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Serkan Sarıtaş, Henrik Forssell, Ragnar Thobaben, Henrik Sandberg, and György Dán
School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden,

{saritas, hefo, ragnart, hsan, gyuri}@kth.se

Abstract—5G and beyond 5G low power wireless networks
make Internet of Things (IoT) and Cyber-Physical Systems (CPS)
applications capable of serving massive amounts of devices and
machines. Due to the broadcast nature of wireless networks, it is
crucial to secure the communication between these devices and
machines from spoofing and interception attacks. This paper is
concerned with the security of carrier frequency offset (CFO)
based continuous physical layer authentication. The interaction
between an attacker and a defender is modeled as a dynamic
discrete leader-follower game with imperfect information. In
the considered model, a legitimate user (Alice) communicates
with the defender/operator (Bob) and is authorized by her CFO
continuously. The attacker (Eve), by listening/eavesdropping the
communication between Alice and Bob, tries to learn the CFO
characteristics of Alice and aims to inject malicious packets
to Bob by impersonating Alice. First, by showing that the
optimal attacker strategy is a threshold policy, an optimization
problem of the attacker with exponentially growing action space
is reduced to a tractable integer optimization problem with a
single parameter, then the corresponding defender cost is derived.
Extensive simulations illustrate the characteristics of optimal
strategies/utilities of the players depending on the actions, and
show that the defender’s optimal false positive rate causes attack
success probabilities to be in the order of 0.99. The results
show the importance of the parameters while finding the balance
between system security and efficiency.

Index Terms—physical layer authentication, carrier frequency
offset, continuous authentication, adversarial learning, threshold
policy, binary hypothesis testing

I. INTRODUCTION

Wireless networks provide cheap, scalable, efficient and
convenient means of communication between applications,
services and infrastructures. With 5G and beyond 5G low
power wireless networks, efficient communication will become
feasible across various verticals with heterogeneous devices
and machines, e.g., Internet of things (IoT) systems allow
any devices to create, process and share data within industrial
facilities as well as user spaces, such as workplaces and homes.
However, the broadcast nature of radio signal propagation
makes wireless communication vulnerable to spoofing and
interception attacks [1]. Since conventional cryptographic au-
thentication is often infeasible due to computational or latency
constraints in the IoT, continuous physical layer authentication
is emerging as a potential solution.

This work is supported in part by the Swedish Civil Contingencies Agency
(MSB) through the CERCES-2 project.

A. Related Work

Physical layer authentication can be accomplished by us-
ing channel-based and radio frequency (RF) fingerprint-based
schemes [2]. The clock skew [3] and the carrier frequency
offset (CFO) [4] are among the device specific parameters
whereas channel state information (CSI) [5], power spectral
density [6] and received signal strength [7] are channel specific
and location dependent parameters that can be used for au-
thentication. [2] provides a comprehensive survey on physical
layer authentication in wireless communication networks.

Recently, there have been numerous works on continuous
physical layer authentication. In [4], CFO is used for au-
thentication, and adaptive thresholds are derived based on the
received signal-to-noise ratio (SNR), then the study is extended
for mobile systems with time-varying CFO using Kalman fil-
tering in [8]. In [5] multi-feature CSI-based device fingerprint
is proposed and used as a basis for device-to-device continuous
authentication scheme for the IoT. In [9], temporal channel
variations in the dimensions of amplitude and multi-path time
delay spread are integrated and represented by two one-bit
quantizers. In [10], the optimal attack strategy is derived when
there is some degree of correlation between channels. In [11],
a spoofing detection problem is considered in which the de-
fender chooses the threshold of the hypothesis test based on the
channel gain while the attacker chooses its attack rate, and the
optimal test threshold under varying environment parameters is
obtained by using reinforcement learning. Another continuous
physical-layer authentication technique with time-varying pa-
rameters based on an adaptive Orthogonal Frequency Division
Multiplexing (OFDM) platform is proposed in [12].

In [11], a game theoretic approach is followed but with
different setups/assumptions. We consider a setup similar
to [4] but we consider an adversarial attacker that learns
the characteristics of the legitimate device/user and attacks
accordingly.

B. Contributions

(i) The carrier frequency offset (CFO) based continuous
physical layer authentication security problem is modeled
as a dynamic discrete leader-follower game with imper-
fect information between the attacker and the defender.



