
Channel-Centric Spatio-Temporal Graph Networks
for Network-based Intrusion Detection

Eduardo Santos Escriche, Jakob Nyberg, Yeongwoo Kim, and György Dán
Division of Network and Systems Engineering, KTH Royal Institute of Technology

Stockholm, Sweden
Email: {eduse, jaknyb, yeongwoo, gyuri}@kth.se

Abstract—The increasing frequency and complexity of cy-
berattacks against critical digital infrastructures require novel
methods that can detect intrusions in a timely manner. Recent
work has explored the use of Graph Neural Networks (GNNs) for
network-based intrusion detection, adapting network traffic flow
data to traditional GNN representations. In this work, we propose
an alternative approach based on a novel combination of a graph
representation of network traffic that represents communication
channels as nodes and of a continuous temporal representa-
tion. Our proposed architecture, called Channel-Centric Spatio-
Temporal Graph Networks (CCSTGN), can be trained using
different learning strategies and is introduced together with a
detailed data preprocessing strategy. We present an experimental
evaluation of our proposed CCSTGN architecture using different
learning strategies, from which we conclude that our proposal
is able to outperform multiple existing GNN-based methods
in terms of various classification metrics and that the data
preprocessing procedure can be of significant importance for the
performance of the models.

Index Terms—graph neural networks, network intrusion detec-
tion, temporal graph networks, cybersecurity, machine learning

I. INTRODUCTION

The frequency and sophistication of cyber-attacks have
shown a rapid increase in the past decade [1]. Today, cyber-
attacks make use of a rich set of tactics, techniques, and pro-
cedures (TTPs), and typically involve various forms of illicit
access to resources, e.g., computers, over the network [2].
Illicit access may involve password cracking [3] or the use of
stolen credentials obtained through social engineering [4]. Ac-
cess to network resources, both illicit and legitimate, generates
network traffic, resulting either in new traffic flows between
hosts or in changes to the characteristics of existing flows.

Network-based Intrusion Detection Systems (NIDS) mon-
itor network traffic as a way to identify illicit activity in
a networked system. The two main categories of NIDS are
signature based [5], [6] and anomaly based [7], [8]. Signature-
based NIDSs produce alerts based on predefined rules or
patterns, such as network addresses or packet contents. They
have the benefit of being easy to operate and efficient in
detecting known attacks, but they typically fail to detect
unknown attack patterns for which signatures are not readily
available. Anomaly-based NIDSs use a statistical character-
ization of baseline network activity for detecting deviations
from the baseline. They would then generate alerts depending
on the magnitude of the deviation. Anomaly-based NIDSs

can detect previously unseen illicit activity for which there
are no signatures, but they are instead prone to producing
many false alerts, and thus require a significant amount of
security expertise for maintaining real-time cyber situational
awareness [9] and for generating actionable alerts in a timely
manner [10].

Recent approaches to anomaly-based NIDSs incorporate
deep learning as an attempt to reduce the number of false
alerts while maintaining a high precision. Methods based on
supervised learning include training deep neural networks [11]
and Graph Neural Networks (GNNs) to classify flow level fea-
tures [12], but their performance has been shown to be highly
dependent on the dataset used for training and evaluation [13].
GNNs enable the inclusion of topological information about
the network, which seems to allow better classification per-
formance, but it is so far unexplored how to best represent
the topological information for processing. Previous work has
also noted that the temporal evolution of traffic flows can be
equally important [13] as the topological information, but it is
so far unclear how to best capture the temporal evolution of
traffic flows.

In this paper, we propose a GNN-based NIDS that considers
both the network topology and temporal evolution of traffic
flows in its definition, seeking to overcome potential limita-
tions of previous approaches. We define a set of methods to
address those potential limitations, and make the following
main contributions:

• We propose a novel combination of graph and temporal
representations in the context of NIDS, and use it to
develop a novel GNN architecture called Channel-Centric
Spatio-Temporal Graph Network (CCSTGN) that is able
to perform continuous-time dynamic graph learning.

• We provide a detailed description of our data prepro-
cessing strategy, going beyond the explanations of most
existing approaches and seeking to address some of their
potential limitations.

• We carry out experiments with both supervised and
unsupervised learning and apply a comprehensive set of
evaluation metrics to analyze the suitability of our models
for the task of intrusion detection1.

The rest of this paper is organized as follows. Section II
presents the related works that we consider in our analysis.

1Code is available at https://github.com/sanesedu/CCSTGN

Our problem formulation and analysis of previous graph and
temporal representations, together with our proposed represen-
tations, are introduced in Section III. Based on those proposed
representations, we describe the novel CCSTGN architecture
in Section IV. Section V details various considerations related
to our evaluation methodology. The numerical results obtained
from the experiments that we conducted are presented in Sec-
tion VI, together with our subsequent analysis. We conclude
the paper in Section VII.

II. RELATED WORK

Multiple approaches to NIDS based on the application
of GNNs have been proposed. 3D-IDS, introduced in [13],
applies Graph Convolutional Networks (GCNs) for NIDS. The
proposed approach aims at mitigating the entangled distribu-
tion of features that traffic flow data tends to present. The
authors introduce a double feature disentanglement scheme,
as well as a multi-layer graph diffusion method inspired by
GIND [14] to better capture the considered spatio-temporal
information.

EULER [15] is an approach for scalable dynamic link
prediction and anomalous edge detection that explicitly con-
siders temporal aspects of the data. The proposed architecture
allows for the parallelization of the model through a leader
and worker scheme. Workers compute node embeddings of a
series of snapshots of the network activity using a GCN, and
the leader then transforms the node embeddings into temporal
embeddings that can be used for link prediction. A network’s
topology is thus encoded by a GCN at discrete time instants,
and the temporal dynamics of changes in network connections
are encoded by an RNN, such as an LSTM [16] network or
GRU [17] network. EULER then aims to learn a probability
function over the state conditioned on previous states of the
considered temporal graph, in order to determine the likelihood
of a link occurring at a later point in time.

