
Sequential Experiment Design for Parameter Estimation of Nonlinear
Systems using a Neural Network Approximator

Raksha Ramakrishna∗, Yuqi Shao †, György Dán ∗, Nicole Kringos ‡
∗ Division of Network and Systems Engineering, KTH Royal Institute of Technology, Stockholm, Sweden

† KTH Royal Institute of Technology, Stockholm, Sweden
‡ Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Stockholm, Sweden

Abstract— We consider the problem of sequential parameter
estimation of a nonlinear function under the Bayesian setting.
The designer can choose inputs for a sequence of experiments
to obtain an accurate estimate of the system parameters based
on observed outputs, while complying with a constraint on the
expected outputs of the system. We quantify the accuracy of
the obtained estimate in terms of the ℓ2 norm. We propose to
solve the problem by casting it as the problem of minimizing
the Bayesian Mean Square Error (BMSE) of the parameter
estimate subject to a constraint on the expected deviation
of the output from the desired target value. We develop a
greedy policy to solve the problem in the sequential setting,
and we characterize the solution structure based on analytical
results for the Gaussian case. For a computationally tractable
update of the posterior, we propose the use of a surrogate
model combined with approximate Bayesian computation. We
evaluate the proposed approach on the use case of smart road
compaction, where the goal is to estimate asphalt parameters
while reaching the desired compaction level, by choosing the
value of the loading pressure. Simulation results on a synthetic
road compaction dataset show the efficacy of the proposed
solution scheme in both parameter estimation and effective
compaction of the road.

I. INTRODUCTION

An accurate estimate of the model parameters of equip-
ment and materials has a variety of applications in chemistry,
manufacturing and construction [1], [2]. In the lack of
nondestructive testing methodologies that would be appli-
cable post production, parameter estimates often have to
be obtained during production in real-time, i.e., under time
constraint. This is often the case, for example, during road
compaction and metalworking. Importantly, the estimation
of the parameters during the production phase should not be
detrimental to production quality and is limited to interaction
with the material or equipment for the purpose of production,
by providing a sequence of inputs and observing the outputs.

The problem of designing inputs to a system with the
purpose of estimating its parameters has been studied in
the framework of experimental design (ED) [3]. In ED, an
optimal set of inputs is designed for a system described by a
parameterized model, so as to obtain an accurate estimate
of the model parameters. A commonly used measure of
accuracy is the variance of the parameter estimate, and the
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task is to reach a target variance through as few experiments
as possible, because experiments are considered costly [4],
[5]. In many applications, however, even evaluating a model
of the system can be costly, e.g., if it involves finite element
(FE) method simulations of material behavior [2].

The computational cost of evaluating the system model
becomes of crucial importance for sequential ED, i.e., when
the observations from previous experiments are to be used
for the design of future experiments [6]. As the problem
is essentially a sequential decision making problem under
uncertainty, it can be cast as a dynamic programming prob-
lem, but existing solution approaches rely on Monte Carlo
simulation methods, which are computationally prohibitive
if the evaluation of the system model is computationally
intensive [6], [7]. In this case even greedy approaches are
computationally challenging due to the need for updating
the posterior after each experiment, which typically involves
many evaluations of the system model for different parame-
ters [8], [9].

In this paper we formulate the problem of estimating
model parameters through sequential experiments subject to
the constraint of reaching a target output value by sequen-
tially designing inputs to the system. We develop a greedy
approach for average optimal experiment design, i.e., mini-
mizing the variance of the estimate in a Bayesian setting, and
propose a computationally lightweight approach for updating
the posterior through a surrogate system model based on a
neural network approximator used for posterior update via
approximate Bayesian computation. A key novelty of our ap-
proach is its applicability to problems where the evaluation of
the system model is computationally demanding. In addition,
the use of the Bayesian mean-squared error as a cost is novel
in the sequential OED setting. We show the potential of the
proposed scheme through estimating the material parameters
during road compaction, while maintaining the error between
target and actual compaction bounded in expectation.

The rest of the paper is organized as follows. In Section II
we review related work, in Section III we introduce the se-
quential parameter estimation problem in a Bayesian setting
and in Section IV we formulate the input design problem
as Bayesian-mean squared error (BMSE) minimization. In
Section V we design a computationally lightweight greedy
algorithm for sequential ED, and we show its efficacy on the
use case of asphalt compaction in Section VI-D. Section VII



concludes the paper.

