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ABSTRACT
With the advent of edge computing, there is increasing in-

terest in wireless latency-critical services. Such applications

require the end-to-end delay of the network infrastructure

(communication and computation) to be less than a target

delay with a certain probability, e.g., 10
−2
-10

−5
. To deal with

this guarantee level, the first step is to predict the transient

delay violation probability (DVP) of the packets traversing

the network. The guarantee level puts a threshold on the

tail of the end-to-end delay distribution; thus, it makes data-

driven DVP prediction a challenging task. We propose to

use the extreme value mixture model in the mixture den-

sity network (MDN) method for this task. We implemented

it in a multi-hop queuing-theoretic system to predict the

DVP of each packet from the network state variables. This

work is a first step toward utilizing the DVP predictions,

possibly in the resource allocation scheme or queuing dis-

cipline. Numerically, we show that our proposed approach

outperforms state-of-the-art Gaussian mixture model-based

predictors by orders of magnitude, in particular for scenarios

with guarantee levels above 10
−2
.

KEYWORDS
edge computing, delay violation probability, time sensitive

networks, extreme value mixture models

ACM Reference Format:
Seyed Samie Mostafavi, György Dán, James Gross. 2021. Data-

Driven End-to-End Delay Violation Probability Prediction with

Extreme Value Mixture Models. In The Sixth ACM/IEEE Symposium
on Edge Computing (SEC ’21), December 14–17, 2021, San Jose, CA,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SEC ’21, December 14–17, 2021, San Jose, CA, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8390-5/21/12. . . $15.00

https://doi.org/10.1145/3453142.3493506

USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/

3453142.3493506

1 INTRODUCTION
Latency-critical applications are emerging as important use

cases for edge computing systems. Examples of such applica-

tions include cyber-physical systems (CPS) and Human-in-

the-loop (HITL) applications, where the end-nodes require

timely response from the edge server for smooth operation.

Such closed-loop applications with real-time requirements

have traditionally been either implemented with embedded

computers, i.e., eliminating the need for communication, or

communication was performed over wired networks with

dedicated capacity. With the advent of edge computing, there

is increasing interest for deploying networked closed-loop

applications over wireless links as well. For instance, wire-

less time-sensitive networks (TSN) are emerging based on

IEEE 802.11ax, and 5G cellular mobile networks and edge

computing are expected to enable reliable, delay bounded,

high-bandwidth industrial communications. Hence, it is ex-

pected that the need for wireless closed-loop services will

grow substantially over the next years [3, 4]. For latency-

critical applications, the end-to-end delay of the network

must be guaranteed not to violate a target delay with a cer-

tain probability. For instance, there are HITL applications

that typically have delay targets around 100mswith the guar-

antee levels in the range of 10
−2−10

−3
[11]. Importantly, it is

the tail of the end-to-end delay distribution which is critical

for the guarantee level and not the average delay.

The probability that a packet will not successfully tra-

verse the closed-loop within a certain delay bound or delay

violation probability (DVP) is a critical metric in this con-

text. In order to deal with the guarantee level efficiently, the

transient DVP must be accurately predicted based on the

instantaneous state of the network. Then, the edge infras-

tructure (wireless network and compute node) could utilize

DVP predictors to deal with the delay bound and attune their

resource allocation scheme or queue management policy. In

this work we study how to estimate the transient DVP using

a model which is accurate for the tail as well as the average

latency.
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1.1 Related Works
The problem of delay prediction in communication networks

has been addressed by several previous studies. Previous

studies typically focus either on analytical approaches or

exploit data-driven methods. For example, authors in [2],

attempt to characterize the DVP by finding probabilistic

bounds on the end-to-end delay of a multi-hop network.

They obtain the bounds using stochastic network calculus.

However, the bounds are only applicable to i.i.d service pro-

cesses, i.e., service times cannot be correlated .

Among the data-driven approaches, there are a few works

that chose to implement and evaluate an end-to-end latency

predictors on a real network. One of them is [5], where the

authors use a histogram as the conditional distribution and

rely on system variables such as position, time, radio channel,

and received signal power for latency estimation. In [9],

a Gaussian mixture model with mixture density network

(MDN) is used to predict service metrics such as response

time or frame rate from a set of infrastructure measurements

in a cloud environment.