E-GraphSAGE [12] adapts the GraphSAGE [18] approach
to leverage both the edge features of the graph and its
topological information with the goal of improving on the
performance of existing methods for NIDS in the context
of Internet of Things (IoT) networks. It uses an inductive
learning approach, where the node embeddings are initialized
to a constant vector, the message-passing process is modified
to operate over edge features, and the final edge embeddings
are computed by concatenating the node embeddings of the
incident nodes.

The works presented above consider a host-centric graph
representation and either ignore or apply discrete-time repre-
sentations for the temporal aspects of the network traffic data.
Our proposal instead combines an alternative channel-centric
graph representation and a continuous-time temporal represen-
tation with the goal of addressing the potential limitations of
the considered approaches.

In regards to the graph representation, our approach is
similar to the line graph representation considered in [19].
Our proposed temporal representation is inspired by Temporal
Graph Networks (TGN) [20], which provide a continuous-time

representation for temporal graphs. TGN follows an encoder-
decoder approach, in which the encoder maps the dynamic
graph to node embeddings, and the decoder receives as input
one or more node embeddings, which it uses in order to
perform a task-specific prediction. TGN is based on a memory
module, whose state contains a vector representation for each
node that the model has previously observed. The memory
state of a node is updated for each event involving that node,
based on a series of modules that compute and aggregate the
corresponding messages to the node. Lastly, TGN also in-
cludes an embedding module that is used to generate temporal
embeddings of the nodes at a particular time, while attempting
to avoid the problem of memory staleness, which occurs when
the absence of events at a node for an extended period of time
results in the node’s memory becoming outdated.

III. PROBLEM FORMULATION AND PRELIMINARIES

A. Detection Problem

We consider a networked system, where we observe a
sequence of network flows. The i-th flow, i ∈ Z≥0, is
characterized by three components: its flow ID vi (the IP
addresses of the involved devices), its timestamp ti ∈ R, and
an N dimensional feature vector fi ∈ RN . Depending on the
dataset, the feature vector may contain data such as the number
of packets in the flow, the number of bytes or the duration of
the communication.

Given the flows 1, . . . , i − 1, we define the intrusion de-
tection problem as performing binary classification for traffic
flow i, indicating whether it is benign or part of an intrusion
attempt. The predicted output for flow i is computed based
on information from the previously observed flows and corre-
sponds to a probability distribution over the defined classes.

The architecture proposed in this paper is designed to
support different learning strategies, and we include variants
both trained with supervised and self-supervised learning in
the evaluation. Our proposed architecture is also applicable to
both binary and multi-class classification, but our experimental
evaluation is limited to the binary case.

B. Channel-centric graph representation

Most GNN-based approaches for NIDS, e.g., [12], [13],
[15], represent the network traffic as a graph by assigning
hosts in the network to nodes in the graph and communication
between hosts to edges between the corresponding nodes.
Mapping hosts to nodes is common in the context of graph-
based network traffic analysis, such as for multipath TCP [21]
or wireless network optimization [22]. However, we suspect it
might not be the optimal network representation for network
intrusion detection. When defining a NIDS based only on
network information and traffic data, there tends to be little
information about the hosts in the network besides their IP
addresses.

We conjecture that defining the nodes of the graph rep-
resentation using entities we lack data for, while the edges
encode all the available information about the system, could
be detrimental to the effectiveness of the representation in the

IPA

IPB

IPC

IPD

A

B C D

AB
AC

BC CD

AB AC

BC CD

Fig. 1. Illustration of two methods for representing a computer network
as a graph. (Left) Network structure. (Middle) Host-centric representation,
where hosts are mapped to nodes. (Right) Channel-centric representation, a
line graph of the network.

context of network intrusion detection. The lack of information
about the state of the nodes in the graph also impacts the
adaptation of GNN models for the task of NIDS, since the
initialization and aggregation of information in GNNs usually
happens over the nodes. As a result, when adapting or defin-
ing GNNs for NIDS with host-centric representations, some
contrived design choices tend to appear, e.g., calculating edge
predictions based on node representations that were generated
from edge information, as done in E-GraphSAGE [12]. We
reason that the calculation can be simplified by shifting focus
away from the hosts entirely.

The alternative approach we put forward, which we name
channel-centric, is to consider the communication channels
between devices as the main entities of the learning problem
and thus define them as the nodes of the graph representation,
with two nodes being adjacent if they have a host in common.
This approach corresponds to defining the line graph of the
host-centric representation graph. Fig. 1 shows the host-centric
and channel-centric representations of a network with four
nodes.

With this alternative representation, the traffic flows in the
input data correspond to observations of states of nodes in
our graph at different times. Information is concentrated in
the nodes of the graph instead of the edges, which encode
the spatial structure of the network. Therefore, we conjecture
that this representation is more appropriate for building GNN-
based NIDS since existing implementations tend to prioritize
the calculation and analysis of node embeddings, thus simpli-
fying their usage in the domain of NIDS. On the downside, this
representation can become more computationally expensive
than the host-centric representation when the number of com-
munication channels is significantly larger than the number of
devices in the network.

C. Temporal representation

Several approaches presented in Section II, such as E-
GraphSAGE [12], do not explicitly consider the temporal
aspects of the network in their models. Instead, they define
a single static graph for the entire timespan the dataset covers
where the host devices correspond to the nodes of the graph,
and all the flows are converted into edges between their
corresponding host devices. This representation ignores the
temporal information associated with the flows, essentially

allowing the model to look into the future. In addition, com-
bining the entire timespan into a single graph can potentially
result in a multigraph with a high average degree among the
nodes. Large node neighbourhoods can negatively impact the
performance and accuracy of GNN models since the node
representations need to encode a a lot of information [18].