II. RELATED WORK

As mentioned before, our work is closely related to the
field of optimal experiment design in statistics. In system
identification problems, it is also known as optimal input
design [10] wherein the parameters of the system model
to be estimated are treated as deterministic quantities and
the input to the system model is shaped or designed in a
way that the estimation error of the parameters is minimized
[11]. In linear models, the inverse of error covariance matrix
of the parameters is related to the spectrum of the input
which can be parameterized and therefore used for shaping
the input to minimize the trace (A-optimality) or determinant
(D-optimality) of error covariance matrix. Sequential version
of the problem is also studied with applications in trajectory
planning. More recently, theoretical guarantees for non-linear
system identification have also been provided in [12].

The Bayesian version of OED is reviewed in [13]. The
most commonly used utility function in the Bayesian ver-
sion is the KL divergence between the prior and posterior
parameter distributions averaged over all the observations
[13]. Since this utility is intractable in general, a variational
approach to approximate the posterior distribution is under-
taken in [14]. As another approach, authors in [15] introduce
a lower bound on the utility and maximize it with respect to
design criteria parameterized by a neural network. For linear
models, i.e. Gaussian priors and posteriors in the Bayesian
model, it is possible to obtain closed form expressions for
optimal experiment design as shown in [16], which leads
to the well-known criterion of D-optimality in experiments.
For Bayesian non-linear state-space models authors in [17]
minimize the posterior Cramer-Rao lower bound (PCRB)
in lieu of maximizing a utility function based on Bayesian
mean-squared error (BMSE).

The sequential setting of OED was studied in [18], where
a single experiment is performed at a time, the posterior
of the parameters is updated and the process continues
until the allowed number of experiments are performed.
The utility considered is the KL divergence between the
prior and posterior of the parameter distribution. The overall
problem is formulated as a dynamic program and accounts
for a dynamic environment. Authors in [6] consider the same
problem and address computational and numerical issues
through approximate dynamic programming. More recent
papers utilize deep learning for input design, e.g., a neural
network was trained to represent the input design policy in
a Bayesian setting in [19].

III. PROBLEM STATEMENT

We consider a sequential parameter estimation problem,
with outputs denoted by yt ∈ Y ⊂ RN and inputs denoted
by xt ∈ X ⊂ RM . The generative model for the output at
time instant t is of the form

yt = ϕ(xt;θ) + ηt, (1)

where ϕ(.;θ) is a function with parameter θ ∈ RK . The
term ηt is used to model both model uncertainty due to ap-
proximation of the generative model and measurement noise
due to environmental factors. It is assumed that ηt follows
a zero-mean Gaussian distribution with known variance σ2,
ηt ∼ N (0, σ2I). We consider that the family of functions
that ϕ(.) belongs to is known, but the true value θ∗ of
the parameter is unknown. In addition there is a desired
target output y that the designer intends to meet with the
appropriate value of the input x and parameter θ.

The designer is allowed to perform at most T experiments,
by providing inputs and observing the outputs. Let us denote
the inputs and outputs until experiment t as

Xt ≜
[
x1 x2 . . . xt

]
, Yt ≜

[
y1 y2 . . . yt

]
(2)

We adopt a Bayesian approach, and hence assume that the
true parameter is a realization of a random variable θ. The
belief about the distribution of θ right before experiment t
is referred to as the prior and is denoted by pt(θ), while the
belief about the distribution of θ after experiment t is referred
to as the posterior distribution and is denoted by p(θ|Yt;Xt).
Given the posterior distribution, it is well-known that the
estimator of θ that minimizes the mean-squared error is
the mean of the posterior distribution, E[θ|Yt;Xt] and the
designer wants this mean to be as close to the true value θ∗ as
possible [20] after T experiments. Furthermore, the designer
also wants the expected deviation from target output y to be
below a certain threshold δ. Formally, the designer wants to
solve the optimization problem

min
XT

∥E[θ|YT ;XT ]− θ∗∥22 (3)

subject to

Eθ∼pt(θ)

[
∥ϕ(xt;θ)− y∥22

]
≤ δ, (4)

xt ∈ X 1 ≤ t ≤ T

In constraint (4), the expectation is taken with respect to θ
drawn from the prior distribution pt(θ). In an offline setup,
where xT is decided for all experiments at once, the prior
distribution is not updated based on the observed outputs,
i.e., pt(θ) = p0(θ) ∀t. In a sequential setup, where xt for
experiment t is decided based on past observations Yt−1 and
inputs Xt−1, the prior distribution becomes the most recent
posterior, i.e., pt(θ) = p(θ|Yt−1;Xt−1). The motivation
behind the formulation stems from the goal of minimizing the
mean squared error. Note that the objective (3) is expressed
as the norm of the difference between the best estimate
E[θ|YT ;XT ] and the true parameter θ∗. Nonetheless, the
true parameter is a realization of the random variable θ, and
is not observable.

