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Management of Caching Policies and Redundancy
over Unreliable Channels
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Abstract—Caching plays a central role in networked systems,
reducing the load on servers and the delay experienced by users.
Despite their relevance, networked caching systems still pose
a number of challenges pertaining their long term behavior.
In this paper, we formally show and experimentally evidence
conditions under which networked caches tend to synchronize
over time. Such synchronization, in turn, leads to performance
degradation and aging, motivating the monitoring of caching
systems for eventual rejuvenation, as well as the deployment
of diverse cache replacement policies across caches to promote
diversity and preclude synchronization and its aging effects.
Based on trace-driven simulations with real workloads, we show
how hit probability is sensitive to varying channel reliability,
cache sizes, and cache separation, indicating that the mix of
simple policies, such as Least Recently Used (LRU) and Least
Frequently Used (LFU), provide competitive performance against
state-of-art policies. Indeed, our results suggest that diversity in
cache replacement policies, rejuvenation and intentional drop-
ping of requests are strategies that build diversity across caches,
preventing or mitigating performance degradation due to caching
aging.

Index Terms—caching, networking, wireless, aging

I. INTRODUCTION

CACHING is a fundamental technique for scaling the ser-
vice capacity of networked systems [1]–[3]. By bringing

content closer to users, caches reduce the service latency for
end users and decrease the load in the network and at content
servers, also known as content custodians. Users can access
the caches either through reliable wired channels or through
unreliable wireless channels, and a single user may be able to
retrieve content from one or several caches, depending on the
system topology and design choices [4].

Owing to their importance, several cache replacement poli-
cies have been proposed in the past, each one with distinct
advantages. For example, the Least Recently Used (LRU)
policy promotes file recency and optimizes performance under
adversarial finite request sequences [5, Theorem 3.6]. Simi-
larly, the Least Frequently Used (LFU) policy maximizes the
hit ratio under stationary sequences by promoting contents
with the highest request frequency [5, Table 3.1], [6], while
Time-To-Live (TTL) policies are versatile policies that use
timers to adjust the hit probability of each content, being able
to approximate other policies such as LRU and FIFO [7].

A cache replacement policy determines how cache space is
allocated, as a function of the requests for contents arriving to
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the cache. We refer to such an allocation as intra-cache space
split, which may be dynamic, such as in LRU, LFU and TTL,
or static, such as in Segmented LRU (SLRU) [8]. In addition,
a system can have either a single cache or multiple caches.
When the system has a single cache, it is called cache pooling
as all the storage resources are concentrated in one unit [9]. If
the cache space is divided across multiple physically separate
caches, it is called cache partitioning. If a request cannot be
served with the desired content from the cache(s), the system
will forward the request to a content server. The flow of the
resulting requests is referred to as backhaul traffic. Under
cache partitioning, the cache space must be allocated across
caches, which we refer to as inter-cache space separation.
In wireless networks with unreliable channels, in particular,
separating space across multiple caches can build robustness
into the system, as the availability of each of the caches may
vary over time [9].

Separating cache space among multiple caches can improve
robustness, but it also introduces a new issue: synchronization.
In the most extreme case, all caches may eventually store
the same contents, which builds robustness against losses
but may be suboptimal depending on the system setup. To
solve this problem, promoting strategies to increase diversity
among caches may be necessary. In essence, those strategies
can be reactive, e.g., consisting of periodically revisiting
content allocation across caches, or proactive, e.g., avoiding
synchronization at first place.

The key to the effective use of multiple caches in networks
with unreliable channels is to make the caches complement
each other at the right level. An excessive amount of re-
dundancy within the cache system can undermine diversity,
preventing the caches from effectively complementing each
other. On the contrary, an excessive amount of diversity can
penalize redundancy, limiting the network’s ability to fully
capitalize on the advantages of using different caches in the
event of channel failure. If a channel fails, the request is
usually forwarded to another cache, but if the caches store
significantly different contents, there is a high chance that the
request will not be satisfied, leading to an increase in the cache
miss rate of the network.

In summary, the performance of a caching system is affected
by a number of factors, including (a) choice of content inser-
tion and eviction policies used by the caches, (b) separation
of cache space among different contents or flows, inside
each cache and across caches, as well as by (c) networking
aspects, such as network congestion and reliability. These
factors have been individually analyzed in previous work, but
their interplay is non-trivial and is not yet well understood.
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In particular, the role of cache replacement policies and cache
separation over unreliable channels has not been previously
investigated.

In this paper, we evaluate the roles that cache replacement
policies and cache separation over unreliable channels play
in determining performance, and find that cache replacement
policies and cache separation are intrinsically related, and that
their roles must be taken into account jointly. The study of
the LRU cache replacement policy is an important first step
towards understanding the interplay between networking and
caching [9]. Nonetheless, we show that if system designers
have the flexibility to choose the cache replacement policy
and cache separation policy then cache replacement policies
other than LRU may be preferable.

We summarize our contributions as follows:
• Analytical results on the tradeoff between robustness and

diversity accounting for content synchronization. We
provide an analytical characterization of the tradeoff
between robustness to channel unreliability and content
diversity among caches. Using the model, we quantify
the extent to which an increase in channel reliability may
decrease the cache hit probability due to a reduction in
content diversity across caches, accounting for multiple
replacement policies. In addition, we identify conditions
under which caches initialized at different states even-
tually converge to the same state, where robustness is
maximal and diversity is minimal (Section IV).

• Identification of different sources of content diversity.
Motivated by the fact that content diversity across caches
can increase hit probability, we identify two sources of
content diversity, namely: 1) channel unreliability, which
causes randomization of the request streams reaching
different caches; and 2) deployment of distinct cache
replacement policies across caches and/or randomized
policies, both effective in breaking the symmetry of con-
tents evicted from different caches (Sections IV and V).

• Evaluation of the role of cache replacement policies and
resource separation with real workloads. We evaluate
the impact of cache replacement policies and resource
separation, with real workloads. Our trace based sim-
ulations validate the analytical results, indicating that
our analytical results, e.g., pertaining the decrease in hit
probability as channel reliability grows, and the advantage
of deploying different policies across caches, hold for real
traces, accounting for temporal locality and state-of-the-
art cache replacement policies (Sections VII and VIII).

Each of the above three contributions, by itself, advances the
state of the art. Indeed, we are unaware of previous work
accounting for multiple replacement policies and quantifying
the extent at which an increase in channel reliability may
decrease hit probability. Despite the fact that channel diversity
is a common theme in wireless networks, we are also un-
aware of previous work that considered the interplay between
caching and channel diversity, accounting for potential content
synchronization across caches under multiple replacement
policies.

The rest of the paper is organized as follows. Section II
reviews related work and Section III introduces the system un-

Fig. 1. Cache pooling and cache partitioning (resource separation). Cache
pooling is depicted under (a) cache hit, (b) cache miss without network failure
and (c) network failure cases. Cache under equal partitioning is depicted in
scenarios involving backhaul traffic: (d) request broadcasted to two caches,
followed by a hit and backhaul traffic to one of the two caches, (e) misses
and backhaul traffic to both cache and (f) partial network failure, miss and
backhaul traffic to a single cache. In this paper, misses depicted in the two
bottom rows are assumed to be equivalent from the user perspective, and are
referred to simply as cache misses.

der study. Section IV reports analytical results on the tradeoff
between robustness and diversity, and Section V presents an
analytical toy model which sheds further insights on the role
of partitioning and cache policies over unreliable channels,
followed by a discussion of our key assumptions in Section VI.
Numerical evaluation accounting for Independent Reference
Model (IRM) traffic under a Zipf workload is reported in
Section VII. Section VIII accounts for real traffic, Section IX
presents practical implications of our results and Section X
concludes.

