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Abstract. In the case of multimedia traffic, like VBR video, the average
loss probability is not sufficient to investigate the effects of loss on per-
ceived visual quality, but it is difficult to analytically model the queu-
ing behavior for such traffic. It has been shown that in the case of real-
time communications, for which small buffers are used for delay reasons,
short range dependence dominates the loss process and so the Markov-
modulated Poisson process (MMPP) might be a reasonable source model.
In this paper we present an exact mathematical model for the loss process
of an MMPP+M/D/1/K queue; we validate it via simulations and com-
pare it to other mathematical models, like the MMPP+M/M/1/K and the
Gilbert model, and to simulations with real MPEG-4 video traces. We
conclude that the other models give accurate results only in a small set of
network scenarios, while our model can capture the loss process of VBR
video sufficiently well in most cases. This makes it possible to analyze
the effects of forward error correction on transmission quality in various
network scenarios.

1 Introduction

In the case of flow-type multimedia communications, as opposed to elastic traffic,
the average packet loss is not the only measure of interest. The burstiness of the loss
process, the number of losses in a block of packets, has a great impact both on the
user perceived visual quality and on the possible ways of improving it, for example by
forward error correction or receiver-based error concealment.

In this paper we present a model to analyze the packet loss process of a bursty
source, for example VBR video, multiplexed with background traffic in a single mul-
tiplexer with a finite queue and constant packet sizes. We model the bursty source by
an L-state Markov-modulated Poisson process (MMPP) while the background traffic
is governed by a Poisson process. We validate our model via simulations and compare
the results to simulations made with real video traces.
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It is well known that compressed multimedia, like VBR video, exhibits a self-
similar nature [1]. Yoshihara et al. use the superposition of 2-state IPPs to model self-
similar traffic in [2] and compare the loss probability of the resulting MMPP/D/1/K
queue with simulations. They found that the approximation works well under heavy
load conditions and gives an upper bound on the packet loss probabilities. Ryu and
Elwalid [3] showed that short term correlations have dominant influence on the net-
work performance under realistic scenarios of buffer sizes for real-time traffic. Thus
the MMPP may be a practical model to derive approximate results for the queuing
behavior of LRD traffic such as real-time VBR video, especially in the case of small
buffer sizes. Recently Cao et al. [4] showed that the traffic generated by a large num-
ber of sources tends to Poisson as the load increases due to statistical multiplexing and
hence justifying the Poisson model for the background traffic.

The paper is organized as follows. Section 2 gives an overview of the previous
work on the modeling of the loss process of a single server queue. In Section 3 we
describe our model to calculate the loss probability in a block of packets. In Section
4.1 we validate our model by simulations with MMPP and real VVBR traffic sources
and compare our results to those obtained for exponential service times. In Section 4.2
we use our model to evaluate the FEC performance for VBR video sources and finally
in Section 5 we conclude our work.

2 Reated Work

In [5], Cidon et al. present an exact analysis of the packet loss process in an M/M/1/K
queue, that is the probability of losing j packets in a block of n packets, and show
that the distribution of losses may be bursty compared to the assumption of indepen-
dence. They also consider a discrete time system fed with a Bernoulli arrival process
describing the behavior of an ATM multiplexer. In [6], Gurewitz et al. present explicit
expressions for the above quantities of interest for the M/M/1/K queue. In [7] the mul-
tidimensional generating function of the probability of j losses in a block of n packets
is obtained and an easy-to-calculate asymptotic result is given under the condition that
n<K+j+1.

The above models consider exponentially distributed service times. Most multime-
dia standards however use constant packet sizes for transmission, and real-time mul-
timedia streams complying to the same standard are likely to share the same service
class in the network (like for example the diffserv expedited forwarding). So the packet
size distributions will differ significantly from exponential and tend to be rather deter-
ministic. In this case the M/M/1/K queuing model overestimates the loss probability
and has a different loss process.

Models with general and deterministic service times have been proposed for cal-
culating various measures of queuing performance. In [8], Ait-Hellal et al. present an



asymptotic result for a system where the service times and the interarrival times are
stationary ergodic, in particular they show that if the block lengths k and redundancy j
is large enough, then the frame loss probabilities can be made arbitrarily small. In [9]
the conditional loss probability (CLP) is derived for the N*IPP/D/1/K queue and it is
shown that the CLP can be orders of magnitude higher than the loss probability.