IV. BAYESIAN MEAN-SQUARED ERROR FORMULATION

In order to cope with the unknown parameter, we pro-
pose to adopt a Bayesian approach. Following the Bayesian
approach, the estimate E[θ|YT ;XT ] of the parameter is
based on the observed outputs YT , and minimizes the mean-
squared error in the Bayesian sense, i.e., the Bayesian MSE



(BMSE). This formulation is similar to other works in
OED where the goal is to minimize a metric of parameter
uncertainty. Here, that metric is the BMSE, i.e., the variance
of the posterior distribution.

A. BMSE Problem Formulation

In order to express the BMSE with respect to an estimator
θ̂ considering the average error over the observations, let us
denote by Y the random vectors corresponding to the obser-
vations and use p(Y ;XT ) to denote the distribution of Y
parameterized by inputs XT . We can then express the BMSE
of θ̂ by marginalizing with respect to the observations Y and
the parameter θ by considering the following factorization
of their joint distribution,

p(θ,Y ;XT ) = p(θ|Y ;XT )p(Y ;XT ) (5)

Then, the BMSE for estimator θ̂ is given as

BMSE ≜
∫ ∫ ∥∥∥θ̂ − θ

∥∥∥
2

2
p(θ|Y ;XT )p(Y ;XT )dθdYT .

(6)

Now, we can define the minimum BMSE with respect to the
estimator θ̂ as C(XT ) ≜ minθ̂ BMSE,

C(XT )=

∫∫
∥E[θ|Y ;XT ]− θ∥22 p(θ|Y ;XT )p(Y ;XT )dθdY

=

∫
Tr(Cθ|Y )p(Y ;XT )dY (7)

where Tr(Cθ|Y ) refers to the trace of the conditional co-
variance matrix of θ given Y . Note that the minimum MSE
is expressed with respect to the deterministic parameters of
the distribution of Y and parameters of the prior distribution
of θ. In the case of Gaussian noise as in (1), the minimum
MSE is defined by the input XT and noise variance σ2 and
parameters of pt(θ).

A strategy to determine the input XT could be to minimize
the quantity C(XT ) with respect to XT subject to the
constraint pertaining to the target output y in (4). Overall,
the problem can formulated from (7) as

X∗
T = argmin

XT

C(XT ) (8)

subject to Eθ∼pt(θ)

[
∥ϕ(xt;θ)− y∥22

]
≤ δ, (9)

xt ∈ X 1 ≤ t ≤ T

B. Analytical Example

As an illustration, let us consider a linear measurement
model with scalar parameters,

y = xθ + η, η ∼ N (0, σ2), (10)

a single experiment T = 1, and a Gaussian prior for
parameter θ ∼ N (µ0, σ

2
θ). Under these assumption, it is well

known that the posterior distribution of θ is Gaussian with
mean and variance given by [20]

E[θ|y;x] = µθ|y = µθ +
Cθ|y

σ2
x(y − xµθ) (11)

Cθ|y =
(
σ−2
θ + σ−2x2

)−1
. (12)
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Fig. 1: Error Eθ

[
(xθ − y)2

]
with µθ = 1, σθ = 0.1, y =

0.25, and threshold δ = 0.05. The feasible set is Xδ =
[x1, x

∗] = [0.0266, 0.4280] and the optimal value is x∗ =
0.4280.

The cost (7) can thus be expressed as

C(x) =

∫
Cθ|yp(y;x)dy = Cθ|y =

(
σ−2
θ + σ−2x2

)−1
,

(13)

and it does not depend on y. Also, the constraint pertaining
to the target output (4) can be written as

Eθ

[
(xθ − y)2

]
=x2Eθ[θ

2]− 2xyEθ[θ] + y2 ≤ δ (14)

=⇒ x2(σ2
θ + µ2

θ)− 2xyµθ + y2 ≤ δ. (15)

Thus, the input x has to lie in the set

Xδ = {x|x2(σ2
θ + µ2

θ)− 2xyµθ + y2 ≤ δ} (16)

Note that the expectation is taken with respect to θ using the
prior distribution. The overall problem (8) thus becomes

min
x

(
σ−2
θ + σ−2x2

)−1
(17)

subject to x2(σ2
θ + µ2

θ)− 2xyµθ + y2 ≤ δ. (18)