Some NIDS approaches, e.g., EULER [15] or 3D-IDS [13],
consider the temporal information associated with the data.
These approaches model the temporal evolution of the flows by
using discrete-time dynamic graphs, i.e., they define a dynamic
graph as an equally spaced series of timestamped static graphs
or “snapshots”. Using equally spaced snapshots might not be
well-suited for the definition of a NIDS since traffic flows are
not necessarily uniformly spaced in time, which could prove
to be a limiting factor for the performance of the models, e.g.,
when a flow is grouped in a snapshot that does not contain its
time-wise closest contextual information.

Our proposed approach is a continuous-time dynamic graph
formulation and is inspired by TGN [20], which we adapt
to NIDS. Through this approach we seek to improve the
detection process by incorporating temporal information and
representing it in a continuous manner, as opposed to discrete
snapshots.

IV. CHANNEL-CENTRIC SPATIO-TEMPORAL GRAPH
NETWORK

We start with a high-level overview of the proposed archi-
tecture of CCSTGN. CCSTGN processes a sequence of traffic
flows in batches of size B. Flows are mapped to a set V of
communication channels, which are the nodes of the channel-
centric graph representation described in Sec. III-B. Fig. 2
illustrates the four main components of the CCSTGN archi-
tecture. Numbered arrows correspond to the main processing
steps in the architecture, which we describe below, while non-
numbered arrows represent dependencies. These four main
components are:

1) Flow embedding. The features fi of all flows in a batch
are embedded into a lower-dimensional space to obtain
flow embeddings femb

i .
2) Node state update. The node state of each node v ∈ V is

updated based on the flow embeddings femb
i associated

with it in the batch, retrieved from the embedding
storage.

3) Node state embedding. The updated node state is ac-
cessed to generate a node state embedding fmem

v for
each of the observed nodes at the observed timestamps
based on their corresponding spatio-temporal neighbor-
hoods using a GNN.

4) Embedding storage. The flow embeddings femb
i , flow

timestamps ti, and the node state embeddings fmem
v

together with their timestamps t(k), are stored for the
subsequent node state memory update and for classifi-
cation.

The output of CCSTGN are flow embeddings femb
i and

node state embeddings fmem
v . The embeddings can be further

processed in order to generate predictions for the considered

task, which in our case is anomaly detection through binary
classification.

A. Flow embedding

As a first step in the CCSTGN architecture, the feature
vectors of the flows in batch k are projected to a lower-
dimensional representation vector. The main reason behind this
operation is to provide a more compact representation of the
features. For flow i with features fi and timestamp ti we obtain
the embedding femb

i using a two-layer neural network,

femb
i = σ (fi ·W0 + b0) ·W1 + b1, (1)

where σ is a non-linear activation function, W0 ∈ RN×P and
W1 ∈ RP×M are learnable weight matrices, and b0 ∈ RP

and b1 ∈ RM are learnable bias vectors. We use ReLU as
the activation function and P = (N +M)/2. The computed
flow embeddings are then stored in the embedding storage (see
Section IV-D).

B. Node state update

Following TGN [20], we define a memory module that
serves as a compact representation of each node’s history. It
is implemented as a matrix that contains an M -dimensional
vector representation of the state sv ∈ RM for each node
v ∈ V that the model has seen so far, associated with a
timestamp tv ∈ R≥0, which corresponds to the time stamp
of the most recent flow in previous batches that triggered an
update of the node’s state. The node state for a previously
unseen node v is initialized to a zero vector and its timestamp
is tv = 0.

Due to batching flows, node v can have multiple embed-
dings associated with it in the embedding storage. Let us
denote by Z(v) = {i : vi = v} the set of flow embeddings
associated with node v in the embedding storage. We aggregate
those embeddings by computing

faggv =
1

|Z(v)|
∑

i∈Z(v)

femb
i , (2)

where faggv is the aggregated embedding for node v. We
initially explored more complex aggregation strategies that
also consider the stored memory embeddings and timestamps,
but preliminary evaluations showed that this simple strategy
was sufficient for achieving good performance.

After aggregating the flow embeddings in batch k, the state
for nodes v with associated flows (i.e., |Z(v)| > 0) is updated
as

s(k)v = RNN
(
s(k−1)
v , faggv

)
, (3)

where s
(k)
v is the updated state for node v, and s

(k−1)
v is the

previous state for node v. The new node state is calculated
by applying an RNN, with the previous state for that node
as its hidden state, to the newly computed aggregation of
flow embeddings. We use a GRU [17] as the RNN in our
implementation.

We then update the timestamp associated with the last
update of the state of node v to the timestamp of the most
recent flow associated with node v, i.e.,

t(k)v = max
i∈Z(v)

ti.

The node state and the timestamp are only updated for
the nodes observed in the current input batch (i.e., ∃i s.t.
vi = v for flow i), we set s

(k)
v = s

(k−1)
v and t

(k)
v = t

(k−1)
v

for the other nodes. After the update of the node state s
(k)
v

and its timestamp t
(k)
v , the embedding storage for node v is

emptied. Finally, it is also important to note that the node
state is continuously updated during the testing phase, even
after training has concluded.

C. Node state embedding

Next, we introduce two alternative GNN models to be used
in order to generate the node state embeddings fmem

v . Before
describing the GNN models, we introduce our definition
of the neighborhood of a node. Given that we are using
communication channels as the nodes of our graph, the nodes
are identified both by their node ID v ∈ V , and by the
unordered pair of IP addresses {IPv,1, IPv,2} associated with
their incident host devices. In particular, we define the bijective
mapping φ(v) = {IPv,1, IPv,2}, which is computed during
the data preprocessing stage. At time t(k) = maxi<Bk ti
(i.e., upon processing batch k) we can then define the spatio-
temporal neighborhood of node v ∈ V as

Nt(k)(v) := {v′ ∈ V : φ(v′) ∩ φ(v) ̸= ∅ ∧ tv ≤ tv′ ≤ t(k)},
(4)

where tv, tv′ ∈ R correspond to the last update times of the
node state for nodes v and v′. The spatio-temporal neigh-
borhood of node v is thus defined as the set of nodes that
have at least one associated IP address in common and whose
node state has been updated no later than the node state of
node v. Moreover, we also define the spatio-temporal degree
dt(k)(v) = |Nt(k)(v)| of node v at time t(k), i.e., the cardinality
of its spatio-temporal neighborhood at time t(k).