(ii) It is shown that the optimal attacker strategy has a
threshold structure and an exponentially growing action
space of the attacker can be reduced to an integer-valued
scalar space, which is proper for exhaustive search.

(iii) The optimization problem of the defender is formulated
as balancing between the system efficiency and security,
and corresponding numerical results are provided.

II. PROBLEM DEFINITION

A. System Model

We consider a system with three single-antenna nodes
as depicted in Fig. 1. Alice (legitimate user) communicates
with Bob (defender/operator/data server) over a time-slotted
channel, while the objective of Eve (attacker) is to impersonate
Alice. Bob employs CFO as a decision metric for binary
hypothesis testing based continuous authentication.

Fig. 1: Illustration of attack on physical layer authentication.

Before starting communication, Alice sends a training se-
quence to Bob, which Bob uses to generate an estimate of
the CFO between Alice and himself. As derived in [4], the
estimate can be approximated as a Gaussian random variable,
that is

ε̂BAB ∼ N
(
εAB ,

1

4π2L3
s(Ns − 1)γAB

)
, (1)

where ε̂BAB represents Bob’s estimate of the CFO between
Alice and himself, εAB denotes the true CFO between Alice
and Bob normalized by the sampling rate fs of analog-to-
digital conversion (i.e. ε = ∆f/fs = ∆fTs), Ns is the
number of the identical training sequences transmitted, Ls is
the length of one training sequence, i.e., the total length of
the training sequence is NsLs, γAB = PrAB

/σ2
nAB

and PrAB

are the received SNR and the received signal power when the
transmission occurs from Alice to Bob, respectively, and σ2

nAB

is the variance of the additive zero mean complex Gaussian
noise of the channel between Alice and Bob.

We consider that time is slotted, and every time-slot Alice
communicates with Bob by transmitting data sequences. Dur-
ing every time-slot, after receiving data, Bob authenticates the
sender by comparing the CFO of the received data with the
CFO estimate of Alice generated from training sequences.

B. Communication Model

We assume a free-space path-loss communication model,
i.e., Pr = PtGtGr

λ2

(4πd)2 , where Pt and Pr are transmit-
ted and received powers, respectively, Gt and Gr are the
transmitter and receiver antenna gains, respectively, λ is the
wavelength, and d is the distance between the transmitter and
the receiver. The antennas are assumed to be isotropic and
have no directivity, i.e., Gt = Gr = 1, and all players use
the same carrier frequency, i.e., λ is constant for the whole
setup. Thus, we can define C , λ2

(4π)2 so that Pr = PtC
1
d2 .

Furthermore, a static noise is assumed in the environment, i.e.,
σ2
n is constant everywhere. For our setup, PtA and PtE denote

the transmission signal powers of Alice and Eve, respectively,
dXY denotes the distance between X and Y , and γXY the
received SNR when the message is transmitted by X and
received by Y , where {X,Y } ∈ {A(lice), B(ob), E(ve)}.

Remark 2.1: Since γAB = γAE
d2AE

d2AB
, Eve can calculate

Bob’s received SNR when she receives a message from Alice.
Thus, she can adjust her transmission power PtE such that
Bob’s received SNRs γAB and γEB are equal, i.e., Bob cannot
distinguish the origin of the messages from SNRs.

C. Attacker Model

We consider an attacker Eve that is capable of eaves-
dropping the communication between Alice and Bob and
transmitting malicious sequences to Bob. In every time-slot,
the attacker has two actions: listening and attacking. By
listening, the attacker learns the CFO characteristics of Alice
whereas attacking means transmitting malicious packets to
Bob by impersonating Alice. If the attack is successful, i.e.,
if the packets from Eve are recognized as from Alice, Eve
gets a reward r, with a discount factor β ∈ (0, 1) for
future rewards, and Bob gets a penalty r. While designing
an optimal strategy to maximize her discounted reward, Eve
must consider her total energy constraint, i.e., she can spend at
most Ξ energy while listening and attacking. While listening
(to Alice), Eve spends κl(γAE) amount of energy in one time-
slot, where κl(γAE) is a non-increasing function of γAE , and
while attacking (i.e., transmitting packets to Bob), Eve spends
κa(PtE ) amount of energy in one time-slot, where κa(PtE ) is
a monotonic increasing function of PtE . In view of the above,
we make the following assumptions:

Assumption 2.1:
(i) The locations are fixed and Eve knows the locations of

Alice and Bob. On the contrary, Bob knows only the
location of Alice and has a prior belief on the possible
locations of Eve.