II. RELATED WORK

In this section we discuss related literature on caching
systems [5], [10], accounting for utility maximization [7],
[11], caching networks [12], [13] and cache replication over
unreliable channels, where each user is connected to multiple
caches [14], [15], through channels with failures and losses [9],
[16] and delays [17]–[19]. In what follows, we briefly review
related work pertaining three main research threads related to
our work, namely cache partitioning, caching over unreliable
channels, and the tradeoff between parallelism and diversity.

Despite the vast literature on caching systems, the interplay
between cache partitioning and cache replacement policies
over unreliable channels is still poorly understood. Among our
technical contributions on top of related work, we emphasize:
i) an investigation of the phenomenon of cache synchro-
nization, that is at the core of cache networks, significantly
impacting its performance but which, to the best of our
knowledge, has not been discussed in previous works [9], ii)
a comparison between multiple cache replacement policies,
which is beyond the scope of previous works on caching
over unreliable channels [20] that focused exclusively on
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LRU [9], iii) an assessment of the tradeoff between replication
and diversity leveraging real workloads and a state-of-the-art
synthetic workload generator [21].

A. Cache Partitioning, Cache Networks and Aging

The literature on cache partitioning is mostly comprised of
works focusing on its practical aspects [22] and on partitioning
among multiple flows [7], [23]. Recently, there has been sig-
nificant progress on the formal analysis of strategies for cache
partitioning [9], [24], [25]. While [7], [22], [23] indicate clear
advantages of partitioning considering policies such as TTL,
Adaptive Replacement Cache (ARC), SLRU and Sequential
Prefetching ARC (SARC), other works accounting for lossy
channels [9], [24], [25] focused on LRU systems. The purpose
of this work is to bridge that gap, investigating how inter-cache
partitioning impacts performance under policies beyond LRU,
accounting for lossy broadcast channels.

As the name suggests, TTL caches account for the aging of
contents, i.e., content aging, to determine what to evict [26].
Nonetheless, we are unaware of previous work that accounted
for caching aging in networked systems. In networked sys-
tems, as indicated in this paper, aging occurs due to the
tendency of caches to synchronize among themselves, and is
orthogonal to the aging of the contents.

In [27] the authors observe that response time can increase
as the number of caches grows, given the system overhead
to maintain the caches. In our work, we observe a similar
trend of response time increasing with respect to the number
of caches, due to an eventual synchronization among them.
Although our observations are in agreement with [27], and
also relate to aging, the theme of cache synchronization is out
of scope of [27].

Under cache networks, the benefits of randomized caching
policies and of the use of distinct policies across caches have
been discussed in [28]–[30]. Such previous works considered
cache hierarchies, and the use of distinct policies at different
levels of the hierarchies, e.g., in the context of Content
Delivery Networks (CDNs). In this work, we indicate that the
benefits of randomization and diversity also hold in the realm
of lossy broadcast channels.

B. Caching Over Unreliable Channels

Caching over wireless networks has been considered under
the framework of femtocaching [4], [31]–[33], wherein base
stations are equipped with caching capabilities. Alternatively,
set-top boxes equipped with caches close to users can be
accessed through wifi, being managed partially by the network
providers [34]. In both cases, the allocation and splitting of
cache space among caches strategically placed close to users,
as considered in this paper, are key elements.

In [20] the authors consider the joint problem of optimal
content placement and routing, extending [35] to account for
lossy channels. Our work differs from [20] in at least three
aspects, as 1) [20] consider a multi-hop unicast network, while
we consider a single-hop broadcast channel; 2) [20] analyze
their proposed policy, together with LRU, FIFO and Random,
while we consider a broader class of policies, including LFU,

Bloom-filter LRU (BLRU), LRU with a threshold K (LRUK),
LFU with Dynamic Allocation (LFUDA), among others; 3)
we analyze the loss of efficiency caused by dependencies
across caches when channels are reliable, suggesting potential
benefits of diversity caused by lossy channels (see Section IV).

C. Replication and Diversity Tradeoff

Replicating content across multiple caches is a form of re-
dundancy. Redundancy, in turn, builds robustness but decreases
diversity.

Replication and diversity play a key role in computer
systems. The tradeoff between replication and diversity has
been considered, for instance, in the context of distributed sys-
tems [36], [37]. In those systems, jobs are assigned to multiple
servers, and one may either submit the same job to multiple
servers (replication, e.g., to decrease the response time of that
particular job, assuming that a job gets completed when at
least one of the servers executes its task) or different jobs
are assigned to different servers (diversity, e.g., to decrease
the overall system response time). In this paper, we show that
such tradeoff also applies to caching systems, where spreading
diverse contents among caches minimizes the cache miss prob-
ability assuming that the network delivers the content requests,
whereas replication of the same content across multiple caches
increases robustness against lossy channels.

In the realm of in-network cache provisioning, the tradeoff
between network performance and storage cost has been
addressed in [38]. In this work, we also account for trade-
offs involved in in-network cache allocation. However, while
in [38] the authors consider a multi-hop network with reliable
links, in this paper we focus on the network edge and account
for lossy links.

It has been previously observed that a number of natural [39]
and computational systems [40] have a tendency towards
synchronization [41], leading to cache aging. In this paper,
we show that networked caches also present such behavior.
This, in turn, suggests that adding randomization to the
system, either through the network (in the form of losses) or
through the cache replacement policy (in the form randomized
evictions) can increase hit probability, motivating our formal
and experimental results.

This manuscript is an extended version of [42]. Among the
contributions on top of [42] we emphasize (i) an enhanced
analytical model including novel propositions concerning the
impact of cache partitioning (Section IV); (ii) additional
numerical results under synthetic workloads (Section VII);
(iii) evaluation of our results accounting for real traffic, for
a wide range of state-of-the-art cache replacement policies
and large cache sizes (Section VIII) and (iv) an improved
characterization of the impact of dependencies on system
performance as well as additional numerical insights from a
toy example (see Supplementary Material).

III. SYSTEM MODEL

We consider a flow of requests issued by a set of users
towards a set of caches. Each request is broadcast to all caches
through replicas sent across independent channels. Channels
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TABLE I
TABLE OF NOTATION

Variable Description
M Number of caches
N Number of contents in catalog
x Total cache space
bi Fraction of space allocated to cache i
p Channel success probability

user

cache 1

cache 2

Fig. 2. System setup with M = 2 caches and equal split b1 = b2 = 0.5.

are unreliable, and the request may reach only a subset of
the caches, which have no coordination among themselves,
i.e., the control plane acts between users and caches but not
across caches. Such system design is typically considered in
the realm of femtocaches, and is depicted in Figures 1 and 2.

In particular, after a request reaches all caches and leads
to hits in a situation where all caches have the content, the
content metadata in all caches (popularity for LFU, recency
for LRU, etc.) is locally updated. When a miss followed by an
eviction occurs, such eviction is treated locally independently
of the states of other caches. In Figures 1(a) and 1(d) we have
cache hits without network failures. In Figures 1(b) and 1(e),
in contrast, we have cache misses without network failures.
Finally, in Figures 1(c) and 1(f) we have cache misses with
full and partial network failures, where the latter corresponds
to a system that has two channels, with one of them failing to
deliver the request to the cache.

We denote by x the total cache size, measured in content
items, when considering equal sized contents, or bytes, when
considering contents with different sizes. Let M be the number
of caches. In the case of pooling there is a single cache, M =
1. In the case of separation, M ≥ 2, a fraction bi of the cache
space is allocated to cache i, i ∈ {1, . . . ,M}, as illustrated in
Figure 2 for the case M = 2 and b1 = b2 = 0.5.

Let F = {f1, ..., fN} be the set of unique items of content
that can be requested. Let V = {v1, . . . , vM} be the set of M
caches, M = |V |. For all fi ∈ F , let λi be the probability
that an upcoming request is issued for content fi, i.e., λi is
the popularity of fi.

Definition 1. The state of a cache system is the collection
of cache states, where each cache state is a vector of stored
contents in order of recency.

Although the caches operate locally and independently, their
states may be coupled through the request stream, which is
common across caches. Indeed, a request that reaches multiple
caches naturally leads to a coupling of the cache states, which
may eventually synchronize themselves causing aging and
degrading its performance. Before we present our results,
we introduce additional definitions, adopting the terminology
from [43].

We begin by introducing the notion of a positive request
stream. We refer to a request stream as positive when the

stream is comprised of independent and identically distributed
requests and an upcoming request can be issued for any
content in the catalog.

Definition 2. A request stream is said to be positive if and
only if its requests are independent and identically distributed
and its domain is the set of all contents, i.e., ∀fn ∈ F , λn > 0.

Then, we introduce the notion of an ergodic cache. We say
that a cache is ergodic if, from each of its states, the cache
can eventually transition to every other state.

Definition 3. A cache is ergodic if each of its states can be
reached from every other state given it is subject to a positive
request stream.

Finally, we introduce the notion of an individually ergodic
cache system.

Definition 4. A cache system is individually ergodic if its
constituent caches are ergodic in isolation. This means that,
for each cache v ∈ V , if v operates as a cache in isolation
then v is ergodic.

In the following section, we leverage the above definitions to
characterize the system steady state behavior, and to establish
conditions under which the caches eventually synchronize.

IV. EFFECTS OF PARTITIONING ON CACHE
SYNCHRONIZATION, AGING AND PERFORMANCE

We begin this section by assessing the impact of initial
conditions on steady state hit probability. Despite the fact
that all previous works in the realm of caches connected
through wireless channels assumed that initial conditions had
no impact on steady state, we show through simple examples
that steady state performance can be significantly affected by
initial conditions (Section IV-A). Then, we consider the oppo-
site case, and establish conditions under which independently
of the initial conditions the system will converge to a state
where all caches are synchronized (Section IV-B). Such a state
corresponds to a low hit probability, motivating strategies to
avoid it by diversifying contents across caches. In particular,
we show that deploying distinct cache policies across caches
can increase hit probability (Section IV-C).

A. Initial Condition Can Impact Steady State
Motivation and goals: In what follows, we aim at identify-

ing factors that impact the steady state of content occupancy.
Previous works study steady state behavior accounting for
storage and link capacities, as well as network topology, but
ignored the impact of the initial system configuration on steady
state. The fact that the initial state is ignored in all previous
works on caches connected through broadcast channels reflects
the tacit assumption that after a transient phase the initial
state has no impact on performance. Nonetheless, we will
illustrate through simple examples that this assumption does
not always hold. From an analytical perspective, this suggests
the need for deeper investigation of the fundamentals behind
caches connected through broadcast channels. From a practical
standpoint, our results motivate strategies such as rejuvenation
to “warmup” the caches on a regular basis (see Section IX).
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Examples: We present four examples of caching systems
in which the steady state depends on the initial condition.
The first two examples involve request sequences character-
ized by recurring patterns over time. These sequences are
realizations, for instance, of a non-positive request stream
(see Definition 2). The third and fourth examples involve a
cache system that lacks individual ergodicity, as described in
Definition 4. Specifically, we consider a FIFO cache system
with a small catalog relative to the cache size. Throughout
this subsection, our focus is on a scenario involving two
caches. We denote by {(fn1

fn2
), (fn′

1
fn′

2
)} the contents of

these caches, i.e., the cache states. In this notation, position 1
corresponds to the most recent item in the cache. Additionally,
we use (fn1 , . . . , fnk

) to denote a sequence of requests and
(fn1 |fn1′, . . . , fnk

) to represent a sequence of requests where
the first request is selected uniformly at random for fn1

or
fn′

1
.

1) Example 1 (non-positive request stream with FIFO over
reliable channels): Let p = 1, M = 2, x = 4, bi = 0.5 and
F = {A, ..., Z}. The initial cache contents are {(AB), (AC)}
(in general, caches have the same item in position 1 and a
different item in position 2). Let the first request be (B|C),
i.e., an item at position 2. Then we get to {(AB), (BA)}
or to {(CA), (AC)}, so both caches contain the same items,
but in a different order. The next request can be any item
not in the cache, e.g., (D). Then we go to {(DA), (DB)}
or {(DC), (DA)}, which are both states with the same item
in position 1 and different items in position 2. We now
repeatedly request an item in position 2 followed by an
item not in the cache, and the caches never synchronize.
Alternatively, if the caches start synchronized, they will remain
synchronized forever. Interestingly, in this example the steady
state cache occupancy depends on the initial condition, but the
miss probability equals 0.5 for any of the considered initial
conditions.

2) Example 2 (non-positive request stream with FIFO over
reliable channels): We now extend the previous example in
such a way that the steady state miss probability depends
on the initial conditions. As before, let p = 1, M = 2,
x = 4, bi = 0.5 and F = {A, ..., Z}, and the ini-
tial cache contents are {(AB), (AC)}. Consider the request
stream (B|C,D,A,E,D,C,D,B). After serving these 8
requests, the caches contents are {(BC), (BD)}. Let the
next 8 requests be (C|D,E,B,A,E,D,E,C), i.e., we re-
placed A, B,C,D,E in the request stream by requests to
B, C,D,E,A, respectively. The resulting contents at caches
are {(CD), (CE)}. Repeating the above request streams, the
caches eventually reach state {(AB), (AC)}, when the whole
process restarts. Out of every 8 subsequent requests, 4 result in
a cache miss, i.e., the steady state miss probability equals 0.5.
Nonetheless, if the caches start synchronized then the steady
state miss probability equals 0.75. Hence, the steady state miss
probability depends on the initial conditions.

3) Example 3 (positive request stream with FIFO over
reliable channels): Let p = 1, M = 2, x = 4, xbi = 2,
N = 3, λn = 1/3. Consider the following two scenarios.
In the first scenario the two caches store the same contents
initially, in the same order. Then, the system will cycle through

cache 1: A B
cache 2: B A

cache 1: A B
cache 2: A C

cache 1: C A
cache 2: A C

B
A

C

C
A, CA, B

2 distinct 
contents

3 distinct 
contents

2/3
1/3

1/3
2/3

(a)

(b)

cache 1: C A
cache 2: C B

cache 1: B C
cache 2: B A

B

Fig. 3. Dependence on initial conditions: states of a FIFO cache system, with
catalog size 3, with 2 caches with capacity 2 each, accounting for symmetries:
(a) edges are labeled with requested content. From dotted states, the system
immediately transitions to an equivalent state; (b) lumped state space of MC
equivalent to (a). The hit probability equals 7/9, greater than 2/3 in case the
two caches are started with the same contents, in the same order.

configurations where the two caches will always store the same
contents in the same order. For all practical purposes, the
system behaves as a single cache with capacity to store two
objects. By symmetry, each content is stored in cache 2/3
fraction of the time. Also by symmetry, the hit probability of
each content is 2/3, and the system hit probability is 2/3.

In the second scenario one of the contents is initially stored
in both caches, but the second position of each cache contains
a distinct content. Then, the first request will generate a hit.
Subsequently, the system will transition across states returning
infinitely often to the state where a hit occurs with probability
1. Figure 3 shows the system states, already accounting
for symmetries. States {(AB), (AC)}, {(BC), (BA)} and
{(CA), (CB)}, for instance, are equivalent, and are jointly
denoted by {(AB), (AC)}. Clearly, in the middle state the
hit probability equals 1 and in the other two states the hit
probability equals 2/3. The hit probability under this scenario
is 7/9, i.e., higher than in the first scenario. Thus, the steady
state performance of a partitioned FIFO cache may depend on
the initial configuration of the system. The example can be
generalized to larger cache sizes, whenever xbi = N − 1.