The performance of an MMPP/G/1/K queue was evaluated in [10] considering the
superposition of multimedia and data traffic at a single server queue, and the corre-
sponding delay distribution was given. The waiting time and queue length distribution
of the N/G/1/K queue (N stands for the Neuts process) was derived in [11] includ-
ing the MMPP/G/1/K queue as a special case. Even though the waiting time and queue
length distribution of the MMPP/G/1/K queue has been derived, a more thorough anal-
ysis of the packet loss process has not yet been done.

Another approach to calculate the probability of j losses in a block of n packets
is to use a channel model, for example the Gilbert model, to describe the correlation
of losses and derive the probability of losses in a block. This approach is followed
in [12] to evaluate the efficiency of FEC for VBR video transmission. Though it is
easy to calculate the block loss probabilities using this method, one has to choose the
parameters of the loss model. A direct correlation between the source characteristics
and the corresponding loss process can therefore not be investigated.

3 Model description

We consider a system with fixed size packets having transmission time D. Packets ar-
rive to the system from two sources, a Markov-modulated Poisson process (MMPP)
and a Poisson process, representing the tagged source and the background traffic re-
spectively. The packets are stored in a buffer that can host up to K packets, and are
served according to a FIFO policy. Every n consecutive packets from the tagged source
form a block, and we are interested in the probability distribution of the number of lost
packets in a block in the steady state of the system. Throughout the calculations we
use notations similar the those in [5].

We assume that the sources feeding the system are independent. The MMPP is
described by the infinitesimal generator Q with elements r;; and the arrival rate matrix
A =diag{A1,...,AL}, where A; is the average arrival rate while the underlying Markov
chain is in state i. The Poisson process modeling the background traffic has average
arrival rate A. The superposition of the two sources can be described by a single MMPP
with arrival rate matrix A = A@GA = A+ Al = dlag{)\l, }\L} and infinitesimal
generator Q = Q, where @ is the Kronecker sum. Packets arrlving from both sources
have the same length, and thus the same transmission time.

Our purpose is to calculate the probability P(j,n),n > 1,0 < j <n of j losses in
a block of n packets. We define the probability P, |(j n),0 <x<KD,=1...L,n>



1,0 < j <nas the probability of j losses in a block of n packets, given that the remain-
ing workload in the system is x just before the arrival of the first packet in the block
and the first packet of the block is generated in state | of the MMPP. As the first packet
in the block is arbitrary,

KD
V(x,1)P2 1
P(j,n) Izl/ x,Pg (J,n). 1)

An approximation for V(x,1), the workload distribution of the steady state queue
as seen by an arriving packet can be given by the steady state distribution of the
MMPP/D/1/K queue as outlined in Appendix A.

The probabilities P (j,n) can be derived according to the following recursion.
The recursion is initiated for n = 1 with the following relations
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Using the notation py, = A)\ﬁ and pp, = for n > 2 the following equations hold.
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for (K —1)D < x. The probability PZ,(j,n),0 <x<KD,I=1...L,n>1,0<j<nis
the probability of j losses in a block of n packets, given that the remaining workload
in the system is x just before the arrival of a packet from the background traffic and
the MMPP is in state I. In (3) and (4) fim(t) denotes the interarrival-time distribution
of the joint arrival process and is given in Appendix B.

3.1 Numerical Evaluation

The above set of an infinite number of integral equations can be solved using numer-
ical integration, so that the infinite number of integral equations is substituted by a
finite number of linear equations. More precisely the finite integrals in equations (3)
and (4) are calculated numerically while the infinite integrals - as the integrand only
depends on t in fiy(t) - can be evaluated analytically as shown in Appendix B (31).
We introduce A the step size for the numerical integration such that D = NA, and so
instead of equations (2-4) we can write

. 1j=0 .
F’f'i‘l(J,n)z{O}>1 i < (K—-1)N,
. 0j=0,j>2
PA(j.n) = {1J };1 (K- 1N <x. ©)

For n > 2 the following recursive equations hold.
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for0 <i<(K—1)N and

L i
LA
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for (K —1)N < i, where the coefficient c!. is the Tt weighting coefficient in the i degree
numerical integration. Through carefully choosing the numerical method by increasing

N, the error induced by the numerical integration decreases at least proportional to
5

(})"-
" The procedure of computing PF (j,n) is as follows. First we calculate P (j,1),i =
0...KN from the initial conditions (5). Then in iteration k we first calculate Pﬁ (j,k),k=
1...n—1 using equations (8) and (9) and the probabilities PZ (j, k), which have been
calculated during iteration k — 1. Then we calculate Pﬁ(j,k%t 1) using equations (6)

and (7).