Finally, to limit the memory and computing requirements of
our solution, we select the η most recently updated neighbors
(largest timestamp values) from Nt(k)(v) together with the
node itself. That is, we construct a sampled spatio-temporal
neighborhood N ′

t(k)(v) for node v ∈ V at time t(k) as

N ′
t(k)(v) := {v} ∪ argmax

N ′⊆N
t(k) (v)\{v},|N ′|=η

∑
v′∈N ′

tv′ . (5)

1) CCSTGN-rs: The first GNN approach defines the first
model instance of our architecture, namely CCSTGN - residual
symmetric (CCSTGN-rs), and is inspired by GCNgf [23],
which is designed to be robust against heterophily in graphs,
potentially avoiding the problem of over-smoothing.

Classifier

CCSTGN

Input

…

Flow embeddings

…

1)
Flow

embedding

2)
Node
state

update

Node state
memory

…

4)
Embedding

Storage

3)
Node
state

embedding

…

Node state
embeddings

Fig. 2. High-level overview of the CCSTGN architecture. Numbered edges represent processing steps, non-numbered edges are dependencies. Different colors
represent different nodes. A node state sv is kept in the memory for each node. It is updated based on the aggregated embeddings of the flows associated to
the node in a batch of flows. The node states are processed using a GNN to obtain a node state embedding, which is used for classifying new flows based
on their embedding. The architecture supports various training approaches (supervised, unsupervised) for the classifier (Section V-C).

Following this approach, for node v we compute the node
state embedding fmem

v,k = fv,k(L) based on batch k as

fv,k(0) = s(k)v

fv,k(l+1) = fv,k(l)

+σ

 ∑
v′∈N ′

t(k)
(v)

1√
dt(k)(v)dt(k)(v′)

·fv′,k(l)·WS

 ,

(6)

where 0 ≤ l < L is the layer of the model, σ is a non-linear
activation function (e.g., ReLU), and WS is defined as

WS :=
W +WT

2
,

with W ∈ RM×M being a learnable weight matrix shared
across layers.

2) CCSTGN-iso: The second GNN approach that we con-
sider is inspired by GIN [24], and it defines the second
model instance of our architecture: CCSTGN - isomorphism
(CCSTGN-iso). We expect this model to be faster than the
CCSTGN-rs model, especially for a high number of layers,
since this approach does not require the computation of the
spatio-temporal degree of the sampled neighbors.

Using this approach, for node v ∈ V we compute the node
state embedding fmem

v,k = fv,k(L) based on batch k as

fv,k(0) = s(k)v

fv,k(l + 1) = MLP(l+1)

((
1 + ϵ(l+1)

)
· fv,k(l)+∑

v′∈N ′
t(k)

(v)

1[v′ ̸=v] fv′,k(l)

)
,

(7)

where 0 ≤ l < L is the layer of the model, ϵ(l+1) is a
learnable parameter associated with layer l+1 and we define
MLP(l+1) for layer l + 1 as a two-layer neural network:

fv,k(l+1) = σ
(
fsumv,k (l) ·W(l+1)

0 + b
(l+1)
0

)
·W(l+1)

1 +b
(l+1)
1

where σ is a non-linearity, fsumv,k ∈ RM is the result of the
input to MLP(l+1) (which is computed as shown in Eqn. (7)),

W
(l+1)
0 ,W

(l+1)
1 ∈ RM×M are learnable weight matrices, and

b
(l+1)
0 ,b

(l+1)
1 ∈ RM are learnable bias vectors.

D. Embedding storage

Inspired by TGN [20], the embedding storage stores embed-
dings organized by the node they belong to. It stores the flow
embeddings femb

i along with their timestamp ti and the node
vi ∈ V they are associated with. In addition, for each node
v ∈ V it may store the most recent node state embedding fmem

v,k

together with its timestamp t(k) (defined in Section IV-C), for
the purpose of classification (as explained in Section V-C).
The embedding storage can be implemented as a dictionary
(key-value store), where the key is the node ID and the values
are lists of associated embeddings and timestamps, which are
initially empty.

V. EVALUATION METHODOLOGY

A. Data

In order to evaluate our proposed CCSTGN models, we use
the publicly available NF-UNSW-NB15-v2 NIDS dataset [25].
We choose this dataset due to an existing performance eval-
uation in [13] of multiple NIDS approaches for this dataset,
which allows for easier comparison between those models and
CCSTGN. NF-UNSW-NB15-v2 consists of 2, 390, 275 flows,
each having 43 features, of which 3.98% flows are labeled as
attacks and 96.02% as benign. A category is also specified for
each sample labeled as an attack.

B. Data preprocessing

1) Node ID mapping: We first define the bijective mapping
φ : V → {IP, IP} for the dataset, which is used for defining the
spatio-temporal neighborhood for the computation of memory
embeddings. We construct φ by its inverse φ−1, a mapping
from unordered IP pairs to node IDs. We create φ−1 by iterat-
ing over the flows in the dataset and assigning an incremental
count of previously encountered IP pairs as the corresponding
node ID v if the pair is new, skipping already encountered
pairs.

2) Timestamp considerations: The NF-UNSW-NB15-v2
dataset does not contain a timestamp feature, so we assume
that the flows are arranged in sequential order and evenly
spaced in time, assigning timestamp ti = i to flow i ∀i ∈
[0, . . . , D−1], where D is the number of flows in the dataset.
If the dataset were to include timestamps as a feature of the
flows, this step would consist of sorting the samples in the
dataset by their timestamps to feed them to our model in a
sequential manner.

3) Training-validation-test split: We then split the dataset
into training, validation, and test sets with a 70−10−20 split
without shuffling to maintain their temporal order. The train
and validation sets are combined and used to train our models
in experiments VI-D and VI-E.

4) Feature preprocessing: The flow features are composed
of both numerical and categorical features. We standardize
each numerical feature using their respective means and stan-
dard deviations in the training set. We use a binary encoder
to encode the categorical features, into a binary representation
with a set number of bits. The number of bits is set to be
able to encode the entire range of possible values defined in
the NetFlow specification [26]. This potentially oversizes the
model in regards to the data, as not all values may appear in
the samples, but it ensures the applicability of our approach in
real-world scenarios, and avoids data leakage caused by setting
the number of bits based on the entire dataset. We note that
the encoding scheme of categorical features tends to not be
described in detail throughout the NIDS approaches discussed
in Section II, which limits reproducibility if the source code
is not available.

C. Training strategies

We explore the effect of applying various training strate-
gies to our proposed CCSTGN architecture. We describe the
training strategies for K batches of flows of batch size B.

1) Supervised learning: Firstly, we use the labels in the
dataset and train the models in a supervised manner. For
this, we connect the outputs (node state embeddings and flow
embeddings) of the CCSTGN model to a classification head,
which is trained together with the CCSTGN model. We use a
two-layer neural network as classification head, whose inputs
are a flow embedding and the most recent memory embedding
of its associated node, i.e.,

ŷi = softmax
(
σ
((
femb
i

∥∥fmem
vi,k

)
·W0 + b0

)
·W1 + b1

)
,

where σ is a non-linearity, ∥ is the concatenation operation,
W0 ∈ R2M×Q and W1 ∈ RQ×C are learnable weight
matrices, and b0 ∈ RQ and b1 ∈ RC are learnable bias
vectors. We use Q = (2M +C)/2, where C is the number of
classes of the considered problem.

We choose to find the optimal set of parameters θθθ∗ for
our model and for the classification head by minimizing a

weighted cross-entropy loss function, due to its robustness to
imbalanced class distributions:

θθθ∗ = argmin
θθθ

LWCE(y, ŷ;θθθ)

= argmin
θθθ

− 1

KB

K∑
k=1

kB−1∑
i=(k−1)B

C−1∑
c=0

wcy
c
i log(ŷ

c
i),

where K is the number of batches, B is the batch size, C is
the number of classes, yci is the true probability (the labels are
one-hot encoded) of class c for flow i (in batch k), ŷci is the
predicted probability of class c for flow i (in batch k), and wc

is the weight associated with class c, computed as

wc =
s

C · sc
∀c ∈ {0, . . . , C − 1},

where s denotes the total number of samples in the training
set, and sc denotes the number of samples in the training set
that correspond to class c.

2) Self-supervised learning: The second training strategy
for our CCSTGN models does not consider the available labels
and is instead based on self-supervised learning.

We define the learning objective in this case as maximizing
the similarity between the generated flow embeddings femb

and the memory embeddings fmem according to the cosine
similarity, since the cosine similarity ignores the magnitude
difference between the embeddings, and instead considers only
their angles. We thus obtain the optimal parameters as

θθθ∗m = argmin
θθθm

Lcos(f
emb, fmem;θθθm)

= argmin
θθθm

− 1

KB

K∑
k=1

kB−1∑
i=(k−1)B

1− cos(femb
i , fmem

vi,k).

Lastly, we choose to define the class probability distribu-
tions associated with the obtained embeddings for the specific
case of binary classification as

ŷi = softmax
(
cos(femb

i , fmem
vi,k),− cos(femb

i , fmem
vi,k)

)
.

Note that in the case of both training strategies, the flow
embedding of flow i is compared to the node state embedding
obtained based on the batch it belongs to. An alternative could
be to compare the flow embedding to the previous node state
embedding, but we did not explore this alternative.

3) Fine-tuning: An additional training strategy we explored
in our experiments is fine-tuning CCSTGN models trained
using self-supervised learning by then training them with
supervised learning. In that sense, we once more add the
classification head defined in Section V-C1 and train the
models using the weighted cross-entropy loss function defined
in that section. Thus, this training strategy follows the same
considerations and definitions from the supervised learning ap-
proach, but uses a non-random initialization of the parameters
of the CCSTGN models, instead harnessing the final parameter
configuration of the pre-trained self-supervised models.

D. Evaluation metrics

In order to provide a comprehensive analysis of the perfor-
mance of the considered models, we apply multiple evaluation
metrics in our experiments.

First, we report the Area Under the ROC Curve (AUC),
which is an aggregate measure of the performance of the
model across different classification thresholds, thus providing
a global evaluation of the classifier, taking into account all
possible trade-offs between the True Positive Rate (TPR) and
the False Positive Rate (FPR).

Second, we report the FPR, the False Negative Rate (FNR),
and the F1-score, which expect class label predictions instead
of class probability distributions. For the first experiment, we
follow a strategy similar to that defined in EULER [15], where
we identify an optimal cut-off threshold for classification ω,
given a balance between FPR and FNR controlled using the
parameter λ. The threshold is obtained as the solution to the
following optimization problem

ω = argmin
ω′

F (ω′) = argmin
ω′

λ FNR(ω′)+(1−λ) FPR(ω′).

For the sake of our experiments, we set λ = 0.75, and
the calculate the threshold ω using the validation set. The
threshold is then used for calculating the reported evaluation
results for the test set. Lastly, we also report the F (ω) value
corresponding to the identified optimal threshold. For the
second experiment, the threshold is set based on a set of fixed
FPR values.

