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Abstract—The growing popularity of mobile multimedia con-
tent and the increase of wireless access bitrates are straining
backhaul capacity in mobile networks. A cost-effective solution
to reduce the strain, enabled by emerging all-IP 4G and 5G
mobile backhaul architectures, could be in-network caching of
popular content during times of peak demand. In this paper we
formulate the problem of content caching in a mobile backhaul
as a binary integer programming problem, and we propose a 2-
approximation algorithm for the problem. The 2-approximation
requires full information about the network topology and the
link costs, as well as about the content demands at the different
caches, we thus propose two distributed algorithms that are based
on limited information on the content demands. We show that the
distributed algorithms terminate in a finite number of steps, and
we provide analytical results on their approximation ratios. We
use simulations to evaluate the proposed algorithms in terms of
the achieved approximation ratio and computational complexity
on realistic mobile backhaul topologies.

I. INTRODUCTION

The penetration of high speed mobile access technologies,
such as HSDPA and LTE, together with the proliferation of
powerful handheld devices has stimulated a rapid increase of
user demand for mobile multimedia content in recent years.
The traffic growth is predicted to continue in coming years,
with an estimated 10-fold increase in mobile data traffic in 5
years and an increasing peak-to-average traffic ratio, and puts
significant strain on mobile backhaul capacity.

Recent measurement studies of mobile data traffic indicate
that caching could be an effective means of decreasing the
mobile backhaul bandwidth requirements: caching could reduce
the bandwidth demand by up to 95% during peak hours and
could at the same time reduce content delivery time by a factor
of three [1]. At the same time, mobile traffic is dominated
by downloads; up to 75% of daily traffic load comes from
download traffic, and the demand shows significant diurnal
fluctuations with low loads during early morning hours [2].

While tunelling imposed by previous 3GPP standards made
backhaul in-network caching technically challenging, allowing
only caches at the network edge, in emerging all-IP mobile
backhaul architectures the caches could be co-located with
every switch and could implement cooperative caching policies
throughout the backhaul. Since fairly accurate content popular-
ity predictions can be obtained for Web and video content [3],
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[4], the most popular contents could be downloaded into the
caches of the mobile backhaul in the early morning hours when
the load is relatively low, thereby alleviating the traffic demand
during peak hours.

Given predicted content popularities, a fundamental problem
of in-network caching in a mobile backhaul is to find efficient
content placement algorithms that take into consideration the
characteristics of mobile backhaul topologies and of mobile
data traffic. The algorithms should achieve close to optimal
bandwidth cost savings and should have low computational com-
plexity. Furthermore, they should require as little information as
possible, e.g., about content popularities and network topology,
in order to allow fully distributed operation and scaling to
large topologies with small communication overhead. While
previous works proposed centralized and distributed content
placement algorithms for two-level hierarchical topologies [5],
general topologies with an ultrametric [6], and topologies in
a metric space [7], efficient distributed algorithms based on
limited topological information have received little attention.

In this paper we formulate the problem of content placement
in a mobile backhaul based on predicted demands as a 0-1
integer programming problem. We show that a 2-approximation
to the problem can be obtained using a distributed greedy
algorithm when global information is available, and propose
two computationally simple distributed algorithms that do
not require global information. We evaluate the algorithms
through extensive simulations on various network topologies.
Our results show that information about object demands at
descendants is not sufficient for achieving good performance,
but the proposed h-Push Down algorithm achieves consistently
good performance based on a limited amount of information
about object placements.

The rest of the paper is organized as follows. Section II
describes the system model and provides the problem formula-
tion. Section III describes the 2-approximation algorithm based
on global information, and Section IV describes the distributed
algorithms based on limited information. Section V shows
performance results based on simulations. Section VI discusses
related work and Section VII concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a typical mobile backhaul, and model its active
topology by a symmetric acyclic directed graph G(N , E), where
the vertices N are routers that connect cell sites and may
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Fig. 1: Example backhaul topology with nodes in three levels, showing
commonly used notation.

aggregate traffic from other routers (and thus cell cites), and
for every connected pair of nodes i, j ∈ N there exist edges
(i, j) ∈ E and (j, i) ∈ E. Observe that since G is connected
and acyclic, G is a tree. We denote by L the set of leaf nodes in
G, by I the set of internal nodes and by n0 the root node, i.e.,
N = L ∪ I ∪ n0. We denote the unique simple path from
node i to node j by Pi,j =

(
(i, v1), (v1, v2), ..., (v|Pi,j |−1, j)

)
,

and we denote by |Pi,j | the number of edges in path Pi,j .
Observe that |Pi,j | = |Pj,i|. We define the level l(i) of node
i ∈ N in the tree G as the number of edges from node i to
the tree’s root node n0 in the unique simple path from i to n0,
i.e., l(i) = |Pi,n0

|. We denote the children of node i ∈ N by
C(i) , {j|(i, j) ∈ E ∧ l(j) > l(i)} and the parent of node i
by P(i), where P(i) ∈ N such that i ∈ C(P(i)). We denote
by P l(i) the lth-ancestor of node i, e.g., P2(i) = P(P(i)). By
definition P0(i) = i. We refer to an edge (i, j) as the downlink
direction if j ∈ C(i) and as the uplink direction if i ∈ C(j).

We say that two nodes are siblings if they have the same
parent, and define the sibling set S(i) , {j|P(j) = P(i) ∧
i 6= j}. We denote the descendants of node i by D(i) ,
{j|l(j) > l(i) ∧ LCA(i, j) = i}, where LCA(i, j) denotes
the lowest common ancestor of nodes i and j, furthermore
we use the notation Gi(Ni, Ei) for the subgraph induced by
Ni = {i} ∪ D(i) rooted in i.

A. Objects, Demand and Storage

We denote the set of objects requested by mobile nodes
by O. We follow common practice and consider that every
object has unit size [8], [9], which is a reasonable simplification
if content is divisible into unit-sized chunks. We denote the
average request rate (demand) predicted for the peak hours for
object o ∈ O at the cell site connected to node i by wo

i .
Every node i ∈ N is equipped with a cache, and we denote

the size of the cache at node i by Ki. We denote the set of
objects stored in the cache at node i by Ai ⊂ O, |Ai| ≤ Ki.
We use the shorthand notation AV , (Aj)j∈V , where V ⊆ N ,
and A−i , (Aj)j∈N\{i}. We denote by Ai the set of object
placements that satisfy the storage capacity constraint at node i,
i.e. Ai = {Ai ∈ 2O : |Ai| ≤ Ki}, where 2O is the powerset of
O. Finally, we denote the set of objects stored at node i and at its
descendants by Ri(A) = Ai

⋃
j∈D(i)Rj(A). Figure 1 shows

an example topology with a maximum level of 2, illustrating
some of the commonly used notation.

B. Cost model

We denote the unit cost of using edge (i, j) by ci,j . Since
during peak hours most of the traffic in a mobile backhaul
is flowing downlink (serving users’ requests for content) [1],
[2], we consider that uplink edges have zero unit cost, i.e.,
ci,P(i) = 0. Without loss of generality, the cost of downlink
edges is cP(i),i > 0. We consider that edge costs are additive,
i.e., if a request for object o arrives at node i and is served
from node j then the unit cost is di,j =

∑
(v,w)∈Pj,i

cv,w. We
call di,j the distance from node j to node i. Note that the
terms cv,w are zero if they correspond to an uplink, i.e., if
w = P(v). Furthermore, observe that in general dj,i 6= di,j ,
thus distance is not symmetric (hence it is a hemimetric).

A request for object o generated by a mobile user connected
to the cell site at node i ∈ N is served locally if o ∈ Ai.
Otherwise, if node i has a descendant j ∈ D(i) for which
o ∈ Aj , the node forwards the request to the closest such
descendant. Otherwise, node i forwards the request to its parent
P(i), which follows the same algorithm for serving the request.
If an object o is not stored in any node (i.e., o /∈ Rn0

) then it
needs to be retrieved through the Backbone via the root node
n0 at a unit cost of c0.

Given a placement A = (Aj)j∈N we can define the unit
cost to serve a request for object o at node i as

di(o,A)=

{
min

{j∈N|o∈Aj}
di,j if o ∈ Rn0

di,n0
+ c0 if o /∈ Rn0

,

which together with the demand wo
i determines the cost incurred

by node i as

Ci(A) =
∑
o∈O

Co
i (A) =

∑
o∈O

wo
i di(o,A). (1)

Finally, we define the total cost C(A) =
∑

i∈N Ci(A).

C. Problem formulation

Motivated by minimizing the congestion in the mobile
backhaul during peak hours, our objective is to find a placement
that minimizes the total cost C(A). We refer to this as the
mobile backhaul content placement problem (MBCP), which
can be formulated as finding Ā = arg minA∈×i∈NAi

C(A).
It is easy to see that the MBCP problem can be formulated

as the following 0− 1 integer linear program

min
∑
i∈N

∑
o∈O

wo
i (

∑
j∈N ,j 6=i

di,jxi,j,o+(di,n0 + c0)xi,−1,o) s.t.∑
o∈Oxi,o ≤ Ki, ∀i ∈ N
xi,j,o ≤ xj,o, ∀i, j ∈ N , o ∈ O∑

j∈Nxi,j,o + xi,−1,o ≥ 1, ∀i ∈ N , o ∈ O
xi,o, xi,j,o, xi,−1,o ∈ {0, 1},

where xi,o indicates whether object o is in the storage of node i
(i.e. xi,o = 1⇔ o ∈ Ai), xi,j,o indicates whether a request for
object o at node i is served from node j, and xi,−1,o indicates
whether object o is retrieved from the Backbone, i.e., the level
of the Backbone is indicated with −1.

It can be shown that for 4 or more nodes the constraint
matrix is not totally unimodular and solving the MBCP
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would be computationally infeasible already for moderate sized
instances of the problem. We are thus interested in finding
computationally feasible, scalable distributed algorithms to
approximate the solution.

III. DISTRIBUTED 2-APPROXIMATION ALGORITHM BASED
ON GLOBAL INFORMATION

In what follows we show that if global information is
available about the object demands and placements at every
node of the network, then it is possible to obtain a 2-
approximation to the optimal solution using the Depth First
Greedy (DFG) algorithm. The DFG algorithm is based on a
depth-first traversal of the graph G, i.e., an ordering i1, . . . , i|N |
of the vertices in N , and can be executed by the nodes in an
iterative (distributed) manner. The algorithm starts with an
empty allocation (Ai = ∅); at iteration 1 ≤ k ≤ |N | node ik
populates its cache with Kik objects, one at a time, that provide
the highest global cost saving. The DFG algorithm is shown
in Figure 2.

