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AI/ML ubiquitous in safety critical systems

Communication networks Smart grids Healthcare

Transportation systems Smart cities and buildings Manufacturing
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ML-enabled Perception and Control

Samvelyan et al, “The StarCraft Multi-Agent Challenge”, NIPS Workshops, 2019 3



From Perception to Control: End-to-end or Modular 
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MARL performs well in many areas

96% win rate 
using QMIX
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CPS Example 
Distributed Voltage Control in AC Microgrids

• Scenario

– Grid connected inverter based resources

• Objective 

– Minimize frequency and voltage deviation

• Challenge

• Complex dynamics

• May not be fully known

• Hierarchical control

• Primary droop control

• Secondary control 
(voltage, frequency, droop control gain)

> PI

> MPC

> cMARL

A. Bidram, et al. “Distributed cooperative secondary control of microgrids using feedback linearization,” IEEE Trans. on Power Systems, vol. 28, no. 3, pp. 3462–3470, 2013
A. Bidram, et al. “A multiobjective distributed control framework for islanded AC microgrids,” IEEE Trans. on Ind. Informatics, vol. 10, no. 3, pp. 1785–1798, 2014
G. Lou, et al.  “Distributed MPC-based secondary voltage control scheme for autonomous droop-controlled microgrids,” IEEE Trans. on Sustainable Energy, vol. 8, no. 2, pp. 792–804, 2017
D. Chen, et al “Powernet: Multi-agent deep reinforcement learning for scalable powergrid control,” IEEE Trans. on Power Systems, vol. 37, no. 2, pp. 1007–1017, 2022

https://blog.norcalcontrols.net/power-plant-controls-for-grid-
following-grid-forming-ibrs
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ML Models are Vulnerable in Many Ways

Digital attacks

Goodfellow et al, “Explaining and Harnessing Adversarial Examples”, ICLR 2014
Nassi et al, “Protecting Autonomous Cars from Phantom Attacks”, CACM, 2023

Phantom attacks Patch attacks

Byrd et al, “SpaNN: Detecting Multiple Adversarial Patches on CNNs by Spanning Saliency Thresholds” IEEE SaTML, 2025

Physically realizable attacks
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Attacks can Compromise Entire Pipeline
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As well as cMARL
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CPS Example 
Distributed Voltage Control in AC Microgrids

under attack

Shereen et al, ``Adversarial Robustness of Multi-agent Reinforcement Learning Secondary Control of Islanded Inverter-based AC Microgrids,‘’ in Proc. of IEEE SmartGridComm, Oct. 2023

Objective: 
• Minimize frequency and voltage 

deviation

Environment
• Complex dynamics
• May not be fully known

Hierarchical control
• Primary droop control
• Secondary control 

(power set point, droop control gain)
• PI
• MPC
• cMARL
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Securing ML-enabled Multi-agent Systems
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• Vulnerability assessment
• Threat model
• Dynamic/Adaptive adversaries

• Where to defend
• Agent level
• System level

• When to defend
• Design time

• Formal verification
• Robust training
• Sensor fusion

• Runtime
• Anomaly detection
• Response



Agenda
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Patch Attack Detection

• Detection problem: Is there an adversarial patch in the image?
15

Detector

Detector



Existing approaches to detection and recovery

Transform image to feature domain
• Embedding produced by CNN
• Entropy
Threshold to construct saliency map

Shortcomings
• Fixed threshold easy to bypass
• Assume single square patch

Han et al. “Real-Time Robust Video Object Detection System Against Physical-World Adversarial Attacks”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2023)
Tarchoun et al. “Jedi: Entropy-Based Localization and Removal of Adversarial Patches”. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

𝛽

𝛽

𝛽′

𝛽′
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Spanning Saliency Thresholds using SpaNN

• Hypothesis: Attack changes behavior across saliency thresholds
• Approach:   Transform image into saliency domain (think of Fourier transform)
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Step 1: Ensemble of Binary Feature Maps

• Use CNN to create feature map

• Ensemble ℬ of B thresholds

• Binary feature map for each 𝛽௕ ∈ ℬ
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Step 2: Clustering
Step 3: Attack Detection 

• Density based clustering of each binary feature map

• Create 4 features per feature map feature vector 𝑠 ∈ ℝସ஻

• Use 𝑠 as input to attack detector AD to compute detection score

19



SpaNN: Spanning Saliency Threshold based Detection

• Key advantages of SpaNN
• No saliency threshold tuning Adaptive attacks less powerful
• Detection independent of size and number of patches Detect multiple patches of arbitrary sizes and shapes
• Complexity and accuracy depend on ensemble size Accuracy vs. overhead tradeoff

Byrd Victorica et al, ``SpaNN: Detecting Multiple Adversarial Patches on CNNs by Spanning Saliency Thresholds‘’ in Proc. of IEEE Conf. on Secure and Trustworthy Machine Learning (SaTML), Apr. 2025
20