VI. NUMERICAL RESULTS

A. Experimental details

In all of the described experiments, the models were trained
and evaluated on a laptop with an Intel i7-8750H (12) @
4.100GHz CPU, 16GB DDR4, and an NVIDIA GeForce GTX
1060 Mobile GPU. Both the training and evaluation were
executed on the GPU using CUDA version 12.1. We used
the Adam optimizer [27] with a learning rate of 0.01, and
kept the default values for the remaining hyperparameters,
since preliminary explorations of their values did not show
significant impact on the evaluation metrics.

B. Baselines

We distinguish between two different groups of baselines.
One group is defined by GNN-based approaches for NIDS,
whose performance on the NF-UNSW-NB15-v2 dataset was
evaluated and reported in [13]: TGN [20], GAT [28], E-
GraphSAGE [12], EULER [15], and 3D-IDS [13]. This selec-
tion of models contains representatives of both general purpose
GNN models (TGN [20] and GAT [28]), and GNN-based
models designed for NIDS (E-GraphSAGE [12], EULER [15],
and 3D-IDS [13]). Moreover, it also includes representatives of
static GNN-based models (GAT [28] and E-GraphSAGE [12]),
and dynamic GNN-based models (TGN [20], EULER [15],
and 3D-IDS [13]).

We also include two baseline methods that are not GNN-
based and that we implement and evaluate according to the

same experimental configuration and data preprocessing that
we used for our proposed CCSTGN models. We first consider
a Multinomial Logistic Regression (MLR) model:

ŷv,t = softmax (fv,t ·W + b) ,

where fv,t ∈ RN is the input feature vector associated with an
input sample with node ID v and timestamp t, W ∈ RN×C is
a learnable weight matrix, b ∈ RC is a learnable bias vector.

Next, we also define a Multi-Layer Perceptron (MLP) model
as a 4-layer neural network:

hv,t = σ (σ (fv,t ·W0 + b0) ·W1 + b1)

ŷv,t = softmax (σ (hv,t ·W2 + b2) ·W3 + b3) ,

where fv,t ∈ RN is the input feature vector associated with an
input sample with node ID v and timestamp t, σ is a ReLU
non-linearity, W0 ∈ RN×P , W1 ∈ RP×Q, W2 ∈ RQ×M ,
W3 ∈ RM×C are learnable weight matrices, and b0 ∈ RP ,
b1 ∈ RQ, b2 ∈ RM , and b3 ∈ RC are learnable bias
vectors. We set M to the same dimensionality as the memory
embedding used by the CCSTGN models, C the number of
classes for the classification, and we set P = (N +M)/2 and
Q = (M + C)/2.

C. Hyperparameter exploration

We performed a limited hyperparameter exploration that
only included the supervised learning strategy. Trends in model
performance on the validation set for different values of
relevant hyperparameters were recorded, and used for manual
parameter selection. Based on the study, we define a hyper-
parameter configuration consisting of a batch size of 10 000
flows, 7 epochs, 1-layer GNN models for the computation of
the memory embeddings, and a memory dimensionality of
M = 20. The CCSTGN - residual symmetric (CCSTGN-
rs) models are defined to sample η = 7 spatio-temporal
neighbors and the CCSTGN - isomorphism (CCSTGN-iso)
models sample η = 5 neighbors.

D. Binary classification performance

In this experiment, we evaluate the performance of our
proposed models (following all the aforementioned training
strategies) and compare the results to those of the baselines
described in Section VI-B for the task of binary classification
using the NF-UNSW-NB15-v2 dataset. Table I shows the
classification results, together with the average time required
for the training and for the testing of each model on the
complete training and test datasets, respectively.

As a first observation from those results, we note that for the
self-supervised approach the models perform relatively well,
especially in terms of the AUC metric, considering that they do
not use labels during the training procedure. Thus, the results
lead us to believe that this is a valid training strategy for our
proposed architecture, which deserves further exploration in
the context of appropriate self-supervised tasks. Furthermore,
we observe that fine-tuning provides higher performance than
the self-supervised approach, and a slight improvement for

TABLE I
BINARY CLASSIFICATION RESULTS CORRESPONDING TO THE MEAN AND STANDARD DEVIATION AFTER 5 RUNS FOR EACH METHOD. THE VALUES ARE

PERCENTAGES. THE RESULTS WITH † ARE DIRECTLY COPIED FROM [13]. First, Second, Third HIGHEST MEAN VALUE PER METRIC. TRAINING
STRATEGIES OTHER THAN SUPERVISED LEARNING ARE REPRESENTED AS (SSL) FOR SELF-SUPERVISED LEARNING, AND (FT) FOR FINE-TUNING.

Method AUC ↑ F1 ↑ FPR ↓ FNR ↓ F (ω) ↓ Training time Test time
GAT [28]† 89.91±0.79 92.20±1.26 - - - - -
TGN [20]† 88.01±1.40 93.55±0.48 - - - - -
E-GraphSAGE [12]† 90.39±0.51 94.10±0.57 - - - - -
EULER [15]† 86.97±1.05 92.76±0.93 - - - - -
3D-IDS [13]† 91.55±1.01 95.45±0.82 - - - - -
MLR 99.522±0.004 89.604±0.105 1.793±0.021 0.319±0.003 0.688±0.004 34m22s 01m23s
MLP 99.915±0.004 95.224±0.107 0.785±0.019 0.046±0.014 0.231±0.009 34m08s 01m22s
CCSTGN-rs 99.881±0.027 94.618±0.801 0.894±0.142 0.022±0.006 0.240±0.032 39m38s 01m40s
CCSTGN-iso 99.886±0.027 94.969±0.267 0.829±0.045 0.041±0.026 0.238±0.027 37m09s 01m31s
CCSTGN-rs (ssl) 81.849±3.508 31.333±7.829 31.900±17.072 16.547±10.900 20.385±4.540 39m27s 01m39s
CCSTGN-iso (ssl) 88.997±2.946 29.892±8.535 38.705±18.358 7.565±5.017 15.350±2.685 37m04s 01m31s
CCSTGN-rs (ft) 99.884±0.012 95.037±0.445 0.816±0.076 0.057±0.018 0.247±0.031 39m41s 01m41s
CCSTGN-iso (ft) 99.882±0.011 95.058±0.424 0.796±0.051 0.251±0.275 0.388±0.218 38m19s 01m35s

certain metrics over the performance of the supervised models,
especially for CCSTGN-rs.

