
Dynamic Alert Prioritization for Real-time
Situational Awareness: a Hidden Markov Model

Framework with Active Learning
Yeongwoo Kim and György Dán

Division of Network and Systems Engineering
School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology

Stockholm, Sweden
E-mail: {yeongwoo, gyuri}@kth.se

Abstract—Real-time cyber situational awareness (SA) is crucial
for effective and timely incident response. However, maintaining
SA requires substantial human effort; security analysts must
analyze large volumes of alerts, many of which are false positives
triggered by anomaly-based intrusion detection systems (IDSs).
Efficiently prioritizing these alerts is vital to enable analysts to
focus on real threats without delay. In this paper, we present
two key contributions designed to improve real-time SA. First,
we propose modeling dynamic alert prioritization as an active
learning problem in a hidden Markov model (HMM) with the
objective to minimize the mean squared error (MSE) of the belief.
We propose to use the uncertainty of the belief as a proxy for the
MSE of the belief, and we develop two computationally tractable
policies for choosing alerts to investigate. Second, we propose and
evaluate a state space and an exploit space reduction method
to reduce the computational complexity of the belief update.
We use simulations on synthetic and real dependency graphs to
evaluate the proposed policies. Our results show that the proposed
investigation policies reduce the MSE of the belief by up to 50%
compared to baseline policies, and they are robust to high false
alert rates and to investigation errors. Our results also show that
state space reduction can reduce the computation time by 85%
without a significant increase in the belief MSE.

Index Terms—Situational awareness, intrusion detection, hidden
Markov model, active learning

I. INTRODUCTION

Recent years have seen an increasing number of vulner-
abilities in networked systems and, at the same time, an
increasing number of cyber incidents [1]. Numerous critical
infrastructures, including government agencies [2], power sys-
tems [3], and the healthcare industry [4], have become victims
of cyber attacks. Although patches to vulnerabilities tend to
become available eventually, their development often requires
months [5], hence making it inevitable to operate systems with
known vulnerabilities. The existence of known vulnerabilities
and the threat of unknown, so-called zero-day vulnerabilities
make the timely detection and mitigation of cyber incidents a
top priority in security risk management.

Timely detection and mitigation necessitate accurate real-
time situational awareness (SA), i.e., an understanding of
potential adversarial activities in the system. To be able to detect
previously unseen adversarial activities, most state-of-the-art

IDS
Alert inves ga on

by security analysts

Belief

Alerts

to inves gate

Error-prone

inves ga on

outcomes

Alert MaxEntropy policy

/ Bayes factor policy

Dynamic priori za on policy

State space reduc on (dynamic)

/Exploit space reduc on (sta c)

Belief update

Fig. 1. Illustration of the proposed framework. Alert priorities are based on
the most recent belief, the possibly error prone outcome of alert investigations
is used for updating the belief, using approximation methods for computational
feasibility.

systems for obtaining situational awareness include anomaly-
based intrusion detection system (IDS) components. Despite
significant academic and industry efforts, anomaly-based IDSs
are known to produce a substantial volume of false alerts [6]–
[9], which is detrimental to SA.

Recent works have proposed different ways of reducing false
alerts. One direction of work addressed the distribution shift in
benign activity over time [7], which can cause benign events
to be flagged as anomalies. As an example, autoencoder-based
models have been proposed to adapt to distribution shift, but
they require periodic retraining based on labeled data [10].
Another direction of work focuses on filtering false alerts [11],
such as by benign triggers, which are valid alerts that are caused
by legitimate activity [9]. While such filtering can reduce alert
volumes, it cannot eliminate all false positives or the need for
investigating alerts by security analysts.

The usual way to handle alerts is to employ human se-
curity analysts in a security operations centers (SOCs), who
investigate the root cause of alerts [6]. Manual investigation
is, however, time-consuming (e.g., taking a few minutes to 30
minutes per alert [12], [13]) and thus expensive, and hence it
is essential to prioritize what alerts to investigate among all
observed alerts.

One approach to prioritize alerts is to rely on the severity
of the potential root causes, e.g., obtained from vulnerability
databases such as CVE or MITRE ATT&CK [14], [15]. Several
approaches have been proposed recently for ranking alerts
based on such static priorities [16], [17], but these approaches

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3592127

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

do not leverage the knowledge that the security analysts may
have gained from previous investigations, i.e., real-time SA,
potentially resulting in the investigation of uninformative alerts.
An alternative to the above is to rank suspicious devices, such
as hosts and firewalls, based on anomaly scores computed based
on observations [18]. However, this approach does not take into
account investigation outcomes in the ranking process. A third
alternative is to use reinforcement learning for alert prioritiza-
tion by incorporating prior alerts and investigation results [19].
Existing approaches assume, however, error-free investigations
and do not consider exploit preconditions, limiting their appli-
cability in real-world scenarios. Intuitively, one could achieve
a significant improvement in SA by dynamically prioritizing
alerts based on the results of past investigations [18], [19].
Nonetheless, it remains unclear how to formulate the problem
of dynamic alert prioritization, considering the complex depen-
dencies between exploits and the potential inaccuracy of human
security analysts’ investigation outcomes.

