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Al/ML ubiquitous in safety critical systems
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1931 ML-enabled Perception and Control
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Samvelyan et al, “The StarCraft Multi-Agent Challenge”, NIPS Workshops, 2019 3




(S From Perception to Control: End-to-end or Modular

THE
AUTOWARE
FOUNDATION

Camera Detector Fusion &

Detector & Object
Clustering Merging
Filter &

\ Clustering
' [
Sensing Perception

LIDAR Fusion &

Prediction Planning

Radar
tracker

Radar




MARL performs well in many areas

96% win rate
using QMIX




CPS Example

VETENSKAP

f#d Distributed Voltage Control in AC Microgrids

* Scenario

— Grid connected inverter based resources
* Objective

— Minimize frequency and voltage deviation

» Challenge

+ Complex dynamics

https://blog.norcalcontrols.net/power-plant-controls-for-grid-

. May not be fU”y known following-grid-forming-ibrs

* Hierarchical control

*  Primary droop control

»  Secondary control
(voltage, frequency, droop control gain)

> Pl
> MPC
> cMARL

A. Bidram, et al. “Distributed cooperative secondary control of microgrids using feedback linearization,” IEEE Trans. on Power Systems, vol. 28, no. 3, pp. 3462-3470, 2013
A. Bidram, et al. “A multiobjective distributed control framework for islanded AC microgrids,” IEEE Trans. on Ind. Informatics, vol. 10, no. 3, pp. 1785-1798, 2014

G. Lou, et al. “Distributed MPC-based secondary voltage control scheme for autonomous droop-controlled microgrids,” [IEEE Trans. on Sustainable Energy, vol. 8, no. 2, pp. 792-804, 2017
D. Chen, et al “Powernet: Multi-agent deep reinforcement learning for scalable powergrid control,” IEEE Trans. on Power Systems, vol. 37, no. 2, pp. 1007-1017, 2022



CPS Example
g% Distributed Voltage Control in AC Microgrids

TH?Y

» Scenario P,

o ,—ﬁl LCfilter | L ecton
Voltage | ‘idiv 'gi | Current _@ | | | ;
T
controller controller i R Lf’J‘(‘ﬂJ I 'L Re; L(,-JI
i J_: [ -0 iy
i igi - i

u.

of

— Grid connected inverter based resources

* Objective

lodi fogi

— Minimize frequency and voltage deviation o

Vodi* Vogi

Power controller

» Challenge

+ Complex dynamics o Vo
* May not be fully known

*  Primary droop control

« Hierarchical control p |
:
Co

s i W Wi
»  Secondary control = S .
(voltage, frequency, droop control gain) ke = -
> Pl
MicroGrid

> MPC
> cMARL

A. Bidram, et al. “Distributed cooperative secondary control of microgrids using feedback linearization,” IEEE Trans. on Power Systems, vol. 28, no. 3, pp. 3462-3470, 2013
A. Bidram, et al. “A multiobjective distributed control framework for islanded AC microgrids,” IEEE Trans. on Ind. Informatics, vol. 10, no. 3, pp. 1785-1798, 2014

G. Lou, et al. “Distributed MPC-based secondary voltage control scheme for autonomous droop-controlled microgrids,” [IEEE Trans. on Sustainable Energy, vol. 8, no. 2, pp. 792-804, 2017
D. Chen, et al “Powernet: Multi-agent deep reinforcement learning for scalable powergrid control,” IEEE Trans. on Power Systems, vol. 37, no. 2, pp. 1007-1017, 2022
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gl Distributed Voltage Control in AC Microgrids

* Scenario

— Grid connected inverter based resources
* Objective

— Minimize frequency and voltage deviation
» Challenge

+ Complex dynamics
* May not be fully known

* Hierarchical control

*  Primary droop control

»  Secondary control
(voltage, frequency, droop control gain)

> Pl
> MPC
> cMARL

Max. Voltage Deviation [p.u.