DFG Algorithm
1: INPUT: DF Traversal (i1, . . . , i|N |)
2: k ← 1
3: Ai ← ∅, for all i ∈ N
4: for k = 1 . . . |N | do
5: while |Aik | < Kik do
6: o∗←arg max

o∈O
(C(A−ik ,Aik)−C(A−ik ,Aik ∪{o}))

7: Aik ← Aik ∪ {o∗}
8: end while
9: end for

Fig. 2: Pseudo-code of the DFG algorithm

Theorem 1. The DFG algorithm is a 2-approximation al-
gorithm for the MBCP problem in terms of cost saving, i.e.,

C(∅)−C(Ā)
C(∅)−C(ADFG) ≤ 2.

Before we prove the theorem we introduce some definitions
and previous results.

Definition 1. Let E be a finite set and let F be a collection
of subsets of E. The pair (E,F ) is a partition matroid if E =⋃k

i=1 Ei is the disjoint union of k sets, l1, ..., lk are positive
integers and F = {F |F =

⋃k
i=1 Fi, Fi ⊆ Ei, |Fi| ≤ li, i =

1, ..., k}.

Definition 2. Let E be a finite set, and f : 2E → R a real
valued function on subsets of E. Then f is submodular if for
every A,B ∈ E we have

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B).

Let us now recall a fundamental result about the maximiza-
tion of submodular functions over partition matroids.

Lemma 1. [10] Let F be a partition matroid over a set E,
and f : F → R be a non-decreasing submodular function with
f(∅) = 0. Then the DFG algorithm achieves a 2-approximation
of maxF∈F f(F ).

In what follows we show that MBCP can be formulated as
the maximization of a non-decreasing submodular function over

a partition matroid. Let us define for every object o ∈ O one
fictitious object (o, i) per node i ∈ N , i.e., (o, i) ∈ O×N . The
set of fictitious objects that can be assigned to node i is then
Ei = {(o, i)|o ∈ O} and we define the set E =

⋃
i∈N Ei. We

denote by A the family of subsets of E , defined as A = ×i∈NAi,
where Ai ⊆ Ei, |Ai| ≤ Ki is the set of object placements that
satisfy the storage capacity constraint at node i, as defined in
Section II-A.

Proposition 2. The pair (E ,A) is a partition matroid.

Proof. Consider an allocation A ∈ A and a fictitious object
(o, i) ∈ Ai. If we remove (o, i) from Ai, i.e. A′i = Ai\{(o, i)},
then A′i ⊆ Ei will still hold as well as Aj ⊆ Ej , for j ∈ N \{i},
which implies that (E ,A) is an independence system.

Consider now two allocations A,A′ ∈ A. If |A| < |A′| then
∃Ei such that |A′ ∩ Ei| > |A ∩ Ei|, which implies that there
is a node i ∈ N with at least one free space in its cache, i.e.
|Ai| < Ki. Therefore, there is an (o, i) ∈ (A′ \ A) ∩ Ei such
that A ∪ {(o, i)} ∈ A.

Proof of Theorem 1. We prove the theorem by showing that
the function C̄(A) = −C(A) is a nondecreasing submodular
function on E . Let us define the change of the global cost
after inserting an object o in the cache of node i as ∆C(A) =
C̄(A ∪ {(o, i)}) − C̄(A), where A ∈ A and ∃i ∈ N for
which |Ai| < Ki. We show that C̄(A ∪ (o, i)}) − C̄(A) ≥
C̄(A′ ∪ (o, i)}) − C̄(A′) for all A ⊆ A′ ∈ A and (o, i) ∈
Ei \ A′i. We now distinguish between two cases. If ∃j such
that (o, j) ∈ A′j \ Aj then the difference ∆C(A) is

∆C(A) = c0

∑
k∈{N|LCA(k,i)=n0}

wo
k + (c0 + di,n0

)
∑
k∈Ni

wo
k+

+

l(i)−1∑
t=1

(c0 + dPt(i),n0
)
∑

k∈{NPt(i)\NPt−1(i)}

wo
k,

and the difference ∆C(A′) is

∆C(A′) = (c0 + di,LCA(j,i))
∑
k∈Ni

wo
k+

+

l(i)−l(LCA(j,i))−1∑
t=1

(c0 + dPt(i),LCA(j,i))
∑

k∈{NPt(i)\NPt−1(i)}

wo
k.

Since l(LCA(j, i)) ≥ 0, it holds that ∆C(A) > ∆C(A′).
Otherwise, if ∃j such that (o, j) ∈ Aj or if @j such that
(o, j) ∈ A′j then ∆C(A) = ∆C(A′). The result then follows
by applying Lemma 1 to C(∅)− C(A).

Observe that the approximation ratio is bounded for arbitrary
traversals of the graph. Nonetheless, a pre-order depth-first
traversal allows for a distributed implementation of DFG with
a communication overhead of

∑|N |
k=1(|N | − k)Kik .

It is important to note that DFG differs from the dis-
tributed global greedy (DGG) algorithm used in [5], [11].
DGG chooses in every iteration the fictitious item (i, o) that
maximizes the cost saving, and thus has computational com-
plexity O(|N |2 maxi Ki|O| log(|N ||O|)). In contrast, DFG
populates the caches of the nodes one-by-one, and thus
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has computational complexity O(|N |maxik Kik |O| log(|O|)).
Unfortunately, DFG requires global information at every node
of the network, which may cause significant communication
overhead. We therefore turn to distributed approximation
algorithms based on limited information.

IV. DISTRIBUTED ALGORITHMS UNDER LIMITED
INFORMATION

In what follows we propose two distributed algorithms that
do not need global information about the demands and the
network topology.

A. Local Greedy Swapping (LGS) Algorithm

The first algorithm, called Local Greedy Swapping (LGS),
allows nodes to swap objects with their parents based on the
aggregate demands and the object placements in their descen-
dants only. Denoting the placement at node i at iteration k
by Ai(k), the LGS algorithm starts with an arbitrary initial
object placement A(0) = (Ai(0))i∈N in which each node
i ∈ N stores Ki objects. At iteration k the algorithm computes
the set of beneficial swaps T (A(k)) ⊂ N × O2. A triplet
(i, o, p) ∈ T (A(k)) corresponds to that node i can swap object
p ∈ Ai(k) with object o ∈ AP(i)(k) at its parent node P(i).
For i = n0, i.e., (n0, o, p) ∈ T (A(k)) the root node n0 can
evict object p and can fetch object o through the Backbone.
The set of implemented swaps S(A(k)) ⊆ T (A(k) is then
chosen to increase the local cost saving greedily.

To define the set of beneficial swaps T (A), let us introduce
the function I(i, o, p) to indicate whether the aggregate demand
at node i and its descendants D(i) is higher for object o than
for object p,

I(i, o, p)=

1, if
∑
j∈Ni

(wo
j − wp

j ) > 0

0, otherwise.
(2)

Given a placement A, node i might be interested in swapping
object p ∈ Ai with object o ∈ AP(i) at its parent if I(i, o, p) =
1 or if p is available in the cache of node i’s descendants D(i),
i.e., p ∈ Ri \Ai, as in this case node i can retrieve object p at
no cost even if p /∈ Ai. We use this observation to define the
set of node-object triplets that would be beneficial for swapping
at placement A,

T (A)={(i, o, p)|i ∈ N , o ∈ AP(i) \ Ri, p ∈ Ai,(
(p ∈ Ri \ Ai) ∨ (p /∈ Ri \ Ai ∧ I(i, o, p) = 1)

)
}.

The algorithm terminates at iteration k if the set T (A(k)) is
empty. The pseudo-code of LGS is shown in Fig. 3.

To complete the definition of the algorithm, we now describe
a greedy algorithm to choose the set S(A(k)) ⊆ T (A(k))
at iteration k. Given T (A(k)), we choose a node ik with a
child that would like to swap (i.e., ∃j ∈ C(ik) and (j, o, p) ∈
T (A(k))). Given ik we select the best swap (jk, ok, pk) of
its children, i.e., the one that maximizes the local cost saving
in the subtree Nik (swap with parent), and we then allow
every child node j ∈ C(ik) to insert into its cache objects o ∈
Aik(k)∪{pk}, if doing so would increase the local cost saving
(copy from parent). The algorithm is shown in Algorithm 1.

LGS Algorithm
1: k ← 0
2: while |T (A(k))| > 0 do
3: A(k + 1)← A(k)
4: for each (i, o, p) ∈ S(A(k)) do
5: Ai(k + 1)← (Ai(k) ∪ {o} \ {p})
6: if p /∈ AP(i)(k) then
7: AP(i)(k + 1)← (AP(i)(k) ∪ {p} \ {o})
8: end if
9: end for

10: k ← k + 1
11: end while

Fig. 3: Pseudo-code of the LGS algorithm

Lemma 2. The global cost C decreases strictly at every swap.

Proof. Consider (i, o, p) ∈ S(A(k)) at iteration k. For every
node j ∈ N \ Ni it holds dj,i = dj,P(i) + ci,P(i) = dj,P(i),
hence dj(o,A(k + 1)) = dj(o,A(k)) and dj(p,A(k + 1)) =
dj(p,A(k)). Consequently, Cj(A(k + 1)) = Cj(A(k)) for all
j ∈ N \ Ni.
Consider now node j ∈ Ni. Since S(A(k)) ⊆ T (A(k)),
it follows that o /∈ Ri(k) and o ∈ AP(i)(k). Hence
dj(o,A(k)) = dj,i + cP(i),i, dj(o,A(k + 1)) = dj,i, and the
difference in the cost ∆C(k + 1) before and after the swap is

∆C(k + 1) =
∑
j∈Ni

[Cj(A(k + 1))− Cj(A(k))]

=
∑
j∈Ni

[
wo

jdj,i − wo
j (dj,i + cP(i),i) + wp

j dj(p,A(k + 1))

−wp
j dj(p,A(k))

]
=
∑
j∈Ni

[
−wo

j cP(i),i + wp
j

(
dj(p,A(k + 1))

− dj(p,A(k))
)]

.

Similarly, S(A(k)) ⊆ T (A(k)) implies that p ∈ Ai(k), hence
dj(p,A(k)) ≤ dj,i. We now distinguish between two cases. If
dj(p,A(k))<dj,i, then dj(p,A(k+ 1)) = dj(p,A(k)), which
implies that ∆C(k + 1)<0. Otherwise, if dj(p,A(k))=dj,i,
then dj(p,A(k + 1))=dj,i + cP(i),i. Since I(i, o, p)=1, then
∆C(k + 1)=cP(i),i

∑
j∈Ni

(wp
j −wo

j )<0. This proves the lemma.