4 Performance Analysis

In this section we show results obtained with the model described in Section 3 for a
3-state MMPP. First we compare our model with simulation results and other mathe-
matical models of loss processes. Then we use our model to assess the performance
of FEC in a scenario where a multimedia stream (modeled by a 3-state MMPP) is
multiplexed with background traffic (the superposition of a large number of possibly
multimedia streams modeled by Poisson arrivals) in a multiplexer with a finite queue.
We compare the results to the widely used Gilbert model and simulations with real
MPEG traces. The simulations were performed in ns-2.

41 Mode Evaluation

In the following section we compare our model to analytical models and two sets of
simulations. We use the simulations to verify the accuracy of our model. In the first set
of simulations we simulate an MMPP+M/D/1/K system. Both in our analytical model
and in the simulation the MMPP has 3 states, with arrival intensities Ay = 116/s,A, =
274/s,A3 = 931/s and transition rates rip = 0.12594,rp; = 0.25,rp3 = 1.97,r3, = 2.
The service time in the considered scenarios is 0.5 ms, 0.25 ms, 0.15 ms, 66.84 ps,
33.42 ps, and 9.7 ps. Considering a packet length of 188 bytes, the average bitrate of
the MMPP is 540 kbps and the link speeds are 3 Mbps, 6 Mbps, 10 Mbps, 22.5 Mbps,
45 Mbps and 155 Mbps accordingly. For the sake of simplicity we will refer to the
link speeds in the following. In the models as well as in the simulations we use the
background process to change the average load p.



To check the accuracy of estimating the loss process of VBR video with an MMPP
we have performed simulations with an MPEG-4 encoded video traffic trace multi-
plexed with a Poisson arrival process at a multiplexer with a finite queue. The MPEG-4
trace is approximately 2700 seconds, thus 67000 frames long, and was used to set the
parameters of the 3-state MMPP. The frames of the MPEG stream are packetized to
188 bytes, as given for the transport stream in the MPEG-2 standard [13]. The link ca-
pacity in the different scenarios is 3 Mbps, 6 Mbps, 10 Mbps, 22.5 Mbps, 45 Mbps and
155 Mbps. The simulation time in both simulations was between 20 and 40 thousand
seconds. The queueing delay is set to 0.5 ms in all cases, resulting in queue lengths
from 2 to 60 packets depending on the link speed.

Besides the simulations we compare our model with deterministic service times
to a finite queue fed by sources with the same characteristics as above but with expo-
nentially distributed service times with mean values given above. The model for the
resulting MMPP+M/M/1/K queue is a generalization of the multiple stream model in
[5].

A widely used channel model for the evaluation of multimedia transmission schemes
in error prone environments is the Gilbert-model [14], which is a two-state time dis-
crete Markov model. State O corresponds to the reception of a packet, while state 1 to
the loss of a packet. The distribution of the length of the error bursts B is described by
the transition rates pand q (p+q < 1) as

P{B=i}=(1-q) g (10)

If p+q =1 then the model is called Bernoulli. The loss probability in the Gilbert
model is given by Poss = =2-. The parameters of the Gilbert model can be tuned in
different ways, [14] uses a method based on the loss burst distribution. We use the
following method based on the loss probabilities in a block of packets P(j,n)

p=q(1-P(0,1))/P(0,1), q= ZP (i,i)/ ZIP (i,i)). (11)

In order to compare our model and the Gilbert model we derive formulas to calcu-
late the expected burst length and the probabilities P(j,n) of the loss process based
on the Gilbert model. The expected loss burst length can be calculated based on the
probabilities P(j,n)

=Y P(B=n)= Y P(nn), (12)
n=1 n=1
and using the Gilbert model
> 1
E[Bg]= ) i(1-q) 9= (13)
1=



We use the Gilbert model to calculate the probabilities P(j,n) and compare them to
the probabilities given by the MMPP+M/D/1/K model in order to verify if the Gilbert
model can assess the loss process of the queue. The probabilities P( j, n) for the Gilbert
model can be calculated in a similar way to the one shown in Section 3 and are given
by the following equation:

P(jvn):

Po(j,n)+
p—i—qO(J ) D+q

where the probabilities P;( j,n) are the conditional probabilities of loosing j packets in
a block of n packets given that the first packet arrives in state i, (i € {0,1}), and thus
will or will not be lost. P;( j,n) are given by the following recursive equations:

Po(j,n) = (1—p)Po(j,n—1)+ pPi(j,n—1)
Pl(j7n):qPO(j_1an_1)+(1_q)Pl(j_17n_1)' (15)

Pl(j?”)? (14)

Figures 1, 2 and 3 show the probability of loosing j packets in a block of 22 packets
(n = 22) at three different load levels on a 3 Mbps and a 22.5 Mbps link. The figures
show that the results of the model with exponentially distributed service times differ
significantly. Furthermore the Gilbert model can only capture the loss process at very
low loss levels and a high level of statistical multiplexing, and for small block lengths
but not for small values of j. The figures also show that the loss process in the mul-
tiplexer fed by real traces is rather similar to the one given by our model using an
MMPP.
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Fig. 1. Probability of j packets lost out of 22 on a Fig. 2. Probability of j packets lost out of 22 on a
3 Mbps and a 22.5 Mpbs link at p=0.59 3 Mbps and a 22.5 Mpbs link at p=0.75

Figure 4 shows the average loss run length as a function of the average load for two
different link capacities. The figures shows that the Gilbert model can capture the burst
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Fig. 3. Probability of j packets lost out of 22 on a Fig.4. Expected burst length on a 3 Mbps and a
3 Mbps and a 22.5 Mpbs link at p=0.91 22.5 Mbps link vs the average load.

size distribution if the level of statistical multiplexing is high. The results given by the
MMPP+M/M/1/K model differ significantly from the loss process of the simulations.

4.2 FEC performance

Forward error correction (FEC) has been proposed to recover from information losses
in real-time applications, where the latency introduced by retransmission schemes is
not acceptable. FEC increases the redundancy of the transmitted stream and recov-
ers losses based on the redundant information. There are two main directions of FEC
design to recover from packet losses. One solution, proposed by the IETF and imple-
mented in Internet audio tools is to add a redundant copy of the original packet to one
of the subsequent packets[15]. The other set of solutions, considered in this paper, use
block coding schemes based on algebraic coding, e.g. Reed-Solomon coding [16]. The
error correcting capability of RS codes with k data packets and ¢ redundant packets is
c if data is lost, which is the case if coding is used to recover packet losses.

The performance of an FEC scheme is largely affected by the distribution of the
loss process, e.g. the probability of loosing more than ¢ packets in a block of k+ ¢ pack-
ets. Given the probabilities P(j,n) the uncorrected loss probability for an RS(k,c+k)
scheme can be calculated as

i 1 c+k ) )
Ploss:mj:;_ljp“vc'i‘k)- (16)

Figures 5, 6, 7 and 8 show the average loss probability, and the uncorrected loss
probabilities for RS(10,11) and RS(20,22) codes for the MMPP+M/M/1/K, and the
MMPP+M/D/1/K models and the simulation of the MMPP+M/D/1/K system for dif-
ferent link speeds. Both RS codes used introduce an overhead of 10%, so that the



sources, if they decide to use FEC and want to keep their bitrate unchanged, have to
decrease the amount of useful information sent by 10%. As compensation they expect
lower probability of incorrigible loss. In the case of VBR compressed video the de-
crease of the loss probability can compensate for a certain reduction in the source rate,
and thus one can achieve better perceived visual quality.

We have chosen two different block lengths to illustrate the effect of the block
length on the error correcting capability of the RS codes. The figures show that our
model slightly underestimates the probability of uncorrected packet loss, which is due
to the approximation of the workload distribution, but it models the packet loss distri-
bution accurately under all load and loss conditions. Comparing the losses of streams
using RS(10,11) and RS(20,22) it can be seen that although in general increasing the
block size (c+k) results in much more efficient block codes, at high loss rates (e.g.
higher than the overhead introduced by the FEC code) the contrary is true, shorter
block codes are more efficient.