4) Example 4 (positive request stream with FIFO over
unreliable channels): Let p < 1, M = 2, xbi = 2, N = 3, and
λn = 1/3. Consider two initial conditions, {(AB), (AC)} and
{(AB), (AB)}. As in the previous example, the set of visited
states is different for the two initial conditions, i.e., the Markov
chain is reducible and the stationary distribution of states is
not unique, i.e., it depends on the initial condition. The steady
state miss probability under the two initial conditions is given
by

PFIFO/FIFO
miss ({(AB), (AC)}) = −2p3 + 12p2 − 18p+ 9

9− 6p
,

(1)

PFIFO/FIFO
miss ({(AB), (AB)}) = −3p3 + 20p2 − 33p+ 18

9(2− p)
.

(2)

Tables II and III show the system states starting at positions
{(AB), (AB)} and {(AB), (AC)}, respectively, accounting
for symmetries, e.g., noting that states {(AB), (AC)} and
{(BA), (BC)} are equivalent, and are jointly denoted by
{(wx), (wy)}. In particular, state {(wx), (wy)} is reachable
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Fig. 4. Miss ratio of LRU, LFU, Random. Miss ratio of FIFO policy under
different initial conditions.

in one transition from {(yw), (xw)}, as a request to x from
the latter can produce {(xy), (xw)} that is equivalent to
{(wx), (wy)}. The example can be generalized to larger cache
sizes as long as xbi = N − 1, and shows that the steady
state performance of a partitioned FIFO cache may depend
on its initial configuration. Figure 4 shows the miss ratio
under different initial conditions as a function of the channel
reliability (p) under LRU, LFU and FIFO. We note that
depending on the initialization of the FIFO system, FIFO may
outperform LRU.

Sufficient conditions for independence from initial state:
The above examples had in common that the request stream
was either non-positive (Examples 1 and 2) or that the FIFO
cache sizes satisfy xbi = N − 1 (Examples 3 and 4). The
following theorem shows that for LRU and Random policies,
and for FIFO with xbi ≤ N−2, the initial state does not affect
the steady state behavior when caches are subject to positive
request streams.

Theorem 1 (Independence from initial state). When p < 1,
under LRU and Random strategies the initial condition does
not affect the steady state behavior if caches are subject to
positive request streams. If xbi ≤ N − 2, for i = 1, . . . ,M ,
the result also holds for FIFO.

Proof. The proof is similar to that of [43, Theorem 2]. If
p < 1 and the request stream is positive, one can construct
a stream of requests that causes each of the caches to store
any of the contents, in any desired order. This is because the
MC corresponding to an isolated LRU or Random cache is
irreducible. If xbi ≤ N − 2, for i = 1, . . . ,M , an isolated
FIFO cache is also irreducible.

Given that p < 1, the state of any cache can change without
impacting the state of the other caches, and from any initial
state one can reach any system state. As the above argument
holds for any initial condition, it implies that the MC of the
whole system is irreducible.

It is also worth noting that if p = 1 and all caches have the
same size the above result still holds. Indeed, in this case the
independence from initial conditions follows from the eventual
synchronization and aging of all caches, which we prove next.

TABLE II
TRANSITION PROBABILITIES IN A SYSTEM WITH 2 FIFO CACHES, WITH

INITIAL STATE WHEREIN TWO CACHES ARE AT SAME CONFIGURATION

origin transition description destination probability

(yw), (xy)

request for y (yw), (xy) 1/3
request for x or w

(yw), (xy) 2
3
(1− (p(1− p) + p2))not leading to insertion

request for x
(xy), (xy) (p(1− p) + p2)/3leading to insertion

request for w (yw), (wx) ≡
(p(1− p) + p2)/3leading to insertion (wx), (xy)

(xy), (xy)

request for x or y (xy), (xy) 2/3
request for w

(xy), (xy) (1− p)2/3not reach the caches
request for w

p2/3leading to insertion (wx), (wx) ≡
in both caches (xy), (xy)
request for w

(wx), (xy) p(1− p)/3leading to insertion
only in 1st cache

request for w
p(1− p)/3leading to insertion (xy), (wx) ≡

only in 2nd cache (yw), (xy)

(wx), (xy)

request for x (wx), (xy) 1/3
request for w or y

(wx), (xy) 2
3
(1− (p(1− p) + p2))not leading to insertion

request for w (wx), (wx) ≡
(p(1− p) + p2)/3leading to insertion (xy), (xy)

request for y
(yw), (xy) (p(1− p) + p2)/3leading to insertion

TABLE III
TRANSITION PROBABILITIES IN A SYSTEM WITH 2 FIFO CACHES, IN

INITIAL STATE WHEREIN TWO CACHES ARE WITH SAME (RESP., DISTINCT)
CONTENTS AT THEIR MOST RECENT (RESP., OLDEST) POSITIONS

origin transition description destination probability

(yw), (xw)

request for w (yw), (xw) 1/3
request for x or y

(yw), (xw) 2
3
(1− (p(1− p) + p2))not leading to insertion

request for x or y (xy), (xw) ≡ 2
3
(p(1− p) + p2)leading to insertion (wx), (wy) ≡

(yw), (yx)

(wx), (xw)

request for w or x (wx), (xw) 2/3
request for y

(wx), (xw) (1− p)2/3not reach the caches
request for y (yw), (yx) ≡

p2/3leading to insertion (wx), (wy)
in both caches
request for y

(yw), (xw) 2p(1− p)/3leading to insertion
in one cache

(wx), (wy)

request for w (wx), (wy) 1/3
request for x or y

(wx), (wy) 2
3
(1− (p(1− p) + p2))not leading to insertion

request for x or y
(wx), (xw) 2

3
(p(1− p) + p2)leading to insertion

B. Conditions for Eventual Synchronization and Aging

Motivation and goals: Understanding conditions under
which caches eventually synchronize is key in light of the de-
cision between pooling and separation. Indeed, when channel
reliability is close to 1 and caches tend to become synchro-
nized, pooling should be preferred. Alternatively, if pooling
cannot be implemented, strategies to counter synchronization
and aging, such as purportedly dropping some requests at
random or deploying different cache replacement policies
across caches can increase hit probability, as further discussed
in Section IV-C.

Eventual synchronization: Next, we establish conditions
under which all caches will eventually synchronize.

Theorem 2 (Caches eventually synchronize). Consider p = 1,
all caches having the same size, under LRU, subject to positive
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request streams. Then, eventually, the system will converge to
a class of states where all caches store the same contents,
in the same order. Once such a state is reached, the system
will behave as a single cache with size xbi. If xbi ≤ N − 2,
1 ≤ i ≤ M , the result also holds for FIFO subject to positive
request streams.

Proof. We begin considering LRU caches. All caches have the
same size xbi. Observe that a stream of requests for contents
stored in one of the caches will cause those contents to also
populate the other caches. Then, the contents can be reordered
through a subsequent series of xbi requests for the stored
contents. Once a state is reached where all caches store the
same contents in the same order, the set of caches behaves,
for all practical purposes, as a single cache with capacity xbi.

Next, consider FIFO caches and xbi ≤ N/2. Consider
a tagged cache, which serves as reference, and consider a
stream of requests for the contents stored in the tagged cache.
After serving such a request stream, all caches store the same
contents, but possibly in different order. A request for a content
not stored in any of the caches will cause it to be stored at the
same position in all caches. If there are at least xbi contents
not stored in any of the two caches, which is guaranteed to be
the case if xbi ≤ N/2, a stream of requests to those contents
will cause xbi misses to the two caches. The states of the
caches will then be identical after these misses.

A consequence of the above result is that the steady state
behavior of the system is independent of the initial conditions
under the considered conditions. Note that the above theorem
is tight in the sense that if xbi = N − 1 then the initial
conditions of a FIFO system may impact its steady state
behavior, for any value of p, as shown in the previous section.
In that case, the caches are not guaranteed to eventually
synchronize.

It is interesting to note that starting from the configuration
where all caches store the same contents in the same order,
it may take a significant number of requests for the caches to
store different contents, as formalized next.

Claim 1. When caches start synchronized, the mean number
of requests it takes for the caches to eventually store different
contents, for 0 < p < 1, can be expressed as

τ(p) =
1

1− (1− p)M − pM
. (3)

Proof. The caches will store different contents as soon as
a request reaches a subset of the caches. The request does
not reach any of the caches (resp., reaches all caches) with
probability (1−p)M (resp., pM ). Therefore, the mean time to
break the symmetry of the caches is geometrically distributed,
with success probability given by the denominator of (3).

Note that as p approaches 0 or 1, the time it takes for the
caches to store different contents increases. In particular, for
p = 1 the result is in agreement with Theorem 2.

The above observations can be framed in light of [9]. In
particular, it follows from Theorem 3 in [9] that pooling is
the best configuration when p = 1. This observation reinforces

the relevance of considering policies different from LRU in the
regime where p is close to 1 and all requests are broadcasted
to all caches. Indeed, the caches tend to become synchronized
as p gets close to 1, which may degrade system performance
due to cache aging. As a consequence, channel reliability
can decrease hit probability and the Random policy may
outperform LRU and FIFO, as discussed in the sequel.

C. Countering the Aging due to Synchronization
Motivation and goals: Next, we consider strategies to

counter the impact of eventual cache synchronization and
aging. Such strategies are used to promote diversity across
caches. In particular, we show that dropping some requests at
random (Theorem 3) or deploying different cache replacement
policies across caches (Theorem 4) can increase diversity
levels and therefore increase hit probability.

1) Increasing reliability may decrease hit probability: Next,
we show that increasing the channel reliability p may decrease
the hit probability in the case of partitioned LRU caches.
This is due to the inherent dependence between caches, which
increases as the channel reliability p increases. When channels
are reliable (p = 1), in particular, the states of all caches are
eventually always the same. As a consequence, as indicated in
the following theorem, unreliability (p < 1) may be beneficial.

Theorem 3 (Unreliability may be beneficial). Decreasing
channel reliability p may cause an increase in hit probability.

In the supplementary material, we prove the above theorem
in its simplest setting. In the following sections, we show that
the theorem also holds in realistic settings, through trace driven
simulations with real workloads (Sections VII and VIII).

Theorem 3 indicates that for cache replacement policies that
result in cache contents being dependent, channel unreliability
may benefit performance. Such a result does not hold when
caches are independent due to the cache replacement policy.

2) Deploying distinct policies across caches can increase
hit probability: If the channel does not provide randomness,
it can be compensated by the cache policy. Indeed, (a) cache
replacement policies, (b) unreliable channels and (c) ran-
dom hashing mechanisms to dispatch requests in multi-cache
systems [9] are three sources of randomness that contribute
to diversity among contents across caches. To illustrate this
for cache replacement policies, we now show that there are
scenarios where the Random replacement policy is superior
compared to LRU, LFU and FIFO.

Theorem 4 (Randomized policies and/or distinct policies
across caches may be beneficial). For large enough reliability,
the hit probability of a system counting with one of the
following properties may be larger than that of a system where
all caches deploy the same policy (LFU, LRU or FIFO),

1) diversity through distinct policies: one cache operating
under a distinct (possibly Random) replacement policy

2) diversity through uniform randomization: all caches op-
erating under the Random replacement policy

Proof. The theorem is a consequence of the synchronization
across caches (see Theorem 2). Consider M = 2 caches, each
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with capacity to store xbi = 2 contents, and a catalog of
N = 3 contents, all of them with the same probability of
being accessed at each request. Let p = 1. If all caches operate
under the same policy, and caches are initialized with the same
(resp., different) contents, the hit probability of FIFO equals
2/3=0.66 (resp., 7/9=0.77). The hit probability of LRU and
LFU is 2/3, irrespectively of the cache initialization.

1) if one cache operates under Random, and the other under
LFU, the hit probability is 8/9;

2) if all caches operate under Random, the hit probability
equals 7/9.

Content diversity across caches in cache networks has a sig-
nificant impact on system performance [35], [44]. The results
we presented in this section show that channel unreliability is
a source of randomness that may positively impact diversity
and system performance. In particular, we have shown that the
eventual synchronization and aging across caches may impact
steady state performance, and that if the system does not have
significant diversity across caches one can compensate such
lack of diversity through the use of randomized or diverse
policies across caches. In the following sections, we support
those claims through an analytical toy model, followed by
trace driven simulations with synthetic and realistic workloads.

V. INSIGHTS FROM AN ANALYTICAL TOY MODEL

In this section, we develop an analytical model of the cache
miss probability for LRU and LFU caching over unreliable
channels. Our goals are to illustrate, in the simplest possible
setting, the extent at which unreliability impacts the decision
between pooling and separation and at which distinct policies
across caches may be beneficial.

In the realm of the toy model that follows, LRU and
LFU correspond to dynamic and static content placement, as
detailed next.

A. Simple Toy Model

We consider a simple setting with a total cache size of x =
2. In the case of pooling there is a single cache, M = 1. In
the case of separation there are two unit size caches, M = 2,
and a fraction bi = 0.5 of the cache space is allocated to
cache i, i ∈ {1, 2}, as shown in Figure 2. There are N = 2
contents in the catalog, f1 = A and f2 = B. Requests are
made for contents A and B with probabilities λ1 = q and
λ2 = 1−q, respectively, i.e., in the particular case where N =
2, we denote by q the popularity of the most popular content,
q = λ1 ≥ λ2. Communication links used for sending requests
are unreliable, the probability of a successful transmission is p
(see Table I), and transmissions fail independently. Although
the setting is admittedly simple, it allows us to explore issues
involved in the choice of policy, and whether or not to pool
or partition cache storage resources.

Fig. 5. Summary of operation regions: in regions I, II and III, pooling is
preferred over separation; in regions IV, V and VI, (LFU, LFU) separation is
optimal and (LRU, LFU) is the second best option. In region VI, pooling is
the worst alternative.

B. Insights from Toy Model

For all practical purposes, in the context of this section LFU
corresponds to a static policy that stores the most popular
content in each cache, whereas LRU corresponds to a dynamic
policy that evicts the content stored in cache after a miss,
to leave space for the new content. Whereas LFU has the
advantage of always caching the most popular content, it does
not promote diversity. LRU, in contrast, has the advantage of
promoting diversity at the expense of eventually caching the
less popular content in both caches.

Under the toy model, 1) high channel reliability favors
pooling whereas low channel reliability favors separation with
LFU at both caches to promote robustness. In addition, 2)
under high channel reliability, and in the impossibility of
implementing pooling, a combination of (LRU, LFU) outper-
forms (LFU, LFU) as one LFU cache serves to store the most
popular content whereas the LRU cache promotes diversity.

Generally speaking, deploying caches that implement dif-
ferent policies is a way to promote content diversity across
caches. In particular, if the channel is reliable, enforcing
diversity through distinct cache replacement policies is a way
to improve hit probability. In practical scenarios, LRU has also
the benefit of leveraging spatial correlations in the request
stream. In this toy example, however, the request stream
follows the independent reference model (IRM). For stationary
IRM request streams, it is well known that the static LFU
policy is optimal [6]. Our results suggest that this may still
be the case for stationary IRM requests to a set of caches
accessed through an unreliable broadcast channel, as far as
the optimal decision between pooling or separation is taken.

When pooling is not an option, the above intuitive argument
indicating why (LRU, LFU) outperforms (LRU, LRU) goes in
the same vein as the rationale behind why a Random cache is
beneficial in face of high reliability (see Theorem 4).