0.175 1
Bl No Attack

0.150 1
0.125 1
0.100 1

0.075 1

0.050 g ﬁ

0.025 4

2 &

0.000 T T T T
MPC MPC-R PPO A2C

Secondary Controller

A s,
£ Communication Link

MicroGrid

A. Bidram, et al. “Distributed cooperative secondary control of microgrids using feedback linearization,” IEEE Trans. on Power Systems, vol. 28, no. 3, pp. 3462-3470, 2013
A. Bidram, et al. “A multiobjective distributed control framework for islanded AC microgrids,” IEEE Trans. on Ind. Informatics, vol. 10, no. 3, pp. 1785-1798, 2014

G. Lou, et al. “Distributed MPC-based secondary voltage control scheme for autonomous droop-controlled microgrids,” [IEEE Trans. on Sustainable Energy, vol. 8, no. 2, pp. 792-804, 2017
D. Chen, et al “Powernet: Multi-agent deep reinforcement learning for scalable powergrid control,” IEEE Trans. on Power Systems, vol. 37, no. 2, pp. 1007-1017, 2022
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523 ML Models are Vulnerable in Many Ways

Mot

Digital attacks

+.007 x

x sign(VoJ (0, x,y)) esign(V::j'_(G,w, )
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence P hysica I Iy rea I iza ble attaCkS
Phantom attacks Patch attacks
.._!!,llL‘ I :
o Adversarial

Nassi et al, “Protecting Autonomous Cars from Phantom Attacks”, CACM, 2023
Goodfellow et al, “Explaining and Harnessing Adversarial Examples”, ICLR 2014

Byrd et al, “SpaNN: Detecting Multiple Adversarial Patches on CNNs by Spanning Saliency Thresholds” IEEE SaTML, 2025
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As well as cMARL

Menu
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= CPS Example
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& Distributed Voltage Control in AC Microgrids
—, under attack

O bJ eCtl ve: < Communicatian Link
* Minimize frequency and voltage
deviation

Environment
« Complex dynamics MicroGrid
« May not be fully known

Hierarchical control 20150 é# = el — Ll
* Primary droop control § 0.125-
+ Secondary control ‘§ 0.100 %%
(power set point, droop control gain) % 0.075 1 é
l‘—“s >“ GEGE 1 5
. MPC é 0.025 1 ﬁ i
« cMARL 0:000 MPC MPC-R PPO A2C

Secondary Controller

Shereen et al, "Adversarial Robustness of Multi-agent Reinforcement Learning Secondary Control of Islanded Inverter-based AC Microgrids,” in Proc. of IEEE SmartGridComm, Oct. 2023
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* Vulnerability assessment
* Threat model
* Dynamic/Adaptive adversaries

* Where to defend
* Agent level
* System level

* When to defend

* Design time
* Formal verification
* Robust training
* Sensor fusion

* Runtime
* Anomaly detection
* Response

(51 Securing ML-enabled Multi-agent Systems

Robust models

Robust
Computer
A [e]g

Robust
MARL

Agent Level

Adversarial Distributed
Attack Anomaly
Detection Detection

Detection and response

|97 W3SAS

13
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Agenda

Robust models

Robust
Computer
Vision

Robust
MARL

Agent Level

Adversarial
Attack Anomaly

Distributed

Detection Detection

Detection and response

|[9AST WISAS

IlLlIs

Adversarial N

Environment

14
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Detector

CNN

b

Detector

CNN

11N

LI

* Detection problem: Is there an adversarial patch in the image?
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%j* Existing approaches to detection and recovery

&

Transform image to feature domain
* Embedding produced by CNN =
* Entropy

Threshold to construct saliency map

Adv

Shortcomings * , | !
* Fixed threshold easy to bypass o0 02 04 05 08 10 S & o & & 0
* Assume single square patch

Han et al. “Real-Time Robust Video Object Detection System Against Physical-World Adversarial Attacks”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2023)
Tarchoun et al. “Jedi: Entropy-Based Localization and Removal of Adversarial Patches”. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

16
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S#1 Spanning Saliency Thresholds using SpaNN

* Hypothesis: Attack changes behavior across saliency thresholds
e Approach: Transform image into saliency domain (think of Fourier transform)

1.-Binary Feature Map Ensemble 2 -Clusterin

3.- Attack Detection
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(5%} Step 1: Ensemble of Binary Feature Maps