Observe that the cost for minimization translates to max-
imizing x2 subject to a quadratic inequality (18). If the
discriminant of the quadratic is positive or zero, then we have
a solution to (17). If the discriminant is negative, then the
parabola in x lies entirely above the x-axis thereby rendering
no solution to the problem in (17) subject to the constraint.
For the discriminant to be positive, the following inequality
must hold

4y2µ2
θ−4(σ2

θ + µ2
θ)(y

2 − δ)≥ 0 =⇒ δ ≥ y2σ2
θ

(σ2
θ + µ2

θ)
. (19)

If the condition above is satisfied then the solution is

x∗ =
∣∣ yµθ

(σ2
θ + µ2

θ)

∣∣+

√
δ(σ2

θ + µ2
θ)− y2σ2

θ

(σ2
θ + µ2

θ)
. (20)

Fig. 1 shows the error curve, the threshold and the feasible
set of inputs for a numerical example.

Remark 1: Observe that the optimal solution mainly de-
pends on the parameters of the prior distribution of θ, the
target output and the accuracy budget δ. Also note that the
optimal solution x∗ is at the boundary points of the feasible
set, which we will make use of in the next section.



V. OPTIMAL INPUT DESIGN

Minimizing the BMSE with respect to input x provides the
optimal solution, but it is not always possible to express the
cost in closed form as a function of x. In what follows, we
discuss alternative solution approaches that do not assume
that the BMSE can be expressed in closed form, but still
respect the constraints on the input at every experiment.

Generalizing (16), let us define the set of feasible values
of x given the prior distribution pt(θ) as

X t
δ = {x|Eθ∼pt(θ)

[
∥ϕ(x;θ)− y∥22

]
≤ δ, x ∈ X}. (21)

In order to satisfy the constraint, we have to ensure that
x ∈ X t

δ upon every experiment. Nonetheless, X t
δ depends

on the most recent prior pt(θ), hence in what follows we
distinguish between offline and sequential input design.

A. Offline Input Design

We start with considering the offline case, i.e., observa-
tions become available only after all experiments are done,
and thus the prior cannot be updated, i.e., pt(θ) = p(θ), and
hence the decision regarding all inputs can be made at once.
As stated before, the cost in (8) is in general not analytically
tractable, and as we will show in Section V-A.2, the solution
may be to use the same input T times. Hence we explore
computationally efficient alternatives.

1) Feasible Set Sampling: Feasible set sampling consid-
ered here focuses on the feasibility of the solutions in (4).
A feasible set of solutions XT can be obtained by sampling
from the set Xδ , but it is unclear how to best sample from Xδ .
A straightforward approach would be to sample uniformly at
random from Xδ . To obtain a better sampling strategy, recall
that the solution in the Gaussian example shown in Section
IV-B was to choose the input from the boundary of the
feasible set. We thus consider sampling from a distribution
that assigns a larger value at the boundary of the feasible
set. Thus, we use the distribution

ps(x) =

{
1

CXδ
exp

{
1
δEθ∼p(θ)

[
∥ϕ(x;θ)− y∥22

]}
,x ∈ Xδ

0, otherwise

CXδ
=

∫

x∈Xδ

exp

{
1

δ
Eθ∼p(θ)

[
∥ϕ(x;θ)− y∥22

]}
dx (22)

This strategy reduces the entropy of the posterior distri-
bution since, on average, conditioning reduces entropy. We
use this offline strategy as a baseline in our evaluation.

2) Analytical Example: We continue with the example
from Section IV-B, focusing now on the case with T
experiments. We can concatenate the observations, y⊤ ≜[
y1 y2 . . . yT

]
, to arrive at the observation model

y = xθ, (23)

where the inputs x⊤ ≜
[
x1 x2 . . . xT

]
need to be

determined in an offline manner, i.e., all the inputs are
decided at once before making any observations. As before,

the posterior distribution of θ is Gaussian with mean and
variance as

E[θ|y;x] = µθ|y = µθ +
Cθ|y

σ2
x⊤(y − xµθ) (24)

Cθ|y =
(
σ−2
θ + σ−2 ∥x∥22

)−1

. (25)

The cost for minimization is C(x) = Cθ|y The constraints
are decoupled with respect to each observation yi, thus
we have the overall optimization problem, which as before
translates to maximizing with respect to x,

max
x

(
σ−2
θ + σ−2 ∥x∥22

)
(26)

subject to x2
t (σ

2
θ + µ2

θ)− 2xtyµθ + y2 ≤ δ, ∀t. (27)

Note that the objective (26) can be decomposed with respect
to each input xi. Due to the absence of constraints that
couple the inputs of different experiments, we get the same
solution xt = x∗ ∀t, where x∗ is given in (20). Thus,
a sufficiently diverse set of outputs cannot be obtained to
change the posterior distribution significantly. In addition,
observe that x∗, as in Section IV-B for T = 1, lies at the
boundary of the feasible set.