(ii) Alice uses constant transmission power PtA , and due
to Remark 2.1, Eve also sends messages with constant
transmission power PtE .

(iii) As a consequence of the above assumptions, γAE and
PtE are constants, resulting in constant listening and
transmission energy κl , κl(γAE) and κa , κa(PtE ),
respectively. Furthermore, transmission requires more en-
ergy than listening, i.e., κa > κl.



D. Attacker’s CFO Manipulation

Since εAB is the CFO between Alice and Bob, we have
εAB = εAE + εEB , where εXY denotes the CFO between
X and Y where {X,Y } ∈ {A(lice), B(ob), E(ve)}. Then,
by generating an estimate of εAE , Eve is able to imperson-
ate Alice by shifting her carrier frequency accordingly, i.e.,
ε̂BAB = ε̂EAE + ε̂BEB , where ε̂EAE represents Eve’s estimate of
the CFO between Alice and her, ε̂BEB represents Bob’s estimate
of the original CFO between Eve and him, and ε̂BAB represents
the overall CFO (which is manipulated by Eve) perceived
by Bob from Eve. The goal of Bob is to distinguish the
original messages from Alice with CFO ε̂BAB and the malicious
messages with CFO ε̂BAB , transmitted by Eve.

Assume that the lengths of the training sequences and
data sequences are the same, i.e., they are equal to Ls, and
Eve eavesdrops/overhears the sequences from Alice (which is
composed of Ns training/data sequences with length Ls of
each) x times. Then, Eve can generate a CFO estimate

ε̂EAE ∼ N
(
εAE ,

1

4π2L3
sx(Ns − 1)γAE

)
. (2)

Notice that as the number x of captured sequences increases,
the variance of Eve’s CFO estimates becomes smaller, i.e.,
Eve’s estimate gets better.

Thus, the problem faced by Bob is to distinguish the CFO
of the legitimate messages with distribution

ε̂BAB ∼ N
(
εAB ,

1

4π2L3
s(Ns − 1)γAB︸ ︷︷ ︸

σ2
A

)
, (3)

from the CFO of the malicious/adversarial messages with
distribution

ε̂BAB ∼ N
(
εAB ,

1

4π2L3
s(Ns − 1)

(
1

xγAE
+

1

γEB

)
︸ ︷︷ ︸

σ2
E(x)

)
. (4)

E. Defender’s Decision Rule

The decision of the defender on whether accepting or
rejecting the messages with the CFO ε can be expressed as
the following binary hypothesis testing problem:

H0 : ε ∼ N (εAB , σ
2
A)

H1 : ε ∼ N (εAB , σ
2
E(x))

. (5)

Here, the defender knows only the first hypothesis, i.e., from
the perspective of the defender, the problem reduces to decide
whether the CFO of the received sequence belongs to the
hypothesis H0 (i.e., the sequence is coming from the legit-
imate source) or not. For this purpose, we assume that the
defender applies a distance-based decision rule. In particular,
the sequences with the CFO ε satisfying |ε − εAB | ≤ τ are
accepted, where τ is a parameter to be determined by the
defender that satisfies the desired false positive (FP) rate η, i.e.,
Pr(|ε− εAB | ≥ τ |H0) = η ⇒ τ = −σAΦ−1

(
η
2

)
, where Φ(·)

is the cumulative distribution function (CDF) of the standard
normal distribution.

Meanwhile, the attacker is aware of both hypotheses. In
particular, by knowing the defender’s decision rule and having
a complete knowledge of σE(x), the attacker can calcu-
late the probability of a successful attack. In particular, for
given1 η and σ2

A ≤ σ2
E(x), the attack detection probability

Pr(|ε− εAB | ≥ τ |H1), or equivalently, the Receiver Operating
Characteristic (ROC) curve2 (i.e., the true positive (detection)
rate) can be characterized as

ROC(η, x) = Pr(|ε− εAB | ≥ τ |H1) = 2Φ
(

σA

σE(x)Φ−1
(
η
2

))
. (6)

Note that ROC(η, x) is an increasing function of σE(x) (and a
decreasing function of x), which implies that as x increases, or
equivalently, as Eve listens more, the attack success probability

α(η, x) , 1− ROC(η, x)

also increases for a given FP rate η.
The defender is aware of the existence of the attacker;

however, he does not know the exact location of her (Assump-
tion 2.1), and he gets a penalty r if he cannot detect the attack.
Besides the attack cost, the defender should also consider the
delay cost caused by false alarms. The goal of the defender is
to minimize his total cost consisting of the attack and delay
costs by adjusting the FP rate η, i.e., he tries to find a balance
between system security and efficiency.