Another common data-driven approach is to design the

predictors in a queuing theoretic context [6, 12]. Authors

in [6] propose to predict the expected waiting time in a sin-

gle multi-server queue from the queuing delay history, and

compare their approach to common estimators based on

the queue length. Authors in [12] introduce a framework

to predict waiting times in service queues. They consider

various predictors, including delay-history-based predictors

and snapshot predictors. Contrary to ours, these data-driven

works focus on average delay prediction and they do not con-

sider the distribution of the delay. A closely related queuing-

theoretic data-driven work is [7], where the authors used

MDNs to predict the distribution of the end-to-end delay

given the network’s state, defined as the tandem queues’

backlogs. The predictor in [7] is built using Gaussian mix-

ture models (GMM), which works well for the body of the

distribution, but is not good at predicting the tail probabili-

ties, which is the focus of our work.

1.2 Contributions
The main contribution of this work lies in proposing a data-

driven predictor that accurately and efficiently predict the

DVP of packets for real-time closed-loop applications. Our

proposed predictors do not assume i.i.d. service processes,

make no assumption about the arrival process, and are ap-

plicable to networks with general stationary service time

processes. Numerically, we show that our proposed approach

outperforms state-of-the-art predictors substantially, in par-

ticular for scenarios with limited training data. A key feature

of the proposed approach that ensures accurate tail predic-

tion is to leverage extreme value theory models. To the best

Figure 1: Illustration of the considered queuing net-
work model for closed-loop applications.

of our knowledge, ours is the first data-driven transient DVP

predictor that is designed and evaluated extensively for tail

probability prediction.

2 SYSTEM MODEL AND PROBLEM
STATEMENT

We consider the end-to-end latency of tasks sent over a net-
work from an end node to a compute node and back, as

illustrated in Figure 1. The end node interfaces with the con-

trolled plant (sensor/actuator) or a human user (augmented

reality, for instance). The compute node provides computa-

tional capacity. The end-to-end latency of a task consists of

the following. The end node first transmits a data packet

(e.g. the sensor data) to the compute node (e.g. control unit)

to be processed. After receiving the packet, the compute

node executes a computation task on the data and sends a

response packet (e.g. the actuation data) to the end node.

Once the packet is received by the end node, it is processed

instantaneously without any further delay.

We model the considered closed loop system as a tandem

queuing network with three queues, as shown in Figure 1.

Each queue has a single server, an infinite buffer, and serves

tasks in first-in, first-out (FIFO) order. Tasks are generated at

the end node and queued for the up-link transmission. Once

they are successfully received at the compute node, they are

buffered again until the compute node becomes available

and can process the corresponding task. The resulting feed-

back is again first queued upon availability of the down-link

resources, and then transmitted back to the end node.

Let us denote by𝑇𝑛 the generation time of task𝑛, and by𝑌𝑛
its sojourn time or end-to-end delay in the queuing network.

The completion time of task 𝑛 is then 𝑇𝑛 + 𝑌𝑛 . Similarly, we

denote by𝑊 𝑖
𝑛 the queueing time of task 𝑛 in queue 𝑖 ∈ 1, 2, 3,

by 𝑆𝑖𝑛 its service time in queue 𝑖 , and by 𝑌 𝑖
𝑛 = 𝑊 𝑖

𝑛 + 𝑆𝑖𝑛 the

resulting sojourn time. Clearly, 𝑌𝑛 = 𝑌 1

𝑛 + 𝑌 2

𝑛 + 𝑌 3

𝑛 . We de-

note by 𝐹𝑆𝑖 (𝑠) the distribution of the service time 𝑆𝑖 , and
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assume that the service process is stationary. The distribu-

tions and their high-order characteristics are considered to

be unknown.

Problem Statement: We are interested in predicting the

DVP of task 𝑛, i.e., the probability that the sojourn time of

task 𝑛 will exceed an end-to-end latency target 𝜏 , given the

state of the network at time 𝑡 , i.e.,

𝜑𝑛,𝑡 = P
[
𝑌𝑛 > 𝜏 | 𝑌𝑛 ≥ 𝛿𝑛,𝑡 , 𝑋𝑡

]
, (1)

where 𝛿𝑛,𝑡 = 𝑡 −𝑇𝑛 denotes the time that task 𝑛 has already

spent traversing the network path, and 𝑋𝑡 is the state of the

network at time 𝑡 .