Feasible Set Sampling: The expected error is given in the
left-hand side (LHS) of (15) and the feasible set of x in (16)
can be rewritten as

Xδ =


 yµθ

(σ2
θ + µ2

θ)
−

√
δ(σ2

θ + µ2
θ)− y2σ2

θ

(σ2
θ + µ2

θ)
, x∗


 (28)

with x∗ as in (20) and the upper and lower limits switched
if yµθ < 0. The sampling distribution can be written as

ps(x) =





exp{ 1
δ (x

2(σ2
θ+µ2

θ)−2xyµθ+y2)}
CXδ

, x ∈ Xδ

0, otherwise
(29)

with CXδ
evaluated as in (22).

B. Sequential Input Design

We now turn to the sequential case, where the prior
distribution of the parameters can be updated based on the
outcome of previous experiments, before the next input is
chosen, i.e., the posterior parameter distribution obtained
after t − 1 experiments serves as the prior distribution for
chosing xt,

pt(θ) = p(θ|Yt−1;Xt−1). (30)

Ideally, one would solve (8) in the sequential setting by
formulating it as a dynamic programming problem [18].
This involves solving the problem by backward induction
to obtain a policy to determine the set of inputs X∗

T . The
following result follows from basic principles of dynamic
programming.

Proposition 1: Consider experiment T with prior
pT (θ) = p(θ|YT−1;XT−1). The optimal input x∗

T is the
solution to

min
xT

C(XT ) s.t. Eθ∼pT (θ)

[
∥ϕ(xT ;θ)− y∥22

]
≤ δ

(31)



Solving with backward induction, at experiment t < T , with
prior p(θ|Yt−1,Xt−1) and optimal inputs x∗

t+1, . . . ,x
∗
T ,

the cost C(XT ) has to be evaluated by computing multi-
dimensional integrals with respect to YT . Therefore, for
addressing the multi-stage problem, in what follows we
propose to adopt a greedy approach.

The greedy approach for the sequential input design con-
sists of finding the optimal solution for experiment t given
prior pt(θ) and ignoring the terms in the cost comprising of
future observations and inputs. In particular, at experiment t
we consider the cost

C(xt) =

∫
Tr

(
Cθ|Yt

)
p(Yt;Xt)dYt. (32)

From (30), note that the prior distribution pt(θ) for ex-
periment t was obtained based on the previous observa-
tions and inputs. This means that the posterior p(θ|Yt;Xt)
and its mean E[θ|Yt;Xt] have previous observations
Yt−1 and inputs Xt−1 as constants. Then p(Yt;Xt) =
p(yt;xt)

∏t−1
i=1 δ(yi − ỹi) where ỹi are the observed values

and

p(yt;xt) =

∫
p(yt|θ;xt)pt(θ)dθ (33)

Also, since observations are independent of past observations
given the parameter θ, the cost C(xt) only depends on the
input at experiment t, i.e.,

C(xt) =

∫
Tr

(
Cθ|yt

)
p(yt;xt)dyt. (34)

Thus, following the greedy approach the input xG
t at exper-

iment t is the solution to

x∗
t = argmin

xt

C(xt) (35)

subject to Eθ∼pt(θ)

[
∥ϕ(x;θ)− y∥22

]
≤ δ. (36)

1) Analytical Example: Continuing with the analytical
example in the sequential setting, observe that the initial prior
is Gaussian and the observation y and θ are jointly Gaussian.
Thus, at experiment t, the prior pt(θ) is Gaussian and has
mean µθ,t−1 and variance σ2

θ,t−1 given by

µθ,t−1 = µθ,t−2 +
σ2
θ,t−1

σ2
xt−1(yt−1 − xt−1µθ,t−2) (37)

σ2
θ,t−1 =

(
σ−
θ,t−22 + σ−2x2

t−1

)−1

. (38)

The cost for experiment t is the same as in the single exper-
iment case (eqn. (13)) and does not depend on observation
yt. Thus, the optimal input x∗

t is given by solving (17) with
µθ = µθ,t−1 and σ2

θ = σ2
θ,t−1 and is given by

x∗
t =

|yµθ,t−1|+
√
δ(σ2

θ,t−1 + µ2
θ,t−1)− y2σ2

θ,t−1

(σ2
θ,t−1 + µ2

θ,t−1)
. (39)

For experiment t+1, the posterior of θ is updated using the
recursive formulae for mean in (37) and variance (38) and
the optimal input is also obtained recursively using (39).

