-2008, 2008.

[5] IEEE Instrumentation and Measurement Society. TC-9
Sensor Technology, “Draft Standard for a precision clock
synchronization protocol for networked measurement and
control systems,” IEEE P1588 v2.1 Draft D1.4, 2018.

[6] D. Maftei, R. Bartos, B. Noseworthy, and T. Carlin,
“Implementing proposed ieee 1588 integrated security
mechanism,” in Proc. of IEEE ISPCS, Sep. 2018.

[7] B. Weis, S. Rowles, and T. Hardjono, “The Group
Domain of Interpretation,” RFC 6407, IETF, Oct. 2011.

[8] A. Perrig, D. Song, R. Canetti, D. Tygar, and B. Briscoe,
“Timed Efficient Stream Loss-Tolerant Authentication
(TESLA): Multicast Source Authentication Transform
Introduction,” RFC 4082, IETF, June 2005.

[9] K. O’Donoghue, S. Fries, and D. Sibold, “New security
mechanisms for network time synchronization proto-
cols,” in Proc. of IEEE ISPCS, Sep 2017.

[10] B. Weis, M. Seewald, and H. Falk, “Group Domain of
Interpretation (GDOI) Protocol Support for IEC 62351
Security Services,” RFC 8052, IETF, June 2017.

[11] S. Fries and H. Tschofenig, “Bootstrapping Timed Ef-
ficient Stream Loss-Tolerant Authentication (TESLA),”
RFC 4442, IETF, June 2006.

6