Figure 5 summarizes the regions of operation of the con-
sidered toy model:
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Fig. 6. Ranking policies under the Wikipedia trace: for 0.97 < p ≤ 1 pooling
is the best alternative, for 0.9 < p ≤ 0.97 a combination of (LFU, Random)
is the best alternative, followed by (LFU, LRU), and for 0 < p ≤ 0.9 (LFU,
LFU) is optimal.

1) Regions I, II and III (red): pooling is the best alternative,
and a mix of (LFU, LRU) is the second best option

2) Regions IV and V (green): pooling is neither the best nor
the worst policy. The optimal policy is (LFU, LFU) and
a mix of (LFU, LRU) is the second best option

3) Region VI (blue): in this region, pooling is the worst
alternative. The optimal policy is (LFU, LFU).

C. Lessons Learned

In summary, the analytical toy model supports two key
observations: 1) as channel reliability increases, pooling be-
comes more attractive; 2) if pooling cannot be implemented
even though it is the best alternative then using heterogeneous
policies across caches is beneficial. To further illustrate how
the toy example provides insight that generalizes to realistic
settings, we consider the Wikipedia trace, to be further detailed
in Section VIII. Under the Wikipedia trace, accounting for
a large catalog of contents, a cache size of x = 32GB and
temporal locality, the above bullets 1), 2) and 3) correspond to
channel reliability in the following three ranges, respectively:
1) 0.97 < p ≤ 1, 2) 0.9 < p ≤ 0.97 and 3) 0 < p ≤ 0.9 (see
Figure 6).

Note that under the toy model (LFU, LFU) is the best
alternative in regions IV and V, given the assumption of IRM
traffic. Under the real workload, in contrast, (LFU, Random)
slightly outperforms (LFU, LFU) for 0.9 < p ≤ 0.97. In the
other regimes, the ordering of policies under the toy model is
in agreement with that observed under the Wikipedia trace.

VI. DISCUSSION OF ASSUMPTIONS AND OF THE
FEASIBILITY OF THE CONSIDERED MODEL

In this section, we present practical considerations and
challenges associated with applying our model to a real-world
scenario.

A. Assumptions

Assumption 1. A phone/device needs to connect to different
base stations and send the same request to each of them.

In existing mobile network architectures, for a device to
connect to multiple base stations, the base stations would have

to perform handover and the devices would have to adapt
to different channel conditions towards multiple antennas.
Such handovers and adaptations, in turn, may consume battery
and cause delays. A potential workaround would be to use
adaptive strategies that dynamically select a subset of base
stations to contact based on the channel conditions. Doing so
would reduce the number of handovers required, and could be
captured in our model by introducing a new set of variables
that capture the probability that a station is selected at a given
slot. Once the subset of base stations to contact is selected,
the current model is readily applicable, setting the channel
success probability equal zero for each base station that was
not selected at a given time slot, and keeping unchanged the
success probability for the other base stations.

Going beyond existing technologies, multi-connectivity,
which allows a mobile user to communicate with multiple base
stations at the same time [45], is considered a key enabler
in 5G mobile networks, and hence our model is directly
applicable in future mobile network architectures.

Assumption 2. When multiple base stations have a cache hit,
they may all send the same content to the user.

The practical aspects of wireless content delivery depend
on the available infrastructure. If base stations can coordinate
for the purposes of beamforming, a cache hit at multiple base
stations may increase throughput. Such analysis, accounting
for throughput as a metric to be optimized, is left as subject
for future work. Alternatively, the proposed solution can be
coupled with other mechanisms of coordination between base
stations, possibly with the assistance of the mobile devices.
The latter can employ algorithms to determine the optimal
base station from which to receive the content, taking into
account factors such as signal strength, channel conditions,
and content availability, and inform such decisions to the base
stations where a hit occurred. Caches can communicate with
each other to make informed decisions on which cache should
send the content, avoiding unnecessary duplication or flooding.
Those mechanisms are out of the scope of this paper, and are
left as subject of future work.

Assumption 3. When there are cache misses at multiple
caches, all caches may request content from the origin server
simultaneously. The origin server must have enough capacity
to serve those requests.

To mitigate the potential issue of caches flooding the origin
server with simultaneous requests, one could implement a
mechanisms to coordinate the requests to the original server
using a coordination protocol. Coordination can be achieved
in a distributed manner, using cache-to-cache communication,
in a centralized manner, which allows caches to negotiate and
determine the cache that should request the content from the
origin server (and then exchange content among themselves).
Additionally, mechanisms like request throttling or random-
ized back-off algorithms can be employed to regulate the
request traffic and avoid overwhelming the origin server. The
models presented in this work are applicable in a setup where
those mechanisms are implemented at a fine timescale, and
cache requests occur at a coarser scale.

9

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3334559

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on November 22,2023 at 08:24:24 UTC from IEEE Xplore.  Restrictions apply. 



B. Extensions of the Model

In the supplementary material, we consider an extension of
our model to illustrate how some of the above assumptions
can be relaxed. The extension involves three parameters,
corresponding to the above three assumptions, respectively.
The first parameter, denoted by s, represents the probability
that a phone or device issues a request to a single cache
rather than connecting to multiple base stations. The second
parameter, denoted by e, represents the probability of effective
service. When multiple base stations have a cache hit, if all go
through effective services, all of them send the same content
to the user. Otherwise, only a subset of base stations will serve
the request. The third parameter, denoted by u, represents
the probability of an update occurring after a cache miss,
and controls number of caches that simultaneously request
content from the origin server. In the supplementary material,
we indicate how these parameters provide insights into the
system.

It is worth noting that by relaxing some of the assumptions
listed in this section, related to no coordination among caches,
it is possible to devise caching policies beyond the scope
of this work. Such policies may outperform the caching
schemes analyzed in this paper, at the cost of control and
synchronization overhead. The analysis of the tradeoff between
performance and control overhead is left as subject of future
work.

VII. NUMERICAL EVALUATION

In what follows we use simulations to validate the analytical
findings, to indicate how those findings generalize for large
cache space, number of contents and number of caches, and to
study the sensitivity of different cache replacement policies to
cache partitioning. Whereas the results in this section are based
on an IRM workload, in the following section we consider
real-world traces. In particular, the results in this section serve
also to evaluate different policies against related LRU-based
solutions presented in [9].1

A. Simulation Methodology

We consider M caches in the system. As in [9], the total
cache size x varies from 10 to 8500 content items, and a
fraction bi of the total cache size is allocated to cache i,
1 ≤ i ≤ M . The content catalog includes 10 million data
items, N = 107, and the content popularity distribution
follows Zipf’s law with exponent α = 1.8,

λi =
1/iα∑N
j=1 1/j

α
. (4)

Each content has unit size. Unless otherwise noted, all re-
quests are sent to all caches. We consider channel reliability
values ranging from 0.2 to 1 in increments of 0.2, p ∈
{0.2, 0.4, 0.6, 0.8, 1}, where p = 1 corresponds to a reliable
channel. Each experiment is executed for 50 runs, to produce
95% confidence intervals.

1All source code available at https://tinyurl.com/unrcache

Fig. 7. Miss ratio vs. channel reliability p for LFU and LRU cache
replacement policies, with pooling (0,1) and with separation (0.5,0.5), x = 50.

B. The Case of Two Caches

We start with validating the observations made based on the
analytical model for a system with M = 2 caches and equal
split bi = 0.5, compared against pooling. Figure 7 shows the
cache miss ratio as a function of channel reliability for the
LRU, LFU, FIFO and Random cache replacement policies,
under pooling (first four bars in each group) and partitioning
(last four bars in each group). The figure confirms all the
observations made based on the analytical model, i.e., there
is a threshold p⋆ for LRU and for LFU above which pooling
is optimal, and LFU with b1 = b2 = 0.5 (for p < 1) or
LFU with pooling (for p = 1) outperforms its counterparts,
including LRU with separation or pooling.