C. Training of Surrogate Model for Posterior Update

To efficiently update the posterior distribution after ob-
serving the outputs, a closed form expression of the prior
distribution, evaluation of the distribution p(yt|xt,θ) and
computation of the function ϕ(x;θ) are needed. In lack of
these, the computation of the posterior distribution has to be
based on a numerical method. To address this problem, we
propose to use a neural network approximator of the function
ϕ(x;θ) as a surrogate model, combined with approximate
Bayesian computation [21] to update the posterior distribu-
tion.
For illustration, consider the sequential setting, where the
update of the posterior distribution after observing the output
yt of the experiment t is

p(θ|Yt,Xt) =
p(yt|xt,θ)p(θ|Yt−1,Xt−1)∫
p(yt|xt,θ)p(θ|Yt−1,Xt−1)dθ

(40)

In many applications the prior p(θ|Yt−1,Xt−1) is not given
in closed form and the distribution p(yt|xt,θ) is difficult to
evaluate, especially if the function ϕ(x;θ) takes a long time
to compute.

The surrogate model is denoted by ϕω(x;θ), where ω
are the parameters of the neural network. The surrogate
model is trained utilizing data generated by the original
model ϕ(x;θ), and is done offline, prior to performing
the experiments. The surrogate ϕω(x;θ) can be used for
posterior update in both offline and sequential input design
scenarios.

Given the surrogate, we perform the update of the pos-
terior distribution when a closed form expression does not
exist using approximate Bayesian computing [21], which
is a rejection sampling approach. Algorithm 1 details the
steps to produce samples of θ from posterior distribution
p(θ|Yt;Xt), given prior pt(θ), input xt, and corresponding
observation yt. The approach involves repeatedly generating
a sample θ′ from the prior distribution pt(θ) and using
the sampled parameter to generate a sample zt using the
surrogate model, zt = ϕω(xt;θ

′), in lieu of simulating from
the actual function ϕ(θ′;xt). Then, the distance between
generated sample zt and observation yt is calculated as
ρ(yt, zt) = ∥yt − zt∥22. If ρ(yt, zt) ≤ ϵ, the sample θ′

is accepted and added to the set of samples, Θ, that will
constitute the posterior. The procedure is repeated until there
are enough samples (Ns) to form an empirical posterior
distribution.

For the offline input design case, the prior is the same
for all experiments, i.e. pt(θ) = p(θ) ∀t. Therefore,
given observations YT and inputs XT , samples z1, . . . ,zT
are generated as before using θ′ ∼ p(θ). Then, we use
ρ(YT ,ZT ) =

∑T
t=1 ∥yt − zt∥22 to accept or reject θ′ using

a new tolerance value ϵ̃ which we set to be ϵ̃ = ϵT to have
the same tolerance per experiment as in the sequential design
case.

VI. APPLICATION TO INTELLIGENT ROAD COMPACTION

In what follows we show how the considered problem
applies to the use case of intelligent road compaction [22].



Algorithm 1: Approximate Bayesian Computing
Data: Observation yt, Input xt, tolerance level ϵ,

number of samples Ns

Result: Posterior sample set
Θ={θ|θ ∼ p(θ|Yt;Xt)}

1 Θ = ∅;
2 while |Θ| < Ns do
3 Sample θ′ ∼ pt(θ);
4 Generate zt = ϕω(θ

′;xt);
5 if ρ(yt, zt) ≤ ϵ then
6 Θ = Θ ∪ θ′ ;
7 end
8 end

During road compaction, compaction actions (speed, vibra-
tion) are applied on asphalt, modeled as an elastoplastic
material with uncertain parameters, so as to achieve a de-
sired deformation, called permanent strain. Considering a
contiguous stretch of asphalt of homogeneous material as
a sequence of T sections, compaction can be modeled as
T subsequent experiments. Learning the parameters of the
compacted ashpalt, which is the aim of the experiment,
in turn allows to optimize predictive maintenance, thereby
reducing maintenance costs.