R

* Use CNN to create feature map
* Ensemble B of B thresholds

* Binary feature map for each 5, € B

1 ~ Ensemble of
Input Image Feature Map Binary Feature Maps

|
~

Ensemble of
&> Thresholds

By € B

18



D,
(s} Step 2: Clustering

“* Step 3: Attack Detection

* Density based clustering of each binary feature map

Create 4 features per feature map mmmp feature vector s € R*2

* Use s as input to attack detector AD to compute detection score

~ Ensemble of
Binary Feature Maps Clustering

» (omsean) — || 3
- (DBscan ) —|

+ (DB ) —
> (oBscan ) —

. Feature Vector

Attack

Detector

Detection

Score

AD(s)

3000
2500
Salient 2000
Neurons 1so00
1000
500

a0

30
Clusters
20

10

o

i -
0.0 0.2 04 06 0.8 1.0
Saliency threshold (8)

Saliency threshold (8)

00 02 04 06 08 1.0

30
25
Distance *°
avg.) s
10

s

00 02 04 06 08 1.0
Saliency threshold (8)

12

|atacl1ce 8

2
o

//\
&
{

00 02 04 06 08 1.0
Saliency threshold (8)
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fxy SpaNN: Spanning Saliency Threshold based Detection
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1.-Binary Feature Map Ensemble .
ary r'ee d] 2.-Clustering
Ensemble of < R e ~43
|nput |mage Feature Map Binary Feature Maps C|u3tering 3' Att({L k D ete( t1011

»( DBSCAN
DBSCAN

E ble of - Attack _

- #ﬁreeTho?dg DESCAN Feature yector Detector DeStectlon
B € B (Bscan) core
200
AD
el Clusters Oigrge (sta*ﬂ,r“‘:
cco.cn 0.2 04 06 08 10 uou 01 04 06 08 .‘0 0.0 02 Dd’ 0; 08 1.0 DO.D 01.2‘ 04 06 08 10
Saliency threshold (8) ncy threshold (B) Saliency threshold (8) Saliency threshold (8)
* Key advantages of SpaNN

* No saliency threshold tuning
* Detection independent of size and number of patches
* Complexity and accuracy depend on ensemble size

Adaptive attacks less powerful
Detect multiple patches of arbitrary sizes and shapes
Accuracy vs. overhead tradeoff

20
Byrd Victorica et al, “"SpaNN: Detecting Multiple Adversarial Patches on CNNs by Spanning Saliency Thresholds” in Proc. of IEEE Conf. on Secure and Trustworthy Machine Learning (SaTML), Apr. 2025
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;. SpaNN Attack Detection Performance
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* Evaluation for attacks on object detection and classification, 2+2 datasets

e SpaNN superior to all baselines
* Higher detection accuracy
* Performance insensitive to number of patches
* Detects attacks that are not effective
* Resilient to dynamic adversary (patches created to evade the detection scheme)

@ SpaNhN . NAPGuard - Jedi @ Themis @ Obj. Seeker
1.0 2nd 1st
0.8 -
Detection ¢
Accuracy
0.4
0.2
0.0
Single Double  Single Double Quad. Single Double Single Double Quad.
Obj. Detection Img. Classification Obj. Detection Img. Classification
Effective Attacks Ineffective Attacks Code: https://github.com/gerkbyrd/SpaNN

21
Byrd Victorica et al, “"SpaNN: Detecting Multiple Adversarial Patches on CNNs by Spanning Saliency Thresholds” in Proc. of IEEE Conf. on Secure and Trustworthy Machine Learning (SaTML), Apr. 2025
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¢ Going beyond detection: Recovery

* Limitation of existing methods
* No explicit detection
* Fixed saliency threshold

* Cover salient areas
exceeding threshold

!

e Alter non-compromised inputs

e Cannot deal with multiple
patches

Recovery
Method

* Adaptive attacks evade recovery

22
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5} Going beyond detection: Recovery

%%4&?