We can use this result to show that the algorithm terminates
after a finite number of iterations.

Theorem 3. The LGS algorithm terminates after a finite
number of iterations.

Proof. Consider iteration k of the LGS algorithm. Call s(A) the
object placement that results from applying swap s = (j, o, p)
to placement A. It follows from the proof of Lemma 2 that for
any swap s = (j, o, p) ∈ S(A(k)) and every node l ∈ N \Nj ,
it holds {Rj(A(k))∪Aik(k)} = {Rj(s(A(k)))∪ s(Aik(k))}
and hence Cl(s(A(k))) = Cl(A(k)). Since for every j, l ∈
C(ik), j 6= l it holds l /∈ Nj , we can consider each node
j ∈ C(ik) separately.
Consider swap s = (j, o, p) ∈ S(A(k)). It follows from (3)
that either p ∈ Rj\Aj(k) or I(j, o, p) = 1. Therefore, from the
proof of Lemma 2, it follows that Cl(s(A(k))) ≤ Cl(A(k)) for
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Algorithm 1 S(A(k)) = populateS(A(k), ik)

1: Select the best swapping opportunity at the children of ik,

(jk, ok, pk) ← arg max
{(j,o,p)∈T (A(k))|j∈C(ik)}

∑
n∈Nj

ci,j(w
o
n − wp

n)

S(A(k)) ← (jk, ok, pk)

2: Further decrease the cost function through allowing nodes
in C(ik) to insert objects available at {Aik(k) ∪ {pk}}.

PEj ← (Aik(k) ∪ {pk}) ∩ Aj(k)
POj ← (Aik(k) ∪ {pk}) \ Rj(k)
while ∃(j, o, p) s.t. o ∈ POj and p ∈ PEj and

(p ∈ Rj \Aj(k))∨(p /∈ {Rj \Aj(k)}∧I(j, o, p) = 1))
(3)do

S(A(k))← S(A(k)) ∪ {(j, o, p)}
PEj ← PEj \{p}
POj ← POj \{o}

end while

all l ∈ Nj . In particular, for swap sk = (jk, ok, pk) ∈ T (A(k)),
it holds that I(jk, ok, pk) = 1, which implies Cjk(sk(A(k))) <
Cjk(A(k)).
Since ×i∈NAi is a finite set, C(A(k)) can not decrease
indefinitely and the LGS algorithm terminates after a finite
number of iterations.

Besides guaranteed to converge starting from an arbitrary
initial placement, a nice property of LGS is that if started from
an optimal placement, the algorithm is stable in the sense that
it does not make any changes, as we show next.

Corollary 1. An optimal content placement Ā is stable under
the LGS algorithm.

Proof. From Lemma 2 and Theorem 3 it follows that C(A(k+
1)) < C(A(k)) for any swap s ∈ S(A(k)). By definition
@A′∈ ×i∈NAi s.t. C(A′) < C(Ā), hence the result.

For simplicity, we restricted ourselves to a single ik per
iteration when defining S(A(k)), but the above results hold for
any set of nodes that are not each others’ descendants, hence
the algorithm can be executed in parallel.

B. h-Push Down Algorithm

In the LGS algorithm, every node i swaps objects based on
the information about the object placement and the aggregate
demand for objects at its descendants D(i). In the following we
provide a distributed algorithm that allows node i to leverage
additional information on placements and on aggregate demands
for objects. In the h-Push Down algorithm, every node i has
information about the placement ANj

and about the object
demands wo

k, k ∈ Nj , for every ancestor j that lies within its
information horizon h, i.e., for j = P l(i) for 0 ≤ l ≤ h.

The algorithm starts with an object placement (Ai(0))i∈N
in which each node i ∈ N stores Ki objects that have the
highest aggregated demands in the subnetwork Ni and that
are not available in the cache of node i’s descendants D(i).

Algorithm 2 A′ = PushDown(i,A)

1: t← 0
2: A0 ← A
3: do
4: n← Pt(i)
5: ot ← arg mino∈At

P(n)
C(At

n ∪ {o},At
−n)

6: At+1
n ← At

n ∪ {ot}
7: At+1

P(n) ← A
t
P(n) \ {o

t}
8: t← t + 1
9: while n 6= n0

10: return A′

An iteration of the algorithm consists of two steps. The first
step is an eviction operation at some node i. The second step
is a PushDown move, a sequence of placement updates such
that at each update one object o ∈ APl(i) is moved from P l(i)
to P l−1(i), for l = 1, 2, ..., k, where Pk−1(i) = n0. In the
last update of the PushDown move, i.e., l = k, one object is
retrieved through the Backbone and stored at the root node
Pk−1(i) = n0. The pseudo-code of the PushDown move of
the h-Push Down algorithm is shown in Algorithm 2.

Central to the algorithm is the LCA of node i and the node
from which node i would retrieve object o in the placement
(∅,A−i), i.e., if it had no objects cached,

P o
i (A−i) , LCA

(
i, arg min
{j∈N\{i}|o∈Aj}

di,j

)
. (4)

Similarly, we define P o
i (A) for placement A, i.e., P o

i (A) = i
if o ∈ Ai, otherwise P o

i (A) = P o
i (A−i).