F. Game Formulation

Our focus is on the interaction between the operator (Bob)
and the attacker (Eve), which we model as a dynamic discrete
Stackelberg game with imperfect information. In the game, the
defender is the leader, and chooses a defense strategy η, which
is known to the attacker. As a leader, the defender’s goal is
to minimize his total cost by anticipating the follower’s best
response, whereas the attacker, as a follower, aims to maximize
her discounted reward.

III. OPTIMAL ATTACK STRATEGY

A. States and State Transitions

In every time-slot, the attacker decides whether to listen or
to attack. While determining an optimal strategy, the attacker
keeps track of x (total number of listening time-slots) and Ξrem
(remaining energy). When the game starts, i.e., at the zero-th
time-slot, the state is S(0) = (0,Ξ). Let us consider that at the
beginning of the t-th time-slot Eve has been listening to Alice
for x time-slots, and the remaining energy of Eve is Ξrem, i.e.,
the state of the attacker is S(t−1) = (x,Ξrem). If the attacker
listens, the next state will be S(t) = (x+ 1,Ξrem− κl). If the
attacker attacks (transmits a sequence), the next state will be
S(t) = (x,Ξrem − κa), and the attacker gains a reward r with
attack success probability3 α(η, x) , 1− ROC(η, x).

1Since γEB = γAB is assumed, σ2
A ≤ σ

2
E(x) holds.

2Unless otherwise stated, ROC(η) stands for ROC(η, σE(x)) to avoid
complex notations, i.e., ROC curve is a function of FP rate η and σE(x).
Similarly, we generally omit the relation between σE(x) and x, and prefer
σE for simplicity/readability.

3Although the attack success probability α(η, x) is a function of FP rate
η and number-of-listening time-slots x, since η is known by the attacker, we
will prefer α(x) from the attacker’s perspective.



B. Attacker Reward as a Dynamic Programming Recursion
We will characterize the reward of the attacker using a

dynamic programming approach. At the beginning, Eve has no
observation about Alice and has full energy, the total attacker
reward is expressed as J(0, P ). It can be seen that, the attacker
reward is an increasing function in both of its parameters, i.e.,
the attacker gains more if she has more energy, and the success
probability of attack increases as Eve’s amount of observation
about Alice increases.

Let the attacker’s current state be (x,Ξrem). If Eve chooses
to listen for the next time-slot, since the future rewards are
discounted by β, the recursive relation of attacker’s reward is

J(x,Ξrem) = β J(x+ 1,Ξrem − κl) .

Similarly, if Eve decides to attack for the next time-slot, the
recursive relation of the attacker’s reward is

J(x,Ξrem) = β (α(x)r + J(x,Ξrem − κa)) .

Thus, based on the attacker’s actions, we have

J(x,Ξrem) = max
{
βJ(x+ 1,Ξrem − κl)1{Ξrem≥κl},

β (α(x)r + J(x,Ξrem − κa))1{Ξrem≥κa}

}
,

(7)

where 1{D} represents the indicator function of an event D.

C. Characterization of Optimal Attacker Strategy
In this part, we first investigate the form of an optimal

attacker strategy, then state the integer optimization problem
of the attacker over the reduced strategy space.

Theorem 3.1: An optimal attacker strategy is in the form
of listening (L) during x consecutive time-slots followed by
attacking (A) during y consecutive time-slots where x and
y are non-negative integers. Equivalently, an optimal attacker
strategy is in the form of {LL...LLAA...AA} with x ≥ 0 times
(L) and y ≥ 0 times (A).

Proof: To prove this theorem, we first investigate the last
action(s) of the attacker, then the possible transitions between
(L) and (A) actions. Before doing so, we make the following
observations on α(x).

Lemma 3.1: α(x) is a monotone increasing concave func-
tion of x with α(0) = 0 and α(∞) = 1 − η. Furthermore,
α(x+1)
α(x) is a monotone decreasing function of x.