In addition, we can see that both our supervised and fine-
tuned models provide similar performance, and both of them
outperform all the baseline models evaluated in [13], except,
arguably, from 3D-IDS [13] in terms of the F1-score. We
believe that these results indicate that our proposed approach
(i.e., channel-centric graph representation of the network and
continuous temporal graph representation) indeed improves the
performance for NIDS over existing GNN-based approaches
in the NF-UNSW-NB15-v2 dataset. Surprisingly, we should
remark that our models’ training setup differs from that of the
approaches evaluated in [13] in that our models are trained for
much fewer epochs (7 as opposed to 500), without explicit
regularization or learning rate scheduling mechanisms, and
with a very slightly optimized hyperparameter configuration.

However, we should note the high performance of the MLP
model seems to indicate that in this dataset, the architectural
complexity of our proposed CCSTGN approaches and of the
other GNN-based baselines does not yield a noticeable benefit
for the classification results, and that, instead, a careful data
preprocessing strategy can potentially affect the performance
in a more significant manner. Nevertheless, the MLR model
shows worse performance than the MLP, indicating that certain
complexity is needed for the classification of the input features
into their corresponding classes.

Comparing the training times, we can conclude that the
additional computational complexity of CCSTGN compared to
the MLP is not significant. We can make the same observation
about inference, as all models are able to classify a batch of
10000 flows in approximately 2 seconds (c.f., the number of
batches in the test set).

E. Missed Detections under FPR Constraints

In our second experiment, we analyze the miss rate (FNR) of
the models at fixed false positive rates. This allows us to study
the applicability of our models in real-world NIDS scenarios,
where a limit on the false positive rate may be demanded.

We first identified the classification thresholds for each
model that result in FPR values that are lower and closest
to a set of predefined percentages, {0.01%, 0.1%, 1.0%}, cal-
culated using the validation set. We then used those thresholds
on the test set and report the resulting metrics. Table II shows
the resulting F1-score and FNR for each model. These results
illustrate the performance of the different models when they
are tuned for a specific FPR, which is an important constraint
for practical use.

Analyzing the obtained results, we observe that the baseline
MLP model shows the best overall performance, while the
MLR and self-supervised CCSTGN models perform the worst.
In addition, we observe that the supervised and fine-tuned
CCSTGN models perform better when higher FPR percentages
are allowed, displaying the lowest FNR score for FPRval ≈
1.0%. These results are consistent with those presented in
VI-D, since Table I showed that the MLP provides the lowest
FPR value, while the supervised CCSTGN models provide the
lowest FNR values.

VII. CONCLUSION

In this work, we present a novel architecture for NIDS,
namely CCSTGN, which results from a novel combination
of graph and temporal representations designed for NIDS
that we believe address issues in existing GNN-based NIDS
approaches. The architecture is flexible in that it can be
trained using multiple learning strategies. Our results show that
CCSTGN is able to outperform the results of several GNN-
based NIDS approaches reported for the NF-UNSW-NB15-v2
dataset [13]. However, we also show that a simple MLP model
provides very competitive and arguably better performance
than both CCSTGN and the GNN-based alternatives, which
we conjecture is the result of our data preprocessing strategy.
There are many interesting directions for future research that
could potentially extend our results. These include exploring
alternative graph and temporal representations to the ones con-
sidered in the definition of CCSTGN in the context of NIDS,
including graph attention networks. Of significant practical

TABLE II
MISSED DETECTIONS UNDER FPR CONSTRAINTS RESULTS CORRESPONDING TO THE MEAN AND STANDARD DEVIATION AFTER 5 RUNS FOR EACH

METHOD. Highest MEAN VALUE PER METRIC. ALL VALUES ARE EXPRESSED AS PERCENTAGES. TRAINING STRATEGIES OTHER THAN SUPERVISED
LEARNING ARE REPRESENTED AS (SSL) FOR SELF-SUPERVISED LEARNING, AND (FT) FOR FINE-TUNING.

Method FPRval ≈ 0.01% FPRval ≈ 0.1% FPRval ≈ 1.0%
F1 ↑ FNR ↓ F1 ↑ FNR ↓ F1 ↑ FNR ↓

MLR 3.058±0.318 98.446±0.164 12.971±0.741 93.037±0.426 88.846±0.142 11.401±0.228

MLP 65.829±2.234 50.770±2.489 82.295±1.622 29.501±2.444 95.159±0.119 0.038±0.009

CCSTGN-rs 50.331±7.543 65.988±6.425 77.020±4.533 36.579±6.030 93.667±0.857 0.007±0.003

CCSTGN-iso 22.321±10.588 87.036±6.617 60.763±3.777 56.106±3.904 94.773±0.309 0.061±0.085

CCSTGN-rs (ssl) 1.026±1.665 99.191±1.321 1.216±1.709 99.039±1.360 1.632±2.027 98.703±1.616

CCSTGN-iso (ssl) 0.778±0.090 99.609±0.046 4.421±1.115 97.699±0.603 28.365±10.045 78.620±10.343

CCSTGN-rs (ft) 49.784±5.229 66.585±4.631 70.193±4.563 45.329±5.604 95.029±0.582 0.080±0.021

CCSTGN-iso (ft) 46.941±11.552 68.555±9.807 70.124±8.713 44.946±11.109 94.934±0.329 0.044±0.041

interest would be exploring non-binary classification perfor-
mance, to provide more fine-grained information to security
analysts. Another interesting direction is analyzing the effect
of data preprocessing on the performance of NIDS models, to
assess whether data preprocessing has a greater impact on the
performance than the addition of GNN components.