SpaNN Attack Detection Performance

• Evaluation for attacks on object detection and classification, 2+2 datasets

• SpaNN superior to all baselines
• Higher detection accuracy
• Performance insensitive to number of patches
• Detects attacks that are not effective
• Resilient to dynamic adversary (patches created to evade the detection scheme)

Byrd Victorica et al, ``SpaNN: Detecting Multiple Adversarial Patches on CNNs by Spanning Saliency Thresholds‘’ in Proc. of IEEE Conf. on Secure and Trustworthy Machine Learning (SaTML), Apr. 2025

Code: https://github.com/gerkbyrd/SpaNN
21



Going beyond detection: Recovery 

• Limitation of existing methods
• No explicit detection
• Fixed saliency threshold

• Cover salient areas 
exceeding threshold

• Alter non-compromised inputs

• Cannot deal with multiple 
patches

• Adaptive attacks evade recovery

22
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Ensemble Saliency for Recovery: Saliutl

• Novel two stage approach
1. Detection using SpaNN
2. Recovery by 

iterative inpainting over 
saliency thresholds

Byrd Victorica et al “Saliuitl: Ensemble Salience Guided Recovery of Adversarial Patches against CNNs” CVPR 2025
24



Saliutl Recovery Performance

• Improved average precision compared to baselines

• Does not ruin clean images – no spurious detections

Code: https://github.com/Saliuitl/Saliuitl/tree/main
25



Saliutl Recovery on Clean Images

• Improved average precision compared to baselines

• Does not ruin clean images

Code: https://github.com/Saliuitl/Saliuitl/tree/main
26
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Agenda

27

Robust 
Computer 

Vision

Robust 
MARL

Adversarial 
Attack 

Detection

Distributed 
Anomaly 
Detection

Robust models

Detection and response
System

 LevelAg
en

t L
ev

el



Attack Detection Problem

Quickest Detection
• Adversary starts to attack an (unknown) agent v at an unknown time step t0
• Agents can observe the actions of other agents
• Objective: identify the victim agent(s) as soon as possible after the attack starts
• Lower bound 𝛿ி on mean time between false detections

min sup
௧బழஶ

𝐸(௧బ)[𝑢௩ − 𝑡଴|𝑢௩ ≥ 𝑡଴]

s.t. 𝐸(ஶ) 𝑢௩ ≥ 𝛿ி 
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Attack Detection Problem – Change detection

Quickest Detection
• Adversary starts to attack an (unknown) agent v at an unknown time step t0
• Agents can observe the actions of other agents
• Objective: identify the victim agent(s) as soon as possible after the attack starts
• Lower bound 𝛿ி on mean time between false detections

min sup
௧బழஶ

𝐸(௧బ)[𝑢௩ − 𝑡଴|𝑢௩ ≥ 𝑡଴]

s.t. 𝐸(ஶ) 𝑢௩ ≥ 𝛿ி 

► Change detection interpretation
► 𝐴௧~𝑓௢ 𝑡 < 𝑡଴ , 𝐴௧~𝑓ଵ 𝑡 ≥ 𝑡଴

► 𝐴ଵ
௧ = (𝐴ଵ, … , 𝐴௧)

► CUSUM

► Log-likelihood ratio: 𝑠௧ = 𝑙𝑛
௙భ(஺೟)

௙బ(஺೟)

► Decision function 𝑔଴ = 0,  𝑔௧ = 𝑔௧ିଵ + 𝑠௧
ା

► Detection rule: 𝑡௔ = min {𝑡: 𝑔௧ ≥ 𝛽}

Sequence of observed 
actions of other agent

Hypothesis about 
underlying distribution

30
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Detection Problem – Change detection

Quickest Detection
• Adversary starts to attack an (unknown) agent v at an unknown time step t0
• Agents can observe the actions of other agents
• Objective: identify the victim agent(s) as soon as possible after the attack starts
• Lower bound 𝛿ி on mean time between false detections

min sup
௧బழஶ

𝐸(௧బ)[𝑢௩ − 𝑡଴|𝑢௩ ≥ 𝑡଴]

s.t. 𝐸(ஶ) 𝑢௩ ≥ 𝛿ி 

► Change detection interpretation
► 𝐴௧~𝑓௢ 𝑡 < 𝑡଴ , 𝐴௧~𝑓ଵ 𝑡 ≥ 𝑡଴

► 𝐴ଵ
௧ = (𝐴ଵ, … , 𝐴௧)

► CUSUM

► Log-likelihood ratio: 𝑠௧ = 𝑙𝑛
௙భ(஺೟)

௙బ(஺೟)

► Decision function 𝑔଴ = 0,  𝑔௧ = 𝑔௧ିଵ + 𝑠௧
ା

► Detection rule: 𝑡௔ = min {𝑡: 𝑔௧ ≥ 𝛽}

Sequence of observed 
actions of other agent

Hypothesis about 
underlying distribution

Challenge: 
- 𝑓ଵ depends on the attack
- 𝑓଴ and 𝑓ଵ depend on the state
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Distributed detection for discrete action sets