Corollary 3.1: If α(1)
α(0) >

1
β , then there exists a critical value

x̃ > 0 such that α(x̃+1)
α(x̃) = 1

β . Otherwise, i.e., if α(1)
α(0) ≤

1
β , it

is defined as x̃ = 0.
For any given state S(t) = (x,Ξrem), the attacker chooses

the action (i.e., listening (L) or attacking (A)) with a higher
reward in (7). Regarding the terminal conditions, we have the
following results.

Observation 3.1:
(i) The last action of the attacker must be attacking (A) since

listening (L) does not give any additional reward, it only
increases the probability of a successful attack.

(ii) If the remaining energy of the attacker is less than
κa, then the attacker cannot gain any reward, i.e.,
J(x,Ξrem) = 0 if Ξrem < κa.

(iii) Thus, the last action of the attacker must be attacking (A)
and chosen when κa ≤ Ξrem < 2κa.

Lemma 3.2: Let the remaining energy Ξrem of the attacker
be κa ≤ Ξrem < 2κa. If x < x̃, then the attacker prefers (L)
over (A).

Proof: If the attacker chooses (L), she will get a reward

J(x,Ξrem) = β J(x+ 1,Ξrem − κl)
(a)

≥ β (β (α(x+ 1)r + J(x+ 1,Ξrem − κl − κa)))

= β2 α(x+ 1)r
(b)
> β α(x) r = β (α(x)r + J(x,Ξrem − κa)) ,

where (a) follows from (7), (b) holds since α(x+1)
α(x) > 1

β

for x < x̃ by Lemma 3.1, and the equalities hold since
Ξrem < 2κa, we have J(x,Ξrem − κl − κa) = J(x,Ξrem −
κa) = 0 by Observation 3.1. Thus the listening reward
β J(x + 1,Ξrem − κl) is greater than the attacking reward
β (α(x)r + J(x,Ξrem − κa)).

Thus we have that the last action must be (A) by Observa-
tion 3.1, and at some point (for the case when x̃ > 0), there
must be a (L) action by Lemma 3.2. Thus, there must be some
transitions between (L) and (A), which we investigate next.

Lemma 3.3: Consider the actions chosen in two consecutive
time-slots, listening-first-then-attacking (LA) and attacking-
first-then-listening (AL) actions. If x < x̃, the attacker prefers
(LA); otherwise, i.e., if x ≥ x̃, the attacker prefers (AL).

Proof: Let the attacker state be (x,Ξrem). If the attacker
first listens then attacks (LA), her reward is

J(x,Ξrem) = β J(x+ 1,Ξrem − κl)
= β2 (α(x+ 1)r + J(x+ 1,Ξrem − κa − κl)) .

If the attacker first attacks then listens (AL), her reward is

J(x,Ξrem) = β (α(x)r + J(x,Ξrem − κa))

= β2

(
α(x)

β
r + J(x+ 1,Ξrem − κa − κl)

)
.

Then, the decision rule between (LA) and (AL) becomes

α(x+ 1)

α(x)

LA

R
AL

1

β
=
α(x̃+ 1)

α(x̃)
⇒ x

LA

Q
AL
x̃ . (8)

Corollary 3.2:
(i) If x̃ > 0, the first action of the attacker is (L) and the

last action is (A), where a single transition from (L) to
(A) occurs when x < x̃.

(ii) If x̃ = 0, i.e., if α(1)
α(0) ≤

1
β holds, the attacker always

chooses (A) without any (L).
As stated in Corollary 3.2, for both cases (x̃ > 0 and x̃ = 0),

an optimal attacker has x ≥ 0 consecutive (L) actions followed
by y ≥ 0 consecutive (A) actions, which proves the theorem.

Remark 3.1: Since there is not enough energy for (A) when
Ξ < κa, y should be equal to zero, which results in a zero
attacker reward, i.e., J(0,Ξ) = 0. Thus, it can be assumed
that Ξ ≥ κa and y ≥ 1.



An optimal attacker strategy with x ≥ 0 consecutive (L)
and then y ≥ 1 consecutive (A) results in the reward4

J(0,Ξ) = R(x, y) , βxα(x)r

y∑
i=1

βi . (9)

Thus, the optimal attacker strategy is found by solving the
integer optimization problem

max
x≥0, y≥1

R(x, y) s.t. xκl + yκa ≤ Ξ . (10)

Lemma 3.4: Let the integers x and y satisfy xκl + (y +
1)κa ≤ Ξ, then consider three strategies S1 = (x, y), S2 =
(x, y + 1), and S3 = (x+ 1, y).