Limitation of existing methods
* No explicit detection

* Fixed saliency threshold = L. Attack
* Cover salient areas '8 : y detected!
exceeding threshold g | / :
l S \ Detection
LT i Method

Alter non-compromised inputs

Cannot deal with multiple
patches

Recovery
Adaptive attacks evade recovery £ il Method

23
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i, Ensemble Saliency for Recovery: Saliutl

W

* Novel two stage approach

1. Detection using SpaNN for € Bp 1 Mt II D IIT
2. Recovery by p{ [Binarize[ |- 5 ,n: P > Ai’:m;s -
iterative inpainting over RS S | 4 x
saliency thresholds I Ensembl;eofB}n. ;. NO
Feature Maps ——
Ramuinessnias] : h(- ) e R"]N:an B :
== - L ¥ wmeea' gy |[P[4DO

Update? Stop?

|

|

I

[Update ] fe—: > Return ) |
I

) I

] <

£ Mask ‘ ) e
“7 |Pre-processing| [ ! II I

» * 3 ..

24

Byrd Victorica et al “Saliuitl: Ensemble Salience Guided Recovery of Adversarial Patches against CNNs” CVPR 2025



?if;;; %} Saliutl Recovery Performance

* Improved average precision compared to baselines

* Does not ruin clean images — no spurious detections

@ Saliuitl NutNet PAD @ Jedi @®Themis @®Certifiable @D FNS
1.0 T 2nd 1st 1st
1st 1st 1st
0.8 - E 15t | i 1
1st
Clean/Adversarial . § W § . i | || | " L
Performance Tradeoff I I | I | | I
1IN IRI IHIRIHIH
0.2 S S B & B P Eme e = e s
0.0 . s - . .
Single Double Triangular Multi Single Double Quad. Triangular
Object
Obj. Detection Img. Classification

Code: https://github.com/SaIiuitI/SaIiuitI/tree/FSnain
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=y Saliutl Recovery on Clean Images
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* Improved average precision compared to baselines

* Does not ruin clean images

Obj. Seeker Saljuit!

Code: https://github.com/Saliuitl/Saliuitl/tree/main
Byrd Victorica et al “Saliuitl: Ensemble Salience Guided Recovery of Adversarial Patches against CNNs” CVPR 2025
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Agenda

Robust models

Robust
Computer
Vision

Robust
MARL

Agent Level

Adversarial

Distributed
Attack Anomaly
Detection Detection

Detection and response

|9AD7 WIB1SAS

I:L. Ii |

Adversarial

Environment
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Attack Detection Problem

Quickest Detection

* Adversary starts to attack an (unknown) agent v at an unknown time step ¢

* Agents can observe the actions of other agents

* Objective: identify the victim agent(s) as soon as possible after the attack starts
* Lower bound 6r on mean time between false detections

min sup E@0)[u, — to|u, = t,]
t0<00

s.t. E®)[u,] = 6

28
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6} ==~ Distribution shift at t=120 ! 6

Attack Detection Problem

Quickest Detection

* Adversary starts to attack an (unknown) agent v at an unknown time step ¢

* Agents can observe the actions of other agents

* Objective: identify the victim agent(s) as soon as possible after the attack starts
* Lower bound 6r on mean time between false detections

min sup E@0)[u, — to|u, = t,]
t0<00

s.t. E®)[u,] = 6

Time Series with Distribution Shift Time Series without Distribution Shift

Value

]
i
]
1

Betectioa )

time Time to False Detection

25

50 75 100 t 125 150 175 200 0 10 20 30 40 50 50 70
0 Uy Time Uy

29
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sy Attack Detection Problem — Change detection

Quickest Detection

* Adversary starts to attack an (unknown) agent v at an unknown time step ¢
* Agents can observe the actions of other agents

* Objective: identify the victim agent(s) as soon as possible after the attack starts
* Lower bound 6r on mean time between false detections

min sup E@0)[u, — to|u, = t,]

t0<00
s.t. E)[u,] = 65
» Change detection interpretation Hypothesis about
= Ai~f, (t < ty), Ae~f1 (t = t) underlying distribution
> Aﬁ = (Ay, ., At) Sequence of observed [ ! 1
» CUSUM i Elu, — tol~ ———=
o | - actions of other agent v KL lIf)
» Log-likelihood ratio: s; = In=——= e s
fo(Ar) 2o

= Decision function go = 0, g; = (ge—q +s:)?
» Detection rule: t, = min{t: g; = B}




(xiry  Detection Problem — Change detection

Quickest Detection

* Adversary starts to attack an (unknown) agent v at an unknown time step ¢

* Agents can observe the actions of other agents

* Objective: identify the victim agent(s) as soon as possible after the attack starts