C. Small Sensitivity of LFU to Cache Split

Before turning to more than M = 2 caches, we further
investigate unequal cache space allocation. For this we con-
sider M = 2 caches and assess how the optimal splitting
depends on the algorithm used (LFU, LRU, FIFO, Random).
Recall that for LRU splitting the cache has an impact on the
miss ratio, and there is an optimal split that depends on the
content popularity distribution and the channel reliability [9].
Figure 8(a) shows the cache miss ratio for various cache splits,
from (0, 1) (i.e., pooling), to (0.5, 0.5) (i.e., equal split) for a
channel reliability of p = 0.6. The subfigures show results
for caches size x ∈ {50, 100, 300, 500}. The figure allows
us to make two important observations. First, it confirms that
LFU outperforms LRU in the considered settings, independent
of the cache split. Second, it shows that for the LFU cache
replacement policy the cache split has rather little effect on
the cache miss ratio. Figure 8(b) further shows corresponding
results for a channel reliability of p = 0.97 for the same
cache sizes for cache splits (b1, b2). The figure confirms that
LFU outperforms LRU irrespective of the cache split, and for
p = 0.97 the miss probability is slightly more sensitive to the
cache split when compared against p = 0.6.

D. Multiple Caches

Figure 9(a) shows the cache miss ratio as a function of
the channel reliability p for four cache replacement policies
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Fig. 8. Miss ratio for various cache splits for LFU, LRU, FIFO and Random caching. M = 1 and M = 2 caches, channel reliability (a) p = 0.6 and (b)
p = 0.97, for various cache sizes.

(a)

(b)

Fig. 9. Miss ratio for LFU, LRU, and Random caching. M = 5 caches: (a)
cache size x = 50 and (b) channel reliability p = 0.6

(LRU, LFU, FIFO and Random) for a cache size of x = 50
and M = 5 caches, under equal split. The figure shows that
LFU outperforms all other policies in terms of miss ratio for all
channel reliability values. In addition, it shows that increasing
the channel reliability can increase the miss rate for LRU.
Figure 9(b) shows the cache miss ratio for various caches sizes,
for p = 0.6 for the same cache replacement policies. The
results are consistent, and show no significant impact of the
cache size on the relative miss rates across the considered
policies. In particular, in all the considered scenarios, LFU

performed the best, followed by LRU.
To further investigate the impact of cache separation, Fig-

ure 10(a) shows the cache miss ratio as a function of the
channel reliability p for the LRU, LFU, FIFO and Random
policies, for M ∈ {1, 2, 3, 4} caches with a total size of
x = 12. The figure shows that LFU outperforms the other
policies irrespective of the number of caches and the channel
reliability, with a significant gain. It is also noteworthy to
observe that the cache miss ratio is a convex function for all
scenarios, similar to the analytical results, and it increases with
p for M = 3 and M = 4 caches.

Figure 10(b) show corresponding results for a total cache
size of x = 120. The figure allows us to draw similar
conclusions, even though the difference in terms of miss rates
is almost negligible, due to the low aggregate popularity of the
tail of the content popularity distribution. We can conclude that
LFU works significantly better than LRU, FIFO and Random
when cache storage is scarce and the workload is stationary,
regardless of the number of partitions. In the following section,
we consider a real traffic workload.

VIII. BENEFITS OF RANDOMNESS UNDER REAL TRAFFIC

In this section we present a trace-driven evaluation of a
wide range of state-of-the-art cache replacement policies with
cache partitioning, over unreliable channels. Our objective
with the evaluation is to assess the impact of cache size
and of cache partitioning on system performance for a large
content catalogue and considering state-of-the-art policies.
In particular, our results extend related work on LRU-based
solutions presented in [9], [46] by i) accounting for different
policies and ii) considering realistic traces.

Our selection of benchmark policies was informed by recent
surveys on caching policies, specifically focusing on scenarios
involving unreliable channels and partitioned caches [47], [48].
In addition, the chosen policies were aligned with the ones
used in [46]. Notably, the benchmark includes classical and
machine learning-based policies that are readily available at
WebCacheSim [49], [50].
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Fig. 10. Miss ratio vs. channel reliability p for a cache size of (a) 12 and (b) 120, for LFU, LRU, FIFO and Random, 1 to 4 caches.

A. Evaluation Methodology

We adapted the C++ based simulator WebCacheSim v2 [49],
[50] to work with partitioned caches and unreliable channels.
The cache replacement policies tested in our experiments
include the well-known LRU and LFU and their variations:
Bloom-filter LRU (BLRU), LRUK (K = 4) and LFU with
Dynamic Allocation (LFUDA). We also consider the learning-
based policies such as Learning Relaxed Belady (LRB) [50]
and Learning Cache Replacement (LeCaR) [51], and the
Random policy.

For the evaluation we use a real trace of requests collected
from a Content Delivery Network (CDN) node located on the
US West coast, which serves photos and other media contents
for Wikipedia pages2, referred to as the Wikipedia trace.
The trace is divided into a warmup phase and a stationary
regime [50]. Table IV shows statistics of the trace. The
wikipedia trace works with sized content objects in bytes.
Therefore, the performance metrics we use are content miss
probability, which not accounts for content sizes, i.e, considers
each content as unique object, and the byte miss probability
which accounts for content sizes.

B. Impact of Cache Size

We start with addressing the impact of the cache size on
the performance of the cache replacement policies for a large
content catalogue. Figure 11 shows the miss probability of
the cache replacement policies for M = 2 partitions with
Unequal Allocation (UA), and channel reliability of p = 0.8,
for various cache sizes. The results show that as the cache
size increases, miss probability decreases. We also note that
byte miss probability is higher than content miss probability,

2The trace is available for download at the Github page of WebCacheSim:
https://github.com/sunnyszy/lrb

TABLE IV
SUMMARY OF THE WIKIPEDIA TRACE.

Duration (Days) 14
Total Requests (Millions) 2,800
Unique Obj Requested (Millions) 37
Total Bytes Requested (TB) 90
Unique Bytes Requested (TB) 6
Warmup Requests (Millions) 2,400
Request Obj Size Mean (KB) 33
Request Obj Size Max (MB) 1,200

due to the large variety of content sizes. Indeed, a missing
content can severely impact the byte miss probability if having
a large size, e.g., 1GB, which rather increases the metric
values, whilst other contents of, e.g., 100KB are hitting the
cache. Furthermore, when the cache is full and a request for
large-sized contents arrives, the insertion of this single content
requires the eviction of many small-sized contents, or the
insertion does not occur. These results validate the numerical
results with synthetic traces shown in Figures 8 and 9(b).
In what follows, we provide further insights on the role of
cache size, e.g., comparing pooling against partitioning, so as
to reason about the impact of partitioning.

C. Impact of Partitioning

Next, we consider the impact of partitioning under unreli-
able channels. Figures 12(a) and 12(b) show the cache miss
probability for the LRU policy with cache size 64GB, for
various number of partitions under the equal allocation (EA)
policy. The results for the miss probability show that cache
partitioning is mostly beneficial when the channel is unreliable,
as the probability of all requests getting lost decreases as
the number of partitions increases. Interestingly, the benefit
of partitioning is significantly lower when considering the
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Fig. 11. Miss probability of variety of cache replacement policies. M = 2.
Cache sizes = 64GB, 128GB, 256GB, 512GB and 1TB, channel reliability
p = 0.8. Figure (a) shows content miss probability and (b) shows miss
probability in Bytes.

byte miss probability (Fig. 12(b)), as moderately popular large
contents do not get cached due to the lower cache space per
partition.

D. Joint Impact of Cache Size and Partitioning

So far we evaluated the advantage of partitioned caches
over unreliable channels for a 64GB cache. In what follows,
we explore the joint impact of cache size and partitioning on
system performance.