(i) S2 is always preferred over S1,
(ii) S3 is preferred over S1 if x ≤ x̃, and vice versa.

Thus, the attacker utilizes her energy Ξ as much as possible
by listening and/or attacking more.

Based on Lemma 3.4, it is sufficient to consider the cases
0 ≤ x ≤ bx̃c and the corresponding

⌈
Ξ−bx̃cκl

κa

⌉
≤ y ≤

⌊
Ξ
κa

⌋
,

where d·e and are b·c the ceiling and floor functions, re-
spectively. To be more precise, for a given number of (A)
actions, it is possible to evaluate the corresponding number
of (L) actions. In particular, let us define χ(y) , Ξ−yκa

κl

and χ(y) , bχ(y)c. Thus, the two-dimensional integer opti-
mization problem of the attacker in (10) reduces to following
integer problem:

max
y
R(χ(y), y) s.t.

⌈
Ξ− bx̃cκl

κa

⌉
≤ y ≤

⌊
Ξ

κa

⌋
. (11)

Note that the size of the one-dimensional feasible region in

(11) is
⌊

Ξ
κa

⌋
−
⌈

Ξ−bx̃cκl

κa

⌉
+1, that is very small compared to

the size of the two-dimensional search space in (10), which is
card({(x, y) : xκl + yκa ≤ Ξ}) ≈ 1

2 (b Ξ
κl
c+ 1)(b Ξ

κa
c+ 1),

and significantly smaller than the size of the exponen-
tially growing original domain of strategies in (7), which is∑

(x,y):xκl+yκa≤Ξ
(x+y)!
x!y! . Here, in (11), the optimal attacker

strategy can be found by a simple exhaustive search.
Remark 3.2: SinceR(χ(y+1), y+1)+R(χ(y−1), y−1) <

2R(χ(y), y) does not always hold, i.e., R(χ(y), y) may not
be a concave function of y, the optimization problem in (11)
may have more than one local maxima.

IV. OPTIMIZATION PROBLEM OF DEFENDER

The defender sets a FP rate η to minimize his total cost.
For larger FP rates, the true detection probability ROC(η, x)
of the defender’s decision rule increases, i.e., the attack success
probability α(η, x) reduces, which results in a smaller attack
cost. On the other hand, increasing the FP rate reduces the
system performance and increases the average delay and the
corresponding cost. Therefore, the optimization of the FP rate
requires a careful analysis considering both effects. However,
the defender cannot do a simple analysis on the attack and

4From now on, the attacker strategy will be searched within the reduced
action space as described in Theorem 3.1, and to describe the attacker reward,
R(x, y) will be used instead of J(0,Ξ).

delay cost based on only the FP rate. Even though the defender
can anticipate the best response of the attacker as a leader for a
given attacker location, due to the uncertainty on the attacker’s
location, the defender must take the expectation of the attack
costs based on his prior on the location of the attacker.

In particular, for any FP rate η and for any given attacker
location (i.e., for given dAE and dEB), letting y∗ be the
maximizer of (11), the attack cost is CA(η, dAE , dEB) ,
α(χ(y∗))ry∗, that can be found by setting the discount factor
β = 1 in (9). Note that y∗ depends on η, dAE and dEB ,
and the expected (average) attack cost for a FP rate η is
ECA(η) = EdAE ,dEB

[CA(η, dAE , dEB)], where EM denotes
the expectation over the random variable M .

After presenting the attack cost, now we can investigate
the delay cost of the defender. Let m′ be the number of
time-slots to transmit m sequences on average, we have
m = (1− η)m′, which results in the expected delay per time-
slot m′−m

m = η
1−η . Then, we define the defender’s delay cost

CD(η) as CD(η) = Nκη
η

1−η , where N is the length of the
analysis window5, κη is a cost coefficient for the delay.

The total cost C(η) of the defender is the sum of the
expected attack cost and the delay cost as follows:

C(η) = EdAE ,dEB
[CA(η, dAE , dEB)] +Nκη

η

1− η
. (12)

Here, if Nκη is large enough, the delay cost will be dominant
and the defender will prefer smaller η to reduce the delay cost,
i.e., C(η) will be an increasing function of η. On the other
hand, if Nκη is small enough, the attack cost will be dominant
and the defender will prefer larger η to reduce the attack cost,
i.e., C(η) will be a decreasing function of η. For intermediate
values of Nκη , the total cost C(η) can be of any behavior,
thus the defender will select an optimal η accordingly.