* Lower bound 6r on mean time between false detections

min sup E@0)[u, — to|u, = t,]
t0<00

s.t. E®)[u,] = 6

» Change detection interpretation Hypothesis about
= Ai~f, (t < ty), Ae~f1 (t = t) underlying distribution

= AL = (A4, .., Ay)

Sequence of observed

» CUSUM actions of other agent
» Log-likelihood ratio: s; = In 2440
fo(At)
= Decision function go =0, g; = (ge—1 +s)* Challenge:

» Detection rule: t, = min{t: g; = B} i

f1 depends on the attack
fo and f; depend on the state

31
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e

Agent 1 o
g PR

g % i a

Idea: Characterize normal behavior of L asEEEm e
9t (ft' o 5 plt
T t

= Discrete action set: 4; € N¢

agents as seen by other agents

» conditioned on local observation : \
. ag N1
» Detection scheme: N ol | 'E
e Predict the categorical . Pt
distribution of actions based on T
local observations ;:
. i . . . . .
« Compute (ab)normality score ¢i‘ predictor of agent i for action distribution of agent j
pt] :predicted distribution of actions of agent j by agent /
g oA pi ()
e Z = O - st x 7 000
t g(max & ptlf(aJ))
0.8 - 0.8
" iy
_Zle ZZLJ ) 1 S t < W > 0.6 > 06
e cJad b y :
_Z€=t—w+1zl” ) t=zw Eos £ 04/
W 0.20 0.20 0.20 0.20 0.20 927
.. 0.2 - 02 0.20
. . ij ii .
| . < .] 0.07
Detection rule: ¢ < f | | | < I |
as

al a2 . :3( " a4 a5 a1 a2 az 24
n
LR Action (a/)

Kazari et al., “"Decentralized Anomaly Detection in Cooperative Multi-Agent Reinforcement Learning”, in Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAl), Aug. 2023
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Mot

Distributed detection for discrete action sets

= Discrete action set: A; € N4 %o sl )
. . F—— \\‘ "‘“*-\\\ 2
. — —— \\ e
= |dea: Characterize normal behavior of -GS cit
agents as seen by other agents N N pZ -S
- \\
» conditioned on local observation : &
. ar ™\ N1
» Detection scheme: N ol | 'E
e Predict the categorical . Pt
distribution of actions based on T

local observations

« Compute (ab)normality score ¢ : predictor of agent i for action distribution of agent j

pij :predicted distribution of actions of agent j by agent i

o zU 2 Jog(_ 2/ (@)

i a

1ot ij
;Zl:lzl )
L4 Ct = ..
9)

lzt 7
w l=t—-w+1 4]

» Detection rule: cli < ,Bif

max_; p” (a/)

)

)

Normality Score (log domain)

0

-1

-2

\

S

5 normal episodes

/ attacked episodes

30

40 50 60 70
Time step

80

Kazari et al., “"Decentralized Anomaly Detection in Cooperative Multi-Agent Reinforcement Learning”, in Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAl), Aug. 2023



How to deal with continuous action sets?

= Continuous action set 4; € R%
» Discretization of continuous action set scales poorly
= g% actions with g bins per dimension

» qd actions if assuming independence

Highly Correlated 2D Gaussian Quantized Distribution (2D Histogram)
Samples
24
1
|
0
9 .#l
=
2
—3]
=3 2 1 0 b 2 3 3 2 1 [ 1 2
1 1

34

0.4

0.3

0.2

0.1

0.0



S, Detection for continuous action sets
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S Parametrized Gaussian CUSUM

» Approximate action distribution ¢
ij ij _ij
= Jt (aj)"'N(“t ,0¢)
» Multivariate Gaussian distribution predicted