We begin by evaluating the impact of cache size under
cache pooling and cache partitioning for a variety of cache
replacement policies, with p = 0.8, as shown in Figure 13.
The results show that the benefit of partitioning increases with
the cache size. As discussed above, one of the reasons for this
phenomenon is the increasing ability to store large contents in
each partition, which is possible when the cache size is large
enough. These results validate the numerical results shown
in Figure 8, where we have already observed that significant
gains due to partition occur for larger cache sizes.

Figure 14 shows the miss probability as a function of the
channel reliability, for different cache sizes and number of
partitions for LRU caching. Although the cache size signifi-
cantly affects the miss probability (see also Figure 11), it does
not qualitatively affect the system behavior. When the channel
reliability is small and cache size is large, the system benefits
from more partitions. As the channel reliability increases,
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Fig. 12. Miss probability of LRU policy, Equal Allocation and cache sizes
= 64GB. Figure (a) shows content miss probability and (b) shows miss
probability in bytes.
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Fig. 13. Miss probability of variety of cache replacement policies under cache
pooling (M = 1) and cache partitioning (M = 5) with EA, for different cache
sizes and p = 0.8.

less partitions yield lower miss probability, i.e., diversity is
preferred over replication.

Following the analysis, we evaluated a variety of cache
replacement policies over unreliable channels and cache parti-
tioning, varying channel reliability from 0.6 up to 1. Figure 15
shows the content miss probability as a function of the channel
reliability for M = 3 partitions, a cache size of 64GB, and
equal allocation. The shape of the curves resembles that of
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Fig. 14. Miss probability of LRU policy with M = 3 and M = 5, Equal
Allocation and cache sizes = 64GB and 1TB.
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Fig. 15. Miss probability of state-of-art cache replacement policies with M =
3, Equal Allocation and cache sizes = 64GB.

the LRU policy in Figure 12, and comparing the different
policies, we observe that LFU and LRU-K policies typically
perform best both in terms of content and in terms of byte miss
probability. It is interesting to observe that the miss probability
curves are non-monotonic convex, and as such they follow
Proposition 3, which showed that there is a threshold above
which increased reliability leads to increased miss probability.

Remarks: Our results show that there is an intricate
relationship between partitioning, channel reliability, cache
replacement policy, and that the miss probability can increase
with the channel reliability under cache partitioning. This
observation, in agreement with the formal results presented
in Section VIII under simplistic scenarios, suggests that our
findings also hold true in realistic settings. In particular, in a
system where caches are equally partitioned and channels are
reliable, dropping a fraction of the requests on purpose could
improve system performance.

E. Additional Validation with TRAGEN

We extended our webcachesim results to include traces
generated by TRAGEN [21], a synthetic trace generator for
realistic cache simulations. TRAGEN produces a synthetic
trace with characteristic similar to traffic observed at Akamai’s
production CDN. In the following experiment, in particular, we
use two of the four classes of workload offered by TRAGEN,
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Fig. 16. Miss probability of LRU policy, Equal Allocation and cache sizes
= 1GB under TRAGEN trace.
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Fig. 17. Miss probability of cache replacement policies with M = 3, Equal
Allocation and cache size 1GB.

namely Video and EU, which TRAGEN combines to produce
the trace considered in the sequel (see Table V).

Results obtained with TRAGEN, shown in Figure 16 and 17,
are in agreement with those reported in the previous sections.
Figure 16 shows that under LRU caches with Equal Allocation
and cache size of 1GB, as M and p increase, partitioning
negatively impacts network performance. This result is in
agreement with Figure 12.

Figure 17 shows the impact of cache replacement policies
under the TRAGEN trace. For M = 2 and a cache size
of 1GB, LFU, LFUDA and LRUK (with k=4) policies have
similar performance, with LFUDA having a slight advantage.
Figure 17 also confirms that as p grows the miss probability
first decreases and then increases, noting that the final increase
is more evident for FIFO and LRU when compared against
LFU, LFUDA and LRUK, in agreement with our previous
results with synthetic and real world traces.

IX. PRACTICAL IMPLICATIONS

Next, we discuss the practical implications of our results
from a system operation point of view. In particular, femto-
caching systems typically deploy high storage capacity caches
at base stations to compensate for the weak backhaul capacity
(see Figure 1). We envision that rejuvenation, monitoring,
measurements and resource separation are key elements in
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TABLE V
SUMMARY OF TRAGEN TRACES STATISTICS

EU Trace
Video (V) Media-0 Media-1 Media-2 Media-3 Media-4 Media-5 Media-6 Web-7 Web-8 Web-9

Length (mil. reqs) 596 32.04 109.3 70.3 91.92 43.98 66.48 36.56 9.73 128.44 6.95
Req. rate (reqs/sec) 382 20.64 70.44 45.32 59.2 28.33 42.82 23.55 6.248 82.73 5.38
Traffic (MBps) 1536 12 480 13 36 288.3 434.8 26.8 0.8 27.682 0.756
No. of objects (mil.) 127 15.55 2.66 18.62 39.64 2.31 2.49 14.45 0.028 22.56 0.02
Avg. object size (KB) 1756 679.2 9727 286.4 653 10286 10291 1026 71.65 151.3 69.83

the management of those systems that can benefit from the
insights derived from this paper, as further detailed below.

• deploy rejuvenation: as caches tend to synchronize
and age, degrading system performance, one possible
countermeasure consists in rejuvenating the system from
time to time, replacing contents to re-establish favorable
initial conditions to “warmup” the system (Section IV
and Theorem 1);

• monitor diversity: it is key to monitor content diversity
across caches, to avoid the negative side-effects of even-
tual synchronization as aging (Theorem 2);

• integrate caching and networking measurements: the
diversity versus replication tradeoff implies that network
quality of service and cache states should be analyzed
together, e.g., to determine the best rejuvenation rate and
replacement policies (Theorem 3);

• separation versus pooling of cache resources: in a coarse
time scale, separation of cache resources across geograph-
ically disperse nodes should be considered, specially
when robustness is needed against channel unreliability.
Alternatively, if separation is deployed and pooling is
not feasible, alternatives to increase content diversity and
hit probability include establishing cache policy diversity
across caches and randomization at the network or cache
policy levels (Sections VII and VIII).

X. CONCLUSION

In this paper we considered the interplay between cache
replacement policy, channel reliability and cache partitioning.
We showed that the impact of reliability and cache partitioning
on cache performance depends to a large extent on the cache
replacement policy, and thus partitioning and the replacement
policy should be designed jointly for optimal performance.

We identified different sources of content diversity that can
be leveraged to avoid cache aging due to the synchronization
across caches. In particular, our results indicate that channel
unreliability is a source of randomness that can contribute to
content diversity, countering cache aging, promoting rejuve-
nation, and complementing diversity due to the initial cache
configuration and cache replacement policy. Our numerical
and experimental results validate the analytical findings on
large-scale realistic workloads, and indicate that there is a
large design space left to be explored for optimizing cache
performance over unreliable channels.

Future work. Our results indicate that a policy that
deliberately discards a certain percentage of requests based on
a threshold balancing robustness and diversity can address the
problem of eventual cache synchronization. This observation

opens up a number of interesting directions for future research,
e.g., leveraging machine learning-based replacement policies
that can adapt to network conditions. In this vein, one direction
of future research consists of developing a reinforcement
learning approach for unreliable channels, extending previous
work in that domain [1], [52]–[54]. Learning could eliminate
the need for manually setting thresholds to change the net-
work configuration, e.g., in response to changes in network
reliability.

Another direction consists of investigating the scalability
of the proposed approach and its performance in large-scale
distributed cache systems, including distributed approaches
for managing the threshold, e.g., using multi-agent learning,
under a diverse set of scenarios, including different types of
networks, content, and traffic patterns.
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