The following lemma shows an important property of the
PushDown move.

Lemma 3. A move A′ = PushDown(i,A) always decreases
the global cost by

∆CPD(i,A) , C(A)−C(A′) =

l(i)∑
t=0

cPt+1(i),Pt(i)

∑
j∈T (t)

wot

j ,

where T (t) = {j ∈ NPt(i)|P ot

j (A) = Pt+1(i)}.

Proof. Consider iteration t of move A′ = PushDown(i,A).
Since cn,P(n)=0, for all j∈N \Nn it holds that dj(ot,At)=
dj(o

t,At+1). For nodes j ∈ Nn we need to distinguish be-
tween two cases. If P ot

j (At) 6= P(n), then P ot+1

j (A)=P ot

j (At)
and dj(o

t,At)=dj(o
t,At+1). It follows that, if j /∈ T (t), then

Co
j (At)−Co

j (At+1) = 0. Otherwise, P ot

j (At)=P(n) implies
P ot

j (At+1)=n, and hence Co
j (At)−Co

j (At+1) = wot

j cP(n),n.
By summing over all the l(i) iterations of the PushDown move,
we prove the lemma.

In the h-Push Down algorithm, a node i can only initiate a
move, and therefore evict one object o, if o is cached at node i’s
descendants or if P o

i (A−i) lies within node i’s information
horizon, i.e., P o

i (A−i) = P l(i) for some 0 < l ≤ h. We use
Zi(A) to denote the set of objects that are candidate for eviction
at node i under placement A, i.e.,

Zi(A) = {o ∈ Ai|P o
i (−A) ∈

⋃h
l=0P l(i) ∨ o ∈

⋃
j∈D(i)Aj}.

We use ∆CEV(i, o,A) , C(A)−C(Ai \ {o},A−i) to denote

5



h-Push Down Algorithm
1: k ← 0
2: Z0 ← {i ∈ N such that |Zi(A(0))| > 0}
3: A ← A(0)
4: while |Zk | > 0 do
5: Pick ik ∈ Zk

6: Compute the least cost eviction

ok ← arg min
o∈Zik

|∆CEV(ik, o,A)|

7: Compute ∆Ch
PD(ik,A) as

∆Ch
PD(ik,A) =

min(h,l(ik))∑
t=0

cPt+1(ik),Pt(ik)

∑
j∈T (t)

wot

j ,

8: if ∆Ch
PD(ik,A) + ∆CEV(ik, o

k,A) > 0 then
9: A(k + 1)← PushDown(i, (Aik \ {ok},A−ik))

10: k ← k + 1
11: A ← A(k)
12: Zk ← {i ∈ N such that |Zi(A(k))| > 0}
13: else
14: Zk ← Zk \{ik}
15: end if
16: end while

Fig. 4: Pseudo code of the h-Push Down algorithm.

the change in the global cost caused by the eviction of object o
at node i. Observe that ∆CEV(i, o,A) ≤ 0.

The pseudo-code of the h-Push Down algorithm is shown in
Figure 4. We start with showing that the algorithm terminates
in a finite number of iterations.

Theorem 4. The h-Push Down algorithm terminates after a
finite number of iterations.

Proof. We prove the theorem by showing that the global
cost C(A) decreases at every iteration of the h-Push Down
algorithm. From Lemma 3 it follows that

∆CPD(ik, (A(k)ik\{ok},A(k)−ik)) ≥ ∆Ch
PD(ik,A(k)). (5)

By definition, the variation of the global cost at iteration k can
be written as the sum of the variation due to the eviction and the
variation due to PushDown move, i.e., ∆CEV(ik, o

k,A(k)) +
∆CPD(ik, (A(k)ik \ {ok},A(k)−ik)) = C(A(k))−C(A(k +
1)). The proof of the theorem follows from (5).

Furthermore, similar to LGS, the algorithm does not make
any changes to an optimal placement, as shown next.

Corollary 2. The optimal content placement Ā is stable with
respect to the h-Push Down algorithm.

Proof. The proof is analogous to the proof of Corollary 1.

Observe that the computation of ∆Ch
PD(ik,A(k)) depends

only on the object demands and the placements at the
nodes in the set NPh(ik). Furthermore, in order to compute
∆CEV(ik, o

k,A(k)), node ik only requires information about
placements and demands in the subnetwork N

P ok
i (A−i(k))

,
which lies within node ik’s information horizon h.

V. NUMERICAL RESULTS

We use simulations to evaluate the approximation ratio and
the convergence rate of the proposed algorithms. To generate
backhaul topologies, we use the Manhattan model, in which |N |
nodes are randomly placed on a |N |×|N | grid. Given the node
placement, we build a weighted complete graph by setting the
weight on edge (i, j) equal to the Euclidean distance between
nodes i and j, computed based on their coordinates. We then run
Kruskal’s algorithm [12] on the resulting weighted complete
graph to compute a minimum spanning tree to obtain the
topology G. We consider two different cost models. In the
distance cost model the edge costs cP(i),i are equal to the
weights used for generating the tree. In the descendants cost
model the edge costs cP(i),i are proportional to the size of the
subtree Ni, as larger subnetworks likely lead to higher peak
loads and less available bandwidth on the links serving them.