Agent j

1

ful
. ij ?é» ffffffffffffffffffffff At
based on past observations 7, g ,
. o
» Normality score 55
— ij-
L. fij(at-h'ij) e e S T e el el T e e il ! e
- Z;] — 10 J t _ ) Agent i's Detector
ij ij
mgxf (alts)
» Result: Closed form expression of mean and stdev of normality score without anomaly
i . d] . . .2 Empirical Noisy PDF vs Fitted Normal PDF
] —_ I’J —_ J — I’J J —_ max at af=0.01 —— Empirical PDF (KDE)
- mz=Elz] = -7, %z = \/ E [(Zt —my) ] = d/2 il e
® Fitted Normal PDF at x=2.0
> Maintain CUSUM statistics
LJ LJ+ Zij_mj 025
» ¢ =max30,¢c,. . ++—2—w . 50
t t-1 J &
O'Z &
0.15
. . j_.J
l l]— Zy—m 0.10
- ct] = max {O, Ciq — % — W}
O'é 0.05 / \
.0, PDF=0.077
. l . P B y :
= Detection thresholds 8 , g% e R - m}\—~

Action (af)

Kazari et al., ™" Distributed Detection of Adversarial Attacks in Multi-Agent Reinforcement Learning with Continuous Action Space”, in Proc. of European Conference on Artificial Intelligence (ECAI), 2025



Adversary

Attacker has access to

N : iv iv
Predlctorpt . t {_ Agent2 )
* Thresholds g% IS

Attack T2 on agent v is expectedly undetectable if
* E[c?(n®)] 2 B vt > 0,Vi# v P

Environment

Attack policy can be obtained by solving a non—Markovian problem

max E zyt 1 adv

s.t. E[c ] > B Vt, Vi #v

Solution
* Extend state space and relax constraint to obtain Markovian problem that upper bounds the problem
* Exploit zero duality gap and minimize dual using gradient descent over Lagrangian

Kazari et al., “"Decentralized Anomaly Detection in Cooperative Multi-Agent Reinforcement Learning”, in Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAl), Aug. 2023
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g Detection Performance
Average episodic rewards
Multiwalker Tag g’"‘l" Pistonball
omm
No Attack | -12.7 101.8 37.6 228.6
ACT -107.6 64.9 26.7 83.1
RAND 75.6 68.1 30.4 202.1
Grad 427 90.4 34.7 215.1
DYNI1 96.9 65.1 S 95.5
DYN2 -89.6 69.2 30.1 139.3

predator 1 predator 2

O predator 3
- @
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{ggm Detection Performance

Multiwalker Tag (VjVorld Pistonball
omm
No Attack -12.7 101.8 37.6 228.6
ACT -107.6 64.9 26.7 83.1
RAND -75.6 68.1 304 202.1
Grad -42.7 90.4 347 2131
DYNI1 -96.9 65.1 27.8 95.5
DYN2 -89.6 69.2 30.1 139.3
Multiwalker Tag World Comm Pistonball
Attack Types | PGC  Discrete | PGC  Discrete | PGC  Discrete | PGC  Discrete
ACT 0.996 0.972 0.993 0.948 0.995 0.821 0.999 0.758
RAND 0.995 0.855 0.843 0.893 0.677 0.713 0.997 0.970
GRAD 0.674 0.566 0.653 0.858 0.884 0.913 0.581 0.554
DYN1 0.929 0.818 0.988 0.964 0.992 0.754 0.907 0.711
DYN2 0.954 0.788 0.968 0.944 0.912 0.707 0.876 0.658

ROC AUC
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+ Time to Detection

Multiwalker Tag (VjVorld Pistonball
omm
No Attack -12.7 101.8 37.6 228.6
ACT -107.6 64.9 26.7 83.1
RAND -75.6 68.1 30.4 202.1
Grad -42.7 90.4 34.7 215.1
DYNI1 -96.9 65.1 27.8 95.5
DYN2 -89.6 69.2 30.1 139.3
14 - —e— RAND
—e— ACT
21 —— DYN1
104 —e— DYN2
5 —— GRAD Tag
g o
2
o 6.
W

0.4 0.6
False Positive Rate

39



EIR-MAPPO
GenM

RAP
MAPPO
D&R

Oracle

% Recovery via Detection and Response

0.35
0.22
0.2
0.0
0.36
0.75

40
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* ML vulnerabilities are a threat to the safety of autonomous systems

» Defense in depth for ML-enabled CPS " VvV Patch
: compromises

perception

* Agent level detection and robustification
* SpaNN and Saliutl for patch attacks

* System level detection and robustification
* Distributed detection and response

* Runtime defense at design time

* Test, verify, and secure ML in every layer
* A vulnerable Al is worse than a useless one

41
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