Figures 9, 10, 11 and 12 show the average loss probability, and the probability of
uncorrected loss for RS(10,11) and RS(20,22) codes for different link speeds for the
MMPP+M/D/1/K model, simulations with a real MPEG trace and the Gilbert model.
Comparing the loss probabilities of the simulations with real MPEG traces and the
results of the model we can see that as long as the multimedia source has a signifi-
cant influence on the queuing behavior, the model overestimates the loss probabilities.
However the gain of using different FEC schemes is similar both for the model and
the simulation with the real traces. In figure 11 the tagged source achieves the loss
probability of 10~ at p = 0.77 by using RS(22,20) according to our model. Without
FEC the same loss level is experienced for p = 0.6. From a different perspective, by
using RS(22,20) the source can decrease the probability of uncorrected loss by 1 to
2 orders of magnitude at reasonable loss levels. In this scenario the perceived visual
quality improves, if the decrease of two orders of magnitude in the loss probability
compensates for 10% decrease of the effective bandwith. Similar behavior can be seen
in the case of the MPEG stream. Thus, the model captures the loss process accurately.

Comparing the Gilbert model to the results of our model we can conclude that at
low levels of statistical multiplexing and long block sizes (n = 22) the results of the
Gilbert model are very inaccurate. It can only capture the loss process at very low loss
levels and nearly independent losses (Fig. 12). It has one drawback: its parameters
have to be set correctly. Our model can be used to set the parameters of the Gilbert
model as described before. In other scenarios our model is the only model that can
capture the loss process of a bursty source with constant packet sizes.

5 Conclusion

In this paper we presented a model to evaluate the probability of loosing j packets in a
block of n packets in an MMPP+M/D/1/K queue. Via simulations we have shown that
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the model is accurate, and in the case of a high level of statistical multiplexing it can
be used to model the behavior of VBR coded video streams. We have compared our
model with an MMPP+M/M/1/K model and showed that the results differ significantly,
both in the average packet loss, as well as in the packet loss process. Thus our model
helps in getting further insight into the packet loss process of queues with deterministic
service time and bursty input traffic. Using the model and simulations we have shown
that the use of FEC can significantly decrease the probability of uncorrected packet
loss at reasonable loss levels, and can increase perceived quality. We have compared
our model with the Gilbert model, and came to the conclusion that the Gilbert model
can only capture the loss process if the level of statistical multiplexing is very high,
and the loss probability low. In this case the Gilbert model is easy to use to evaluate
for example FEC performance. Our model is still needed to determine the parameters
of the Gilbert model so that it can emulate a realistic loss process.

6 Appendices
A Workload distribution

The Laplace transform of the virtual waiting time distribution of the MMPP/G/1/K
queue is given in [11]. Following the arguments presented there one can derive the
Laplace transform of the workload distribution

_ 1 1 ofel A L AV-1(A_ Ay-1
V(s)= [U—W(Q—/A\)flé] {To[—s(sl —A+Q) (Q—A)
+S RS+ OG- 6 NS TASN Y
k=1 k;
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erage load on a 22.5 Mbps link,K=10 erage load on a 45 Mbps link, K=20

N—1 o0 j . R
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where S= (A—sl —Q)~1, T = (sl —A+Q) 1, G*(s) is the Laplace transform of the
service time distribution. Ay is an L x L matrix whose (I, m)th element denotes the
conditional probability of the MMPP reaching phase m and having k arrivals during a
service time, starting from phase I. Instead of calculating the inverse Laplace transform
of the above expression we use an approximation based on the steady state distribution
of the queue length to calculate the workload distribution of the steady state system. A
way to calculate the steady state queue length distribution, 1i(i,1) (0 <i<K,1<I <L),
of an MMPP/G/1/K queue is described in [11]. The queue length distribution as seen
by an arriving packet, M(i,l) (0 <i<K,1 < <L), can be calculated from the steady
state queue length distribution as

Y
Sy M R

Nl (17)

Given the queue length distribution as seen by an arriving packet M(i, 1), 0 <i <
K,1 < <L the workload distribution V (i,1) is approximated by

. no,1) i=0
V("')_{mﬁ/m,l)/N 0<i<=NK’ (18)

where N is defined in Section 3.1.
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B Interarrival-timedistribution

The probability fim(t) denotes the joint conditional probability that the time between
two arrivals from the joint arrival stream is Xx =t and the state of the MMPP at the
moment of the arrival is Jx,1 = m given that at the time of the last arrival the MMPP
was in state Jx = |. A straightforward way to calculate fim(t) is using the equality

fim(t) = [eC"MA] m. (19)

Instead we may calculate fim(t) using the Laplace transform

fr(s) = L {e(é’i\)t/\} = [sl —Q+A]tA. (20)
By performing the matrix inversion and multiplication followed by the inverse Laplace

transform we get that the interrarival time distribution is the weighted sum of expo-
nentially distributed random variables

fim(t) = _iAi.,lme“‘t, (21)

where a; is the it root of det[sI — Q + A] and can be calculated analytically for L < 4.
In the following we show how the calculation proceeds for L = 3. To calculate the
roots o we rewrite t(s) = det[sl — Q+A] in (20) to the form

t(s) = ags® +a,s® + ;s + ap, (22)
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Average load Average load

Fig.11. Probability of uncorrected packet loss vs. Fig. 12. Probability of uncorrected packet loss vs.
average load on a 22.5 Mbps link,K=10 average load on a 45 Mbps link, K=20

where

az=1

a2 =l +r3+A1+Tr3+ T2 +A3+ 21 + 23+ A2

a1 = A P31 + 135 Ag — gy + F13% 23 + 13 % T3 + 13 % F1 -+ Fo1 % 31 +
F21 %32 + 121 % A3+ T3 %31 +T23% A3 + A2 F3p + A2 % Ag + g+ 3y +
F12 %32 +T12% A3 +T12% o + 2% a3 + T2 % Ag + T2k Ao + T3 x Ao+
A1 %31 +A1 %30+ A1 % A3+ A1k + A1 x3+ A1 x Ao

ap = r12*}\2*|"32+|’12>I<)\2>|<)\3—|—I’13*r21*)\3—I"gl*rgl—rgl*rgz—r§1*7\3+
F12 % o1 % I3 + 12 % F21 % 32 + 12 % M1 % A3+ T2 % M3 % 31 + 12 % M3 % Ag +
F13* 3% A3 +r13% A2 % 32 + 13 % Ap % A3+ Ag * Fa1 % 3p + Ay Fog % I3p +
A1 o1 % A3+ A1 %3 rar + A x M3 % A3+ A1 Ap sk rag +
A1 Ao kT30 + A1 % Aok Ag — I'31 % o1 * 3. (23)

We denote the roots of (22) with a;,i = 1,2,3. Knowing a; we can perform the partial
fraction decomposition of (20) with respect to s

L A:m

f'?”‘*(s):;s_ai, (24)

where Al™ can be calculated as

A" = (cM+ 02 — Moy + ™) /(o2 — 01g) /(03 — 1)
AY" = (5" 03 — ¢ a + ") /(a1 — 0tz) /(03 — O2)
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I Im —a3)/(a1—03).
AP = (e« af —cMr g+ ¢ /(a2 — ag) /(as (25)

. . Im .n :
The coefficients cJ", ci™, ci™ are the following
C%l =)\

11 _ +A3+Tr21+Tr23+A2)

o =Nl Aar3aran + 13+ A2A3)
31

Cg" = A1(r2af31 + r2af32 + F2afs1 + Fa1hs + F23As + Aalay + Azra

> =0

¢ = Aol

82 = Aa(raafa1 + raaf3o + FANg + r13rap)
*=0

ci® = Aari3

Cfle _ )\3(I’21I'23 +r13rp1 + r13r3 +ri3\2)
3l=0

= Aira

C%l = A1 (ro1r3s + o132 + ra1A3 + raarag)
2 =X,

22 _ +ri3+A1+r32+A3)
c1” = A2(ra1+ra2 M3 Aha)
ng = No(I12r31 + r12r32 + oAz + riarap + rizAs + A1rsg +Aq

*=0

2 = Asrs

C83 = A3(r2ari2 + r1ar2s + ragh1 + r13ra1)
=0

it = Aira

cgl = A1(ro1rs2 +ra1rsg + rasrag +Aarsp)
3?=0

3% = Aarap

C3% = Ap(raafi2 + F1aaz + ragA1 +r21r31)
Cgs = )\3

33 _ A+ 21+ 23 +A2)

cy” = A3(riz+riz+A; k).
5 +T13r21 — 131 + F12F21 + F1223+ F13A2 + F12A2 + Air21 + A1Faz + AiA2)
Co” = As(risras +rara1 — Iy (26)
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Thus the Laplace transform of the conditional probability f'"™(t) has the form

1

fI m Alm 27
(s)= i; a @7)
and f'M(t) is
fl m ZAIm C('[ (28)
By the definition of fim(t)
z f|m Xk+1 = t’\]k =1), (29)
and
/ fim(t) = [(A—0)*AlLm, (30)

which accounts for the evolution of the underlying Markov chain. Based on (21) the
infinite integrals in equations (6),(7),(8) and (9) can be calculated as

/ fim(t)dt = E Wl eCX (31)
i=
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