The object demands wo
i follow Zipf’s law. For the ranking

of the object demands at the nodes we consider two models. In
the case of homogeneous demands, the object demands have the
same rank at all nodes. In the case of heterogeneous demands,
every demand wo

i for object o at node i is ranked as in the
case of homogeneous demands with 0.5 probability. With 0.5
probability, the rank of wo

i is picked uniformly at random. The
results shown are the averages of 500 simulations, and the
error bars show 95% confidence intervals.

As a baseline for comparison, we use a selfish distributed
algorithm called Distributed Local-Greedy (DLG), which is
based on global information about the object demands and
placements at every node of the network. Following the DLG
algorithm, starting from a randomly chosen allocation, at itera-
tion k node ik optimizes its placement of objects Aik(k) so as
to minimize the cost for serving the requests from the local cell
site, given the placement of objects A−ik(k) at the other nodes
in the network [13], [14], [15]. As there is no guarantee that
the DLG algorithm terminates [15], we run it for |N | iterations
and we set ik = k. Note that although DLG is seemingly
similar to DFG, DFG minimizes the global cost based on
global information, while DLG minimizes the local cost based
on global information, hence it is algorithmically simpler.

A. Performance of distributed algorithms

In order to compare the performance of the proposed
algorithms, as well as to evaluate the tightness of the analytical
results, we computed the optimal placement Ā and the cost-
approximation ratio C(A)/C(Ā) for each algorithm. To make
the computation of the optimal placement feasible, we consid-
ered a relatively small scenario with |N | = 20, |O| = 100 and
Ki = 2 for all i ∈ N . Figure 5 shows the cost-approximation
ratio as a function of the Zipf exponent of the object demand
distribution for LGS, DLG, DFG and for the h-Push Down
algorithm with global information, i.e., for h = maxi∈N l(i),
for the descendants cost model.

The most salient feature of the figure is that the approx-
imation ratio of the LGS algorithm increases exponentially
with the Zipf exponent at a fairly high rate. The reason for
the poor performance in the case of homogeneous demands is
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Fig. 5: Average approximation ratio vs. Zipf exponent for the
LGS, DLG, DFG, and h-Push Down algorithms. Heterogeneous and
homogeneous demands, |O| = 100, |N | = 20, Ki = 2.
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Fig. 6: Redundancy r(A) vs. Zipf exponent for LGS, DLG, DFG,
and h-Push Down and for the optimal placement. Heterogeneous and
homogeneous demands, |O| = 100, |N | = 20, Ki = 2.

that the LGS algorithm populates the set S(A(k)) exclusively
based on the rankings of the object demands and not based on
their values. As the Zipf exponent increases, the demand of the
most popular content increases and the optimal solution might
differ significantly from the allocation reached by the LGS
algorithm. In order to validate this hypothesis, we computed
the redundancy of a placement A using the index

r(A) =

∑
i∈N

∑
j∈N\{i}

(
1− min(Ki,Kj)−|Ai∩Aj |

min(Ki,Kj)

)
|N |(|N | − 1)

. (6)

Intuitively, r(A) is the average ratio of objects common
between all pairs of placements Ai and Aj . In Figure 6 we plot
the average r(A) index of the final placements reached by the al-
gorithms, for the same scenario as Figure 5. The figure confirms
that as the Zipf exponent increases, the LGS algorithm fails to
introduce redundancy, which explains its poor performance.

Comparing the performance of h-Push Down to that of
DFG we observe that h-Push Down (with global information)
performs better than DFG, which is also reflected by the
redundancy index, which is very close to the optimal (cf.
Fig. 5). Finally, it is noteworthy that the DLG algorithm,
which corresponds to selfish local optimization, fails to achieve
performance close to the optimal, despite the availability of
global information.

In order to evaluate the performance of the algorithms for
larger scenarios, in the following we use the DLG algorithm as
a baseline for comparison, as it is prohibitive to compute the
optimal placement. Recall that the DLG algorithm optimizes
the placement of objects in order to minimize the local cost,
which would make it a reasonable simple choice in absence
of more elaborate distributed algorithms.

To capture the performance of the algorithms relative to
DLG we define the performance gain of an algorithm as
the ratio between the cost of the placement reached by the
DLG algorithm and the cost of the placement reached by the
algorithm. It follows from (1) that the performance gain is also
a measure of the increased hit rate achieved by the algorithm
relative to DLG. Figure 7 shows the performance gain for the
LGS, DFG and h-Push Down (for two values of the information

horizon h) algorithms, as a function of the number of nodes for
Ki = 20. The results are shown for heterogeneous demands
using a Zipf exponent of 1, for the two cost models. We observe
that the performance gain for the DFG and the h-Push Down
algorithms increases with the number of nodes. Furthermore,
the figure shows that h-Push Down outperforms DFG (i.e.,
it is close to optimal) for both values of the horizon h. The
figure also shows that LGS performs just slightly better than
DLG, with a decreasing gain as the network size increases.

Figure 8 shows the number of iterations needed to compute
the final object placement corresponding to the results shown
in Figure 7. Recall that the DFG algorithm starts with an
empty allocation and terminates in

∑
i∈N Ki iterations, and

can thus be used a baseline in terms of convergence. The
results show that LGS performs worst, while h-Push Down for
h = 4 requires almost an order of magnitude less iterations to
terminate than DFG.

Figure 9 shows the performance gain as a function of the
cache sizes for |N | = 50. The figure shows that for higher
cache sizes the performance gain of the DFG and h-Push
Down algorithms over the DLG algorithm increases faster
than exponentially. In the case of global information, the h-
Push Down algorithm outperforms the DFG algorithm, while
in the case of non-global information, i.e., for h = 4, it
achieves performance close to the DFG algorithm. Furthermore,
the performance gap between the h-Push Down algorithm
with global and non-global information increases for higher
cache sizes. The figure also confirms that the LGS and DLG
algorithms achieve a comparable total cost.

B. Impact of the information horizon (h)

Finally, we evaluate the impact of the information horizon h
on the performance of h-Push Down. We define the perfor-
mance gain PGh(A) for horizon h as the ratio between the cost
of the placement A1 reached by the h-Push Down algorithm
with h = 1 and the cost of the placement Ah reached with
horizon h, i.e. PGh(A) = C(A1)

C(Ah)
.

Figures 10 and 11 show the performance gain PGh(A)
and the number of iterations, respectively, for the h-Push
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Down algorithm as a function of the information horizon h
for |N | = 100 and two different cache sizes Ki. We plot
the performance gain PGh(A) for the same cost and object
demands models as in Figures 7 and 9. We observe that
the performance gain increases with a decreasing marginal
gain in h, making the algorithm perform fairly well with
limited available information (low h). Furthermore, the same
observation holds for the convergence time, hence a moderate
value of h provides a good trade-off between performance and
convergence time. Figure 10 also shows that as the horizon h
increases, the performance gain increases more in the case of
the descendants cost model than in the case of the distance
cost model. The reason is that as the horizon h increases, the
nodes have access to the cost of edges between nodes at lower
levels of the tree (i.e., closer to the root), which in the case
of the descendants cost model are the edges with highest cost,
and thus they have a higher impact on the total cost.

VI. RELATED WORK

Closest to ours are recent works on content placement in
networks [16], [5], [7]. The authors in [16] provide an algorithm
for computing the optimal placement in a hierarchical network
by reducing the content placement problem to a minimum-cost
flow problem. Motivated by the computational complexity of

the problem, they design a distributed amortizing algorithm that
achieves a constant factor approximation. The model considered
in [16] is based on the ultrametric cost model introduced
in [6], which differs from our model on the assumption of
symmetric costs between nodes. The authors in [5] give insights
in the structure of the optimal placement in a regular two level
hierarchical network, and they develop a greedy distributed
2-approximation algorithm. The authors in [11] consider a
hybrid network with in-network caching and they propose a
(1 − 1/e)-approximation greedy algorithm. A more generic
cost model was considered in [7], where the authors develop a
10-approximation algorithm by rounding the optimal solution
of the LP-relaxation of the problem. [17] proposed a set of
centralized, polynomial time algorithms with approximation
guarantees, for the joint problem of request routing and content
replication under strict bandwidth constraints at the storage
sites. In contrast to [16], [5], [11], [7], [17], in our work we
developed two distributed algorithms for computing a content
placement based on limited information on the content demands
and on the network topology, that can be used to solve large
problem instances with prohibitive space complexity.

Related to ours are recent works on game theoretical analyses
of distributed selfish replication on graphs [13], [18], [19], [20],
[21], [14], [15], as they can serve as a basis for distributed
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Fig. 11: Number of iterations vs horizon h for two values of cache
sizes Ki ∈ {10, 20} on the Manhattan graph with descendants and
distance cost models. Results for |O| = 5000 and |N | = 100.

content placement algorithms. Equilibrium existence when the
access costs are homogeneous and nodes form a complete graph
were provided in [13], and results on the approximation ratio
(referred to as the price of anarchy) were provided in [18], [19]
for homogeneous costs and a complete graph. Non-complete
graphs were considered in [20], [21], [14], and results on the
approximation ratio of a distributed greedy algorithm were
given for the case of unit storage capacity and an infinite
number of objects in [20]. [21] considered a variant of the
problem where nodes can replicate a fraction of objects, and
showed the existence of equilibria, while convergence results
were provided for the integer problem in [14] in the case
of homogeneous neighbor costs. The case of heterogeneous
neighbor costs, for which the non-convergence of distributed
greedy replication was shown in [15] is a generalization of our
model, and thus the negative result provided in [15] may not
apply to our case. Different from these works, in this paper
we consider caches managed by a single entity, and thus we
consider the minimization of the total cost as opposed to the
selfish minimization of the cost of the individual nodes. Our
objective of minimizing the total cost also sets this work apart
from recent work on cache networks in the context of content
centric networks, e.g., [22].

VII. CONCLUSION

We considered the problem of minimizing the bandwidth
demand in a mobile backhaul through cooperative caching, and
formulated it as a 0-1 integer linear program. We proposed a
2-approximation distributed algorithm that is based on global
information. Furthermore, we proposed a low complexity dis-
tributed algorithm based on information about object demands
at descendants, and an algorithm with an adjustable level of
available information. We proved convergence and stability of
the algorithms. We used extensive simulations to evaluate the
performance of the proposed algorithms. Our results show that
information about object demands at descendants is insufficient
for good cooperative caching performance, but the proposed h-
Push Down algorithm achieves consistently good performance
despite limited information availability, consistently better than
greedy optimization based on global information.
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