A. Mathematical model of compaction simulation

The compaction models of asphalt in the literature [2]
are quite complex and require the knowledge of several
parameters in order to simulate the effect of compaction.
In this paper, we use a bilinear elastoplastic material model
along with site geometry and boundary conditions. The
process of compaction can be modeled as a loading pressure
(stress) x that leads to strain ε [23]. Due to the plastic
nature of the material there is a plastic strain, which leads
to permanent deformation. For simplicity, we consider the
input in experimental design to be the stress x. For a
bilinear elastoplastic material, the relationship between stress
x (in MPa) and permanent deformation (in m) can be
described using three parameters: yield point σyield, linear
elastic modulus Ee and the isotropic tangent modulus ETiso.
Thus, θ =

[
σyield Ee ETiso

]⊤
. In the elastic region, there

is no deformation since the removal of load reverses the
strain. However, after the stress reaches the yield point σyield,
the rate of increase in strain changes according to ETiso.

In one dimension, we can write the relationship between
the input stress xt and the expected resulting output, i.e.,
plastic deformation as

ϕ(xt;θ) =
xt − σyield

1
y0

(
1

ETiso
− 1

Ee

) . (41)

where y0 is the original depth of the material before com-
paction.

In two dimensions, the displacement field in the material
can only be obtained by using finite element (FE) meth-
ods, which require one to numerically solve a system of
differential equations that govern the spatial variation in

Fig. 2: Compaction simulation plastic displacement field gen-
erated by COMSOL [24] with parameters σyield = 0.2, Ee =
3, ETiso = 2 and loading pressure x = 2. (all values in MPa).

Fig. 3: Geometry and Load by Compactor

stress, and compute the strain, which leads to displacement
or deformation in 2D space. An example of displacement
field generated using COMSOL Multiphysics [24] is shown
in Fig. 2, assuming that the measured permanent deformation
corresponds to the displacement at the mid-point of the
compactor in the direction perpendicular to the compactor
wheel.

B. Generation of Synthetic Data

We simulate the transverse direction of the road that the
compactor is passing along. Assuming the contact length
is 2m as a typical width of a roller, and the contact
width is 0.1m in the longitudinal direction. We simulated
a cross section of a road by 2D solid mechanics with plane
strain setting. For simplicity, there are only 2 layers: stiff
underlying soil layer and compaction material layer. The left
and bottom boundaries are fixed, and the right boundary is
a symmetric boundary which constrains the movement in
X−axis. The geometry is shown in Fig. 3. For simplicity,
we assume that the stiff soil layer is linear elastic and has a
Young Modulus E = 300 MPa and Poisson’s ratio v = 0.35.
The compaction material layer is bilinear elastoplastic with
a constant Poisson’s ratio of v = 0.15, and the parameters
to be estimated are θ =

[
σyield Ee ETiso

]⊤
. Since the

constitutive model we used is not dependent on loading
time, we focus on varying loading pressure magnitude alone.
We used COMSOL Multiphysics [24] for the FE method
computations, the response contains the plastic deformation
of the compaction material top surface. Treating the result of
the FE method as the function ϕ, for given loading pressure
x and parameters θ we obtain the observed deformation as

yt = ϕ(xt;θ) + ηt, ηt ∼ N (0, γ2). (42)

C. Training the Surrogate

In order to obtain a surrogate model ϕω(xt;θ), we created
a data set using uninformative priors for the parameters, p(θ),
i.e., uniform and independent distributions as discussed next.



Fig. 4: Prior distribution histogram. σyield ∼ U [0.1, 0.8].
Ee, ETiso are jointly distributed as in (45) with Ee ∈
[1, 8], ETiso = [1, 4].

The prior of the yield point σyield is uniform, σyield ∼ U [σ, σ],
and is independent of the other parameters. The parameters
Ee ∈ [Ee, Ee] and ETiso ∈ [ETiso, ETiso] has to satisfy
ETiso < Ee. This is incorporated into the prior distribution
by having

p(Ee, ETiso) =

{
1/C, (ETiso, Ee) ∈ E
0, else

(43)

where C is the area of the region E where ETiso < Ee

C =

∫ Ee

Ee=Ee

∫ ETiso

ETiso=ETiso

I {ETiso < Ee} dEedETiso (44)

Overall the prior distribution is

p(θ) = p(σyield)p(Ee, ETiso) = ((σ − σ)C)−1, (45)

where σyield ∈ [σ, σ], (ETiso, Ee) ∈ E . We used the data
set for training a feed-forward neural network with three
hidden layers of 10 neurons each. The activation function
used is the rectified linear unit (ReLU). The parameters ω
of the surrogate model ϕω were learned using mini-batch
stochastic gradient with RMSprop [25], i.e., the learning rate
was divided by the running average of the recent gradient
magnitude. The learning rate used was 0.001, batch size was
50 and 1500 epochs. The test accuracy (RMSE) was 10−3.