► Discrete action set: 𝐴௜ ∈ ℕௗ

► Idea: Characterize normal behavior of
agents as seen by other agents 
► conditioned on local observation

► Detection scheme:
• Predict the categorical  

distribution of actions based on
local observations

• Compute (ab)normality score
𝒑𝒕

𝒊𝒋 : predicted distribution of actions of agent j by agent i

ϕ i j : predictor of agent i for action distribution of agent j

i j p i j (aj )

a tmax j p i j (aj )
• zt ≜ log( t )

• 𝑐௧
௜௝

≜ ൞

ଵ

௧
∑ 𝑧௟

௜௝௧
௟ୀଵ , 1 ≤ 𝑡 < 𝑤

ଵ

௪
∑ 𝑧௟

௜௝௧
௟ୀ௧ି௪ାଵ , 𝑡 ≥ 𝑤

t
► Detection rule: cij < β i j

Kazari et al., ``Decentralized Anomaly Detection in Cooperative Multi-Agent Reinforcement Learning’’, in Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAI), Aug. 2023 32
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How to deal with continuous action sets?
► Continuous action set 𝐴௜ ∈ ℝௗ

► Discretization of continuous action set scales poorly 

► 𝑞ௗ actions with 𝑞 bins per dimension
► 𝑞𝑑 actions if assuming independence

34



Detection for continuous action sets
Parametrized Gaussian CUSUM

Kazari et al., `` Distributed Detection of Adversarial Attacks in Multi-Agent Reinforcement Learning with Continuous Action Space’’, in Proc. of European Conference on Artificial Intelligence (ECAI), 2025

► Approximate action distribution

► 𝑓௧
௜௝

𝑎௝ ~𝒩(𝜇௧
௜௝

, 𝜎௧
௜௝

)

► Multivariate Gaussian distribution predicted
based on past observations 𝜏௧

௜௝

► Normality score

► 𝑧௧
௜௝

= log (
௙

೔ೕ
(௔ೕ

೟|ఛ೟
೔ೕ

)

୫ୟ୶
ೌ

௙
೔ೕ

(௔|ఛ೟
೔ೕ

)
)

► Result: Closed form expression of mean and stdev of normality score without anomaly

► 𝑚௭
௝

= 𝐸 𝑧௧
௜௝

= −
ௗೕ

ଶ
,                𝜎௭

௝
= 𝐸 𝑧௧

௜௝
− 𝑚௭

௝ ଶ
= 𝑑/2

► Maintain CUSUM statistics 

► 𝑐௧
௜௝

= max 0, 𝑐௧ିଵ
௜௝ା

+
௭೟

೔ೕ
ି௠೥

ೕ

ఙ೥
ೕ − 𝑤

► 𝑐௧
௜௝

= max 0, 𝑐௧ିଵ
௜௝ି

−
௭೟

೔ೕ
ି௠೥

ೕ

ఙ೥
ೕ − 𝑤

► Detection thresholds 𝛽௜௝
, 𝛽௜௝ି
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Fooling the Detector: Dynamic Adversary

• Attacker has access to
• Predictor 𝑝௧

௜௩ or 𝑓௧
௜௩

• Thresholds 𝛽௜௩

• Attack 𝜋௔ௗ௩ on agent 𝑣 is expectedly undetectable if
• E 𝑐௧

௜௩ 𝜋௔ௗ௩ ≥ 𝛽௜௩  ∀𝑡 > 0, ∀𝑖 ≠ 𝑣

• Attack policy can be obtained by solving a non-Markovian problem 

max 𝐸[෍ 𝛾௧ିଵ𝑟௥
௔ௗ௩]

ஶ

௧ୀଵ

s.t. 𝐸 𝑐௧
௜௩ ≥ 𝛽௜௩ ∀𝑡, ∀𝑖 ≠ 𝑣

• Solution
• Extend state space and relax constraint to obtain Markovian problem that upper bounds the problem
• Exploit zero duality gap and minimize dual using gradient descent over Lagrangian

36Kazari et al., ``Decentralized Anomaly Detection in Cooperative Multi-Agent Reinforcement Learning’’, in Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAI), Aug. 2023



Detection Performance
Average episodic rewards



Detection Performance
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ROC AUC

Average episodic rewards



Time to Detection
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Tag

Average episodic rewards



Recovery via Detection and Response

40

Win rateMethod

0.35EIR-MAPPO

0.22GenM

0.2RAP

0.0MAPPO

0.36D&R

0.75Oracle



Conclusion

• ML vulnerabilities are a threat to the safety of autonomous systems

• Defense in depth for ML-enabled CPS 
• Agent level detection and robustification

• SpaNN and Saliutl for patch attacks
• System level detection and robustification

• Distributed detection and response
• Runtime defense at design time

• Test, verify, and secure ML in every layer
• A vulnerable AI is worse than a useless one

41
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Thank you
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