3 APPROACH
At time instant 𝑡 we define the state of the network path

by the vector 𝑄𝑡 with domain Q ⊂ Z3+ which denotes the

number of tasks present in the queues, and the vector 𝑀𝑡

with domainM ⊂ R3+ which denotes the time in service of

the tasks being served at time 𝑡 . For task 𝑛 at time instant 𝑡 ,

we can write

𝜑𝑛,𝑡 = P
[
𝑌𝑛 > 𝜏 | 𝑌𝑛 ≥ 𝛿𝑛,𝑡 , 𝑀𝑡 , 𝑄𝑡

]
. (2)

3.1 Conditional Density Estimation with
Mixture Density Networks

The above task of estimating the transient delay violation

probabilities of the tasks in the network path falls into the

domain of conditional density estimation (CDE). We define

the CDE problem as estimating the probability density of

end-to-end delay𝑌 given the network state𝑋 , which is a vec-

tor of predictive variables (or set of variables) with domains

Y ⊂ R+ and X ⊂ R𝑑𝑥 in the form P [𝑌 | 𝑋 = 𝒙]. Using a col-
lection of i.i.d samples D = {(𝒙1, 𝑦1), ..., (𝒙𝑁 , 𝑦𝑁 )}, the goal
is to obtain a function that maps the values of the predictive

variable𝑋 into the space of probability densities over the pos-

sible values of𝑌 . Formally, the goal of CDE is to obtain an esti-

mate 𝑝 (𝑌 | 𝑋 = 𝒙) such that 𝑝 (𝑌 | 𝑋 = 𝒙) ≈ P [𝑌 | 𝑋 = 𝒙].
In parametric density estimation, we fit a parametricmodel

such as a GMM to the set of data samples. This parametric

density function is described by a finite-dimensional param-

eter 𝜃 [1]. For example, 𝜃 could be a vector of the weights,

locations, and variances of the GMM density function. To

map the values of 𝑋 into the space of the probability density

parameter, it is common to obtain the parameters 𝜃 through

another function ℎ𝜔 in the form 𝜃𝑡 = ℎ𝜔 (𝒙𝑡 ). MDN is a well-

known method that uses a fully connected neural network

as ℎ𝜔 to control the parameters of the conditional density

estimate 𝑝𝜃 [1]. In MDN, maximum likelihood estimation

(MLE) is used for estimating the parameters 𝜔 , i.e., 𝜔 is cho-

sen so that the conditional likelihood of the samples D is

Figure 2: Block diagram of the predictor, showing in-
puts, components, and outputs.

maximized. This is equivalent to minimizing the Kullback-

Leibler divergence (KL-divergence) between the empirical

data and the parametric density 𝑝𝜃 [1].

Let 𝑋𝑡 = {𝑀𝑡 , 𝑄𝑡 } with dimension 𝑑𝑥 = 6 represent the

network state. Based on Equation 2, we can estimate the

transient DVP of task 𝑛 at time 𝑡 in the form

𝜑𝑛,𝑡 = 𝑝𝜃 (𝑌 > 𝜏 | 𝑋𝑡 ) . (3)

The next step is to establish the parametric distribution 𝑝𝜃 to

be used at the core of the CDE problem. In the following we

show how to to leverage the models introduced by Extreme

value theory (EVT) for the tail estimation in addition to the

Gaussians for this task.

3.2 Transient Probability Estimation by
Extreme Value Mixture Models

Many parametric density distributions with different charac-

teristics have been proposed to be used for CDE problems.

Mixture density networks, normalizing flow networks, and

kernel density networks are the most common ones. In these

methods, the Gaussian density function is commonly used to

form a weighted mixture (MDNs) or is transformed through

a series of invertible mappings (normalizing flows). These

approaches have been extensively studied and were shown

to be accurate for normal use cases where the main point of

concern is how well the parametric density distribution fits

the body of the empirical distribution [8].