ACKNOWLEDGMENT

The work was partly funded by Digital Futures through the
CLAIRE project, the Swedish Civil Contingencies Agency
(MSB) through the CERCES2 project and by the Swedish
Research Council through project 2020-03860.

REFERENCES

[1] I. Lella, C. Ciobanu, M. Theocharidou, E. Magonara, A. Malatras,
R. Svetozarov Naydenov, and E. Tsekmezoglou. ENISA threat land-
scape 2023 : July 2022 to June 2023. European Union Agency for
Cybersecurity, 2023.

[2] S Latha and Sinthu Janita Prakash. A survey on network attacks and
intrusion detection systems. In Proc. of IEEE International Conference
on Advanced Computing and Communication Systems, pages 1–7, 2017.

[3] Matt Weir, Sudhir Aggarwal, Breno De Medeiros, and Bill Glodek.
Password cracking using probabilistic context-free grammars. In Proc.
of IEEE Symposium on Security and Privacy, pages 391–405, 2009.

[4] Ross Anderson. Security engineering: a guide to building dependable
distributed systems. John Wiley & Sons, 2020.

[5] Felix Erlacher and Falko Dressler. FIXIDS: a high-speed signature-
based flow intrusion detection system. In Proc. of IEEE/IFIP Network
Operations and Management Symposium, pages 1–8, 2018.

[6] Philokypros Ioulianou, Vasileios Vasilakis, Ioannis Moscholios, and
Michael Logothetis. A signature-based intrusion detection system for the
Internet of Things. Information and Communication Technology Form,
2018.

[7] A.A. Waskita, H. Suhartanto, P.D. Persadha, and L.T. Handoko. A simple
statistical analysis approach for intrusion detection system. In Proc. of
Conference on Systems, Process & Control, pages 1–8, 2013.

[8] Roberto Doriguzzi-Corin, Stuart Millar, Sandra Scott-Hayward, Jesus
Martinez-del Rincon, and D. Siracusa. LUCID: A practical, lightweight
deep learning solution for DDoS attack detection. IEEE Transactions
on Network and Service Management, 17(2):876–889, 2020.

[9] Yeongwoo Kim and György Dán. An active learning approach to
dynamic alert prioritization for real-time situational awareness. In Proc.
of IEEE Conference on Communications and Network Security (CNS),
pages 154–162. IEEE, 2022.

[10] Yeongwoo Kim, György Dán, and Quanyan Zhu. Human-in-the-loop
cyber intrusion detection using active learning. IEEE Transactions on
Information Forensics and Security, pages 1–16, to appear, 2024.

[11] Siddharth Bhatia, Arjit Jain, Pan Li, Ritesh Kumar, and Bryan Hooi.
Mstream: Fast anomaly detection in multi-aspect streams. In Proc. of
WWW, 2021.

[12] Wai Weng Lo, Siamak Layeghy, Mohanad Sarhan, Marcus Gallagher,
and Marius Portmann. E-graphsage: A graph neural network based
intrusion detection system for IoT. In Proc. of IEEE/IFIP Network
Operations and Management Symposium, pages 1–9, 2022.

[13] Chenyang Qiu, Yingsheng Geng, Junrui Lu, Kaida Chen, Shitong Zhu,
Ya Su, Guoshun Nan, Can Zhang, Junsong Fu, Qimei Cui, et al. 3D-
IDS: Doubly disentangled dynamic intrusion detection. In Proc. of ACM
Conference on Knowledge Discovery and Data Mining (KDD), page
1965–1977, 2023.

[14] Qi Chen, Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen
Lin. Optimization-induced graph implicit nonlinear diffusion. In Proc.
of International Conference on Machine Learning, volume 162, pages
3648–3661. PMLR, 17–23 Jul 2022.

[15] Isaiah J King and H Howie Huang. Euler: Detecting network lateral
movement via scalable temporal link prediction. ACM Transactions on
Privacy and Security, 26(3), 2023.

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[17] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learn-
ing phrase representations using RNN encoder-decoder for statistical
machine translation. In Proc. of Conference on Empirical Methods in
Natural Language Processing, October 2014.

[18] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. Advances in Neural Information Processing
Systems, 30, 2017.

[19] Andrea Venturi, Dario Stabili, and Mirco Marchetti. Problem space
structural adversarial attacks for network intrusion detection systems
based on graph neural networks. arXiv preprint arXiv:2403.11830, 2024.

[20] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard,
Federico Monti, and M. Bronstein. Temporal graph networks for deep
learning on dynamic graphs. arXiv preprint arXiv:2006.10637, 2020.

[21] Ting Zhu, Xiaohui Chen, Li Chen, Weidong Wang, and Guo Wei. GCLR:
GNN-based cross layer optimization for multipath TCP by routing. IEEE
Access, 8:17060–17070, 2020.

[22] Shuai Zhang, Bo Yin, Weiyi Zhang, and Yu Cheng. Topology aware
deep learning for wireless network optimization. IEEE Transactions on
Wireless Communications, 21(11):9791–9805, 2022.

[23] Francesco Di Giovanni, James Rowbottom, Benjamin Paul Chamber-
lain, Thomas Markovich, and Michael M Bronstein. Understanding
convolution on graphs via energies. Transactions on Machine Learning
Research, 2023.

[24] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks? In Proc. of Int. Conf. on Learning
Representations (ICLR), 2019.

[25] Mohanad Sarhan, Siamak Layeghy, and Marius Portmann. Towards
a standard feature set for network intrusion detection system datasets.
Mobile networks and applications, pages 1–14, 2022.

[26] Benoit Claise. Cisco systems netflow services export version 9. Tech-
nical report, 2004.

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Proc. of Int. Conf. on Learning Representations (ICLR),
May 2015.

[28] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, Yoshua Bengio, et al. Graph attention networks. In Proc. of
Int. Conf. on Learning Representations (ICLR), Apr. 2018.

