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Inferring Class Label Distribution of Training Data from Classifiers: 
An Accuracy-Augmented Meta-Classifier Attack

Class-Label Distribution Inference

Numerical Results

Attack Model:
• White box attack

• Similar datasets available to attacker 
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• Develop new meta-classifiers specific to other target 

architectures like CNNs

• Mitigation measures

• Extension to Federated Learning

Potential Countermeasure
• Random oversampling of minority class: address class-imbalance

• Makes class-label distribution uniform

• Meta-classifier can still estimate original distribution!

• Further training on oversampled datasets improves performance
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UCI Census Income Classification      MNIST (0 and 1)

• Binary classification: Class-label distribution is Bernoulli (p)

• Accurate estimates for most values of p especially very imbalanced datasets

• Shadow-classifiers trained using class-label distributions with different step sizes (Δ𝑝𝑝)

• Large improvements over baseline (Ganju et.al)
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Ingredients for class-label distribution inference:

• Target classifier 𝑦𝑦 = 𝑓𝑓𝑡𝑡 𝑥𝑥; 𝜃𝜃 trained on class-label distribution 𝑝𝑝𝑡𝑡
• For inference: parameter 𝜃𝜃, accuracy 𝑎𝑎 over auxiliary dataset  

𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎 with  𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 samples from each class used 

• Metric of accuracy
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𝑝𝑝𝑡𝑡 𝑐𝑐

�̂�𝑝𝑡𝑡 𝑐𝑐

• Meta classifier �̂�𝑝 = 𝑙𝑙𝑀𝑀𝐶𝐶 𝜃𝜃,𝑎𝑎;𝜔𝜔𝑀𝑀𝐶𝐶 parameters learned via shadow-training

• Shadow-training datasets 𝑆𝑆𝐷𝐷𝑘𝑘 ,𝑝𝑝𝑘𝑘 to train shadow classifiers 𝑓𝑓𝑘𝑘
• Use parameters 𝜃𝜃𝑘𝑘 and accuracy 𝑎𝑎𝑘𝑘 to learn meta-classifier parameters 𝜔𝜔𝑀𝑀𝐶𝐶
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• Sensitive information in banking, manufacturing, health

• Question: Can adversary infer class label distribution based on 

trained model ?

Meta-Classifier Training
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