Nonetheless, our use case requires high accuracy at the

tail of the fitted probability density, which can make the ap-

plication of GMM-based solutions problematic. The output

of the GMM-based solutions is a density function whose tail

probability decreases exponentially fast. If the empirical dis-

tribution is not light tailed then GMM needs lots of samples

together with an expansion of centers. Otherwise, it leads

to significant probability error for low probability events,

e.g., in the order of 10
−5
. To the best of our knowledge, there

are no established methods that can efficiently deal with the

prediction of such extreme events in the context of a CDE

problem. Our proposal is to leverage the generalized Pareto

distribution (GPD) in the parametric distribution 𝑝𝜃 such

that the focus is not only on the bulk of the distribution, but

also on the tail.

The GPD was introduced in extreme value theory to esti-

mate the tail of univariate distributions. In the Peaks over
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Thresholds (PoT) method, the GPD is fit to the exceedances

of a random variable above a suitable threshold. This is mo-

tivated by Pickand´s theorem, which states that for most

random variables, the exceedances converge to a GPD as the

threshold tends to the right endpoint of the support of the

underlying distribution. Letting 𝑢 be the tail threshold, 𝜉 the

tail index, and 𝛽 the scale parameter, the GPD located above

𝑢 is given in the form

𝑔(𝑦 |𝛽, 𝜉,𝑢) =


1

𝛽

(
1 + 𝜉

𝛽
(𝑦 − 𝑢)

)−1/𝜉−1
𝜉 ≠ 0

1

𝛽
𝑒

𝑦−𝑢
𝛽 𝜉 = 0,

(4)

where 𝑦 ≥ 𝑢, 𝜉 ≥ 0, and 𝑢 ≤ 𝑦 ≤ 𝑢 − 𝛽/𝜉 when 𝜉 < 0.

The tail index 𝜉 of a distribution characterizes the heavi-

ness of the tail of the distribution. When 𝜉 > 0, the distribu-

tion is heavy-tailed and the tail decreases at a subexponential

rate, like for the Pareto, the 𝛼-stable or the Student-t distribu-

tions. When 𝜉 = 0, the distribution is light-tailed, that is, the

tail decreases exponentially. For example the Gaussian, the

exponential and the log-normal distributions are light-tailed.

Fitting a GPD to the exceedances provides an estimator of

the tail index of the underlying distribution [10].

It is clear that the GPD has favorable properties for char-

acterizing the tail of the delay distribution. At the same time,

the GMM is vital for capturing the bulk of the delay distribu-

tion; the MDN system enables us to estimate the conditional

probability density from a predictive variable. We introduce

the following parametric mixture function that encapsulates

the GPD tail model in combination with the GMM to be fused

with the neural network of a MDN in the form:

𝑝 (𝑦 |𝜃 = ℎ𝜔 (𝒙)) =
{
𝑓 (𝑦 |𝜙) 𝑦 ≤ 𝑢

[1 − 𝐹 (𝑢 |𝜙)]𝑔(𝑦 |𝛽, 𝜉,𝑢) 𝑦 > 𝑢,
(5)

where 𝑓 (𝑦 |𝜙) and 𝐹 (𝑦 |𝜙) denote the GMM’s probability den-

sity function (PDF) and cumulative density function (CDF)

respectively, 𝑔(𝑦 |𝛽, 𝜉,𝑢) denotes the GPD’s PDF, 𝑢 is the tail

threshold, and 𝜃 is the collection of parameters 𝜙 , 𝛽 , 𝜉 , and

𝑢.

In this new MDN scheme, tail parameters of the distri-

bution (threshold, tail index, and scale) are being estimated

by the neural network in addition to the bulk distribution

parameters. Essentially, fitting a GPD to the empirical data

for estimating a density function tail index and tail thresh-

old accurately requires a lot of samples. In our method, the

neural network explicitly learns the relation between the

seen states and the tail behaviour of the delay distribution

and generalizes it to the unseen states. Therefore, as shown

in the numerical results, this novel method requires much

less empirical samples to achieve the same level of tail prob-

ability estimation accuracy compared to the state-of-the-art

GMM-based MDNs.

Other extreme value mixture models have been intro-

duced in several works to automate the tail threshold es-

timation [10]. They encase the usual GPD tail model in com-

bination with other kinds of bulk distributions or apply a

continuity (or higher order) constraint at the threshold. To

the best of our knowledge, non of them proposed or studied

an extreme value mixture model to be fused with a neural

network of an MDN system.

4 NUMERICAL RESULTS
In this section, we provide the numerical performance evalu-

ation for our proposed extreme mixture model (EMM)-based

DVP predictor. In the following subsection all the steps for

benchmarking the predictors, performance metrics, and key

variables of the experiments are introduced
1
.

4.1 Methodology
We evaluate the proposed predictor using an event-based,

continous-time 3-hop tandem queuing system implemented

in the MATLAB Simulink framework. Three DVP predictors

are implemented before each queue as shown in figure 3,

and utilize only 𝑄𝑡 as for the vector of predicting variables.

Tasks arrive at the first hop periodically with the rate 𝜆 = 0.9.

The three queues have the same service time distribution

with service rates 𝜇1 = 𝜇2 = 𝜇3 = 1. The service times are

i.i.d drawn from a heavy-tail Gamma distribution obtained

as follows. We spliced a GPD to a Gamma distribution at its

0.8 quantile to have a parametric tail. The parameters that

we used are 𝜃Gamma = 0.2, 𝑘Gamma = 5, and 𝜉GPD = 0.2 for all

service processes.

Figure 3: Structure of the queuing network model with
DVP predictors implemented for the evaluation.

Predictors: The predictions are implemented using Ten-

sorflow, seperated from theMATLAB Simulink queue simula-

tion environment. Our EMM-based predictor is an extension

1
The reproducible experiments: https://github.com/samiemostafavi/data-

driven-dvp-prediction
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to the MDN implementation of [8]. It has 2 Gaussian compo-

nents in all of the experiments while GMM predictors have 3

Gaussian components. The neural network of the predictors

has 2 hidden layers of size 16 by default. The output layer

of the neural network governs the parameters of the mix-

ture density function. Each parameter type uses a different

activation function. For instance, the mixture weights of a

GMMwith 3 centers are controlled by the softmax activation

function applied to 3 output layer tensors.

Training: To train the predictors we start by creating

the training dataset. In order to have 𝑁 training samples, we

run the queuing simulation for the timespan of (𝑁 /𝜆) × 1.1.

A 10% more duration is added to have all of the training

samples from the queues in steady state. Then, the initial

10% samples will be removed and we save the remaining

𝑁 completed tasks. Finally, Adam weight optimizer trains

the neural networks with the likelihood-based loss function.

There is no regularization, weight decay, or droupout used

in the trainings.

Evaluation: The implemented predictors estimate DVPs

conditioned on the queue backlogs 𝑄 = 𝒒 and for any target

delay 𝜏 . We can obtain the true DVP by counting the num-

ber of delay violations in a set of conditioned records and

dividing it by the size of the set. Assume index 𝑖 to denote

the sojourn times of 𝑁 tasks that have seen network state 𝒒.
The true DVP could be written as

P [𝑌𝑛 > 𝜏 | 𝑄 = 𝒒] = lim

𝑁→∞

∑𝑁
𝑖=1 ℑ [𝑦𝑖 ≥ 𝜏]

𝑁
, (6)

where ℑ [·] is the indicator function equalling 1 if the ar-

gument is true and 0 otherwise. The size of the evaluation

dataset must be large enough to have a sufficient precision

for the ground truth. For instance, to obtain the ground truth

for a state that forms 1% of the evaluation dataset, we use

at least 10
9
samples. Hence, we will have 10

7
conditional

samples which is enough to cover the minimum target delay

quantile which is 10
−5
.

We evaluate the predictors for the most common states

of the ground truth (15,30, and 60 states for each predictor

respectively) and we refer to them as evaluation states in the

results. As for the target delays, we measure 10
−2

to 10
−5

quantiles of the remaining sojourn time conditioned on the

evaluation states and use them as the evaluation target delays.
Hence, we have a set of target delays for each evaluation

state as the ground truth. The logarithmic error 𝑎 for the

state 𝒒 and target delay 𝜏 is given by

𝑎(𝒒, 𝜏) = | log(P [𝑌 > 𝜏 | 𝑄 = 𝒒])−log(𝑝𝜃 (𝑌 > 𝜏 | 𝑄 = 𝒒)) |.
(7)

Let 𝐵 denote the number of evaluation states and assume

indexes 𝑗 and 𝑙 to denote evaluation states and evaluation

target delay quantiles respectively. We calculate the error for

every evaluation state and its target delays. By averaging it

over the states, we obtain one error value for each evaluation

quantile in the form

𝑒𝑙 =

∑𝐵
𝑗=1 𝑎(𝒒 𝑗 , 𝜏 𝑗,𝑙 )

𝐵
. (8)

It is evident that if the number of training samples is small

compared to the number of samples needed for evaluation

qunatiles, the predictor’s performance vary depending on

the distribution of the training samples. Therefore, in order

to show these variations, we train 20 predictors with 20

different training datasets instead of one. Furthermore in the

benchmarks, the average, minimum, and maximum of them

per quantile is shown.

4.2 Results
In this section, we show the results of the evaluation schemes.

These schemes are defined to compare the proposed method

to the state-of-the art. Specifically, the novel EMM-based

predictors are compared against the predictors only with

GMMs as their parametric distribution.

Figure 4: Sojourn time tail probability estimation of
predictor-1 (three-hop) for the state 𝒒 = {1, 4, 2}

We start by sojourn time tail probability or DVP estimation

of predictor-1 (three-hop) for the network state 𝒒 = {1, 4, 2}.
The predictor is trained with 10k training samples which is

the default for the rest of experiments. DVPs at the times that

tasks enter the queues are estimated in 2 different predictors:

EMM-based and GMM-based. Figure 4 depicts that the GMM

error starts to grow where there is no training data (tail

probability is less than 10
−2
) and the predictions start to fall

exponentially fast as expected. However, EMM predictions

closely follow the ground truth until 10
−4
. This shows the

ability of EMM to exercise the limited training samples for

the tail estimation.

Next, let us study the accuracy of predictors with the in-

troduced evaluation metric 𝑒 over all of the evaluation states

as shown in Figure 5. We observe that the GMM error curves

are higher than EMM in all cases and the difference increases

for larger quantiles. However, it becomes less bold when the

5
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(a) Predictor-1 (three-hop predictor) (b) Predictor-2 (two-hop predictor) (c) Predictor-3 (one-hop predictor)

Figure 5: DVP prediction errors for networks with different number of hops, all trained with 10k samples.

number of hops reduce. Since the first predictors (referred to

as a three-hop predictor) have to deal with three dimensional

features and a delay distribution with a heavier tail, they are

less accurate compared to the one-hop predictors. It should

be noted that there is improvement for both predictor types

as we move from three-hop to one-hop, however, it is subtle

for EMM.

Figure 6: DVP prediction errors of three-hop predictors
trained with different number of samples.

In this part, we study the impact of the number of training

samples on the performance of predictors. By providingmore

training samples, the maximum likelihood algorithm finds

more of the rare samples (outliers). The optimizer will try to

cover them with the parametric distribution to get a lower

loss value. Therefore, we expect less error at the tail region

for the predictors that were trained with more samples. The

error curves shown in Figure 6 approves our conclusion for

the predictors of the same kind. However, EMM predictors’

average errors are lower than GMM by orders of magnitude

in the log scale. Despite the huge gap between EMM and

GMM, the improvement of GMM predictors is significant

when we provide more samples.

Finally, we investigate if the gap between our proposed

EMM predictor could be vanished by elaborating the GMM.

Using more Gaussian components (in other words, centers)

in the mixture model distribution, should improve probabil-

ity prediction accuracy at the tail. Because, the optimizer

can move the spare Gaussian centers towards the tail and

cover more area from that region. The downside is that the

predictor will become more complex and it will need more

samples and epochs for the training. Figure 7 shows 3 GMM

Figure 7: Average violation prediction errors of three-
hup predictors equipped with different number of
Gaussian components. GMM-based predictors with 9,
and 15 centers usemore complex neural networks with
hidden layers of size 32, and 48 respectively.

predictors with different number of Gaussian components.

As expected, more centers mean less average error for the

GMM. However, it does not outperform EMM-based predic-

tors that use GPD in addition to 2 Gaussian components.

5 CONCLUSIONS
We have studied the problem of predicting the transient DVP

of latency-critical tasks traversing through a three-hop edge

network modelled by a tandem queuing system. As the end-

to-end delay guarantee levels put a threshold on the tail of

the delay distribution, we introduced a novel DVP predictor

that is not only accurate for the average delays, but also for

the tail using extreme value theory. We have studied state-

of-the-art GMM-based predictors and have demonstrated

their poor performance for the tail delay predictions in the

range 10
−2
-10

−5
. We fused an extreme mixture model with

the state-of-the-art MDNmethod to deal with extreme events
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prediction. A key aspect of our proposed data-driven pre-

dictor is that its neural network explicitly learns the tail

behaviour of the training data and can generalize that to the

unseen network conditions. Therefore, as we observed in

extensive simulations, it requires much less training sam-

ples compared to the commonly used GMM-based MDN

method. Our approach is applicable to networks with gen-

eral stationary service processes and does not assume i.i.d.

service processes. We believe that key features of the pro-

posed predictor make it useful in the design and optimization

of wireless network infrastructures for latency-critical appli-

cations. Future work includes applying our approach to real

networks and an in-depth study of DVP prediction in net-

works with non-stationary service processes, cross-traffic,

and multi-server queues.

6 ACKNOWLEDGMENT
This research has been partially funded by the VINNOVA

Competence Center for Trustworthy Edge Computing Sys-

tems and Applications (TECoSA) at KTH Royal Institute of

Technology.

REFERENCES
[1] Bishop, C.Mixture density networks. Workingpaper, Aston University,

1994.

[2] Champati, J. P., Al-Zubaidy, H., and Gross, J. Transient analysis for

multihop wireless networks under static routing. IEEE/ACM Transac-
tions on Networking 28, 2 (2020), 722–735.

[3] Chen, H., Abbas, R., Cheng, P., Shirvanimoghaddam, M., Hard-

jawana, W., Bao, W., Li, Y., and Vucetic, B. Ultra-reliable low latency

cellular networks: Use cases, challenges and approaches. IEEE Com-
munications Magazine 56, 12 (2018), 119–125.

[4] Elbamby, M. S., Perfecto, C., Liu, C.-F., Park, J., Samarakoon, S.,

Chen, X., and Bennis, M. Wireless edge computing with latency and

reliability guarantees. Proceedings of the IEEE 107, 8 (2019), 1717–1737.
[5] Flinta, C., Yan, W., and Johnsson, A. Predicting round-trip time

distributions in IoT systems using histogram estimators. In IEEE/IFIP
Network Operations and Management Symposium (NOMS) (2020), IEEE,
pp. 1–9.

[6] Ibrahim, R., and Whitt, W. Real-time delay estimation based on

delay history. Manufacturing & Service Operations Management 11, 3
(2009), 397–415.

[7] Raeis, M., Tizghadam, A., and Leon-Garcia, A. Predicting distri-

butions of waiting times in customer service systems using mixture

density networks. International Conference on Network and Service
Management (CNSM) (2019), 1–6.

[8] Rothfuss, J., Ferreira, F., Walther, S., and Ulrich, M. Conditional

density estimation with neural networks: Best practices and bench-

marks. arXiv:1903.00954 (2019).
[9] Samani, F. S., and Stadler, R. Predicting distributions of service

metrics using neural networks. In 2018 14th International Conference
on Network and Service Management (CNSM) (2018), pp. 45–53.

[10] Scarrott, C., and MacDonald, A. A review of extreme value thresh-

old estimation and uncertainty quantification. REVSTAT–Statistical
Journal 10, 1 (2012), 33–60.

[11] Schulz, P., Matthe,M., Klessig, H., Simsek,M., Fettweis, G., Ansari,

J., Ashraf, S. A., Almeroth, B., Voigt, J., Riedel, I., Puschmann,

A., Mitschele-Thiel, A., Muller, M., Elste, T., and Windisch, M.

Latency critical IoT applications in 5G: Perspective on the design

of radio interface and network architecture. IEEE Communications
Magazine 55, 2 (2017), 70–78.

[12] Senderovich, A.,Weidlich,M., Gal, A., andMandelbaum, A. Queue

mining – predicting delays in service processes. In Advanced Informa-
tion Systems Engineering (Cham, 2014), Springer International Publish-

ing, pp. 42–57.

7


	Abstract
	1 Introduction
	1.1 Related Works
	1.2 Contributions

	2 System Model and Problem Statement
	3 Approach
	3.1 Conditional Density Estimation with Mixture Density Networks
	3.2 Transient Probability Estimation by Extreme Value Mixture Models

	4 Numerical Results
	4.1 Methodology
	4.2 Results

	5 Conclusions
	6 Acknowledgment
	References