D. Numerical Results

For the evaluation we used the same prior parameter
distribution as for creating the training data set. A histogram
of samples drawn from the prior distribution is shown in
Fig. 4. The input xt (in MPa) can taken values in X , xt ∈
X = {1, 1.05, . . . , 2.05}. The observation yt is obtained by
adding Gaussian measurement noise with standard deviation
1 × 10−3 to the output of the COMSOL model. The target
deformation is y = −0.03 where the sign indicates com-
paction of material. For the constraint, we used δ = 5×10−4,
which is lower than the test accuracy of the surrogate model.
For each evaluation, the true value of the parameter θ∗ was
chosen from the prior distribution. We run the algorithm 10
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Fig. 5: Estimation performance for online and offline ap-
proaches. Estimator is posterior mean E[θ|YT ;XT ] after T
experiments.

Fig. 6: Posterior distribution, actual and estimated parameters
after T = 20 experiments where inputs {xt}Tt=1 are solutions
to the online greedy problem (36).

times with different set of true parameters. For each set
of true parameters, T = 20 compaction experiments are
performed. In the offline setting, the value of input xt is
chosen at random from the feasible set Xδ . We consider
three different sampling strategies for xt. First, we sample
uniformly at random from the feasible set. Secondly, we
sample from the set of points that lie on the boundary of
the feasible set. In this problem, it translates to sampling
from a set with two values where the average (with respect
to prior p(θ) deviation from the target y is maximum.
Thirdly, we sample the input xt from the distribution in
(22). In the sequential setting, the cost in (36) is evaluated
numerically for an input xt using Monte-Carlo integration
method [26] with 2000 evaluation points due to the absence
of closed form expressions. In both the sequential and offline
methods, approximate Bayesian computation (ABC) is used
for posterior update. For both types of methods, the estimator
is the posterior mean, θ̂ = E[θ|YT ;XT ]. Fig. 5 shows
the estimation performance for the offline and the sequen-
tial greedy input design methods. The mean-squared error,

(1/N)
∑N

j=1

∥∥∥θ̂j − θ∗
j

∥∥∥
2

2
, is plotted for different values of

T . As expected, sequential input design outperforms all the
offline methods due to the feedback in the form of sequential
observations to improve the estimator. The behaviour of the
MSE of the online greedy method seems erratic due to
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Fig. 7: Input loading pressure xt obtained by solving the
greedy problem (36) in the online setting and corresponding
observed plastic deformation yt which is close to the desired
target value y.

limited number of trials. For the sequential greedy input
design, the posterior distribution after T experiments is
plotted in Fig. 6. We see that the mean of the posterior
distribution is close to the actual value for Ee, ETiso, the
posterior distribution is sharper compared to the prior, and
its weight is concentrated closer to the actual value, thereby
effectively reducing uncertainty in parameter estimate. Fig. 7
shows the input load xt obtained by solving the greedy
problem (36) and the corresponding observed permanent
deformation yt. We see a close proximity to the desired
target compaction y, which shows the efficacy of sequential
input design. The variations in the values of the input and
the corresponding observations are a result of competing
objectives of reducing the uncertainty of parameters and
reaching the target value; a variety of the input values helps
improve the parameter estimates. However, to reach the target
value, a stricter constraint, i.e., a low δ leads to same input
value at every experiment.

VII. CONCLUSIONS AND FUTURE WORK

We investigated the problem of sequential parameter es-
timation of a nonlinear function under the Bayesian setting
while also meeting the system output constraints by opti-
mally choosing the inputs to the system. We formulate this
problem as a minimization of the Bayesian mean-squared
error (BMSE) under constraints, which is a novelty of the
paper, and put forward a greedy solution for the sequential
estimation problem. The proposed use of a neural network
surrogate provides computational ease compared to other
methods in the literature for the posterior update. In the
road compaction case, it is found that the greedy approach
is effective in accurate estimation of parameters as well
as compaction of the road. Future work involves analytical
development of input design methods using approximate
dynamic programming and investigation of deep learning
based decision models for sequential input design under
output constraints.
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