V. SIMULATION RESULTS

In the following we illustrate the optimal strategy/cost of
the attacker with respect to her location and corresponding
expected cost of the defender. For the simulations, we use the
parameters6 in Table I. For reliable wireless communication
and continuous authentication security, we consider η ≤ 0.01.
Furthermore, we consider a 2-D uv-plane (in meters) in which
Alice’s location is (0, 0), which is indicated as a green dot,
and Bob’s location is (10, 0), which is indicated as a blue dot.
From Bob’s perspective, Eve can be at any point in the region
[2, 8]×[2, 5] with uniform distribution, which is shaded as red.

Table I: Default parameters.
1

4π2L3
s(Ns−1)

γAB Ξ κl κa β r N

3 · 10−9 37dB 2000 0.5 1.5 + 0.05d2EB 0.9999 1 2000

For any particular location and FP rate η, the defender, as
a leader, can calculate the optimal strategy of the attacker

5We define the goal of the defender is to minimize his total cost over N
time-slots, which is assumed to be greater than the length of the longest attack,
i.e., the sum of the numbers of listening and attacking time-slots.

6Distances are normalized to a unit distance, and hence, the energies are
also normalized and scale with the unit distance.



(Figure 2-((a)-(d))). Then, based on his prior on the attacker’s
location, he can derive his overall cost with respect to η
(Figure 2-(e)). For κη = 0.4, the optimum false alarm rate
that minimizes the overall defender cost is η = 0.0043, which
is the FP rate used in Figure 2-((a)-(d)).

As the distance between the attacker and the defender
decreases, the attacker is able to attack longer (Figure 2-(c))
and gets a greater reward (Figure 2-(d)) since the transmission
cost reduces with the distance. Moreover, as the distance
between the attacker and the user increases, the learning
rate of the attacker by listening reduces, thus the attacker
needs to listen for more time slots to achieve higher attack
success rate (Figure 2-(b)). However, as Figure 2-(a) shows,
the behavior of the optimal number of listening is fluctuating
due to the energy constraint and the higher ratio between the
transmission and listening energies. The corresponding attack
success probabilities are in the order of 0.99.

(a) Optimal number of listening vs.
attacker location.

(b) Threshold (x̃) vs. attacker loca-
tion.

(c) Optimal number of attacking vs.
attacker location.

(d) Optimal attack cost vs. attacker
location.
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(f) Number of listening vs. η.

Fig. 2: (a)-(d) Optimal attack strategies/cost vs. attacker location
when η = 0.0043. (e)-(f) Defender cost and number of (L) vs. η.

As described in Section IV, the defender tries to keep
a balance between attack cost and delay cost by adjusting
the FP rate, and this balance highly depends on the delay
cost coefficient κη . A corresponding analysis is shown in
Figure 2-(e). The overall defender cost decreases for small
κη whereas it increases for large κη . Furthermore, as it can
be seen in Figure 2-(f), as the FP rate increases, since the
detection probability will also increase, the attacker needs

more observation in order to achieve a successful attack with
high probability.

VI. CONCLUSIONS AND EXTENSIONS

We considered a CFO based continuous physical layer
authentication security problem as a dynamic discrete leader-
follower game with imperfect information between an attacker
and a defender. After deriving a backward recursion for the
optimal attacker reward, we characterize the optimal attacker
strategy. To do this, we first reduce the exponentially grow-
ing action space to a two dimensional integer optimization
problem, then to a one dimensional, possibly non-convex
optimization problem, which can be easily solved by a simple
exhaustive search. Then, based on the optimal strategy of
the attacker, we expressed the expected cost of the defender
consisting of the delay cost due to false alarms and attack cost,
considering the imperfect information of the defender about
the location of the attacker. Extensive simulations illustrate
the characteristics of optimal strategies/utilities of the players
depending on the actions and locations.

Our model has many possible interesting extensions. Of
particular interest are the case when the feature vectors are
multi-dimensional (i.e., besides the CFO, other device/channel
specific properties can be utilized), when the defender applies
moving target defense strategies (e.g., frequency hoping tech-
niques), and the case of dynamic/moving players.
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