In this paper, we address this problem by proposing a
framework that models alert prioritization as an active learning
problem in a hidden Markov model (HMM), where active learn-
ing relies on the belief about attacker progression maintained
based on past observations and investigation outcomes. Unlike
prior approaches [18], [19], our framework provides access to
the defender’s belief, which can be used for subsequent incident
response, such as isolating nodes or reinstalling hosts. The pro-
posed framework is illustrated in Fig. 6. Within this framework,
we propose two dynamic alert prioritization policies, called
Bayes and MaxEntropy. The contributions of our work are as
follows:

• Active learning framework for SA: We propose to for-
mulate real-time SA as a novel active learning problem in
a HMM. We provide belief update equations that account
for our model of active learning, extending the traditional
forward-backward algorithm.

• Dynamic alert-prioritization policies: We propose two
policies for dynamic alert prioritization, using the uncer-
tainty of the belief as a proxy of the mean squared error
(MSE). The first policy, called MaxEntropy, chooses alerts
whose investigation would lead to the highest reduction
of the belief entropy. The second policy, called Bayes,
chooses the most ambiguous alerts.

• State space and exploit space reduction: We propose two
adaptive methods for reducing the computation complexity
of the belief update and of the proposed policies. The
proposed methods omit computations for low-probability
states and exploits, respectively, motivated by the intuition
that low-probability states and exploits do not affect SA
significantly.

• Simulation-based evaluation: We use synthetic and real
dependency graphs, and we show that compared to base-
lines, the proposed policies lead to significantly less MSE,
and are more robust to investigation errors and to false
positives. Our results also show that state space reduction
can reduce the computation time without a significant

degradation of SA, and is hence a promising approach
for maintaining real-time SA.

This paper is an extension of [20], and makes the following
novel contributions. First, it proposes two adaptive methods
for decreasing the computation time; one method based on
reducing the state space and one based on reducing the set
of exploits (state transitions) considered. Second, it provides a
more extensive evaluation based on a real dependency graph,
highlighting the potential of the proposed state space reduction
method to deal with larger problem instances at a minimal loss
of belief accuracy, and also considering security analysts with
different skill levels.

The rest of the paper is structured as follows. We discuss
related works in Section II. We describe the system model
and the problem formulation in Section III and we provide
the belief update equations for active learning in Section IV.
In Section V, we propose the alert prioritization policies and
the approximation methods, and in Section VI we provide
numerical results. Section VII concludes the paper.

II. RELATED WORK

Anomaly-based IDS: A range of works have employed
anomaly detection algorithms to identify intrusions [10], [11],
[21]–[24]. In [21], the authors constructed a graph of network
flows, representing the communication channels between pairs
of hosts as a node and proposed a continuous time channel state
representation combined with a graph embedding for detection.
Brown et al. [22] proposed an LSTM-based model with an
attention mechanism for anomaly detection. Gökstorp et al. [23]
transformed log lines into tokens and trained a transformer
model to predict masked tokens. Thus, a higher prediction error
indicates a greater likelihood of anomalous events. Similarly,
authors in [10] detect anomalies and distribution shift using the
reconstruction error of a deep autoencoder. EdgeTorrent [24]
uses a GNN and generative adversarial networks to differentiate
between malicious and benign provenance graphs. Fu et al.
proposed to filter alerts by mapping flow data to a high-
dimensional space and by considering flow data in high-density
regions to be true positive alerts [11]. These works focus on
generating alerts, but they do not account for alert investigation
by security analysts.

Alert investigation: A number of recent works consider
the investigation of noisy alerts from IDSs by security an-
alysts [16]–[19], [25]–[28]. Assuming that all alerts can be
investigated, Shah et al. considered the tradeoff between the
cost of security analysts and their mix of expertise [27].
Authors in [16] formulated the problem of allocating alerts
to security analysts as a game, and proposed heuristics for
solving the resulting game. A zero-sum Markov game model
was proposed in [17], and an approach based on dynamic
programming and Q-maximin value iteration was developed for
the optimal allocation of alerts to analysts. Shah et al. [26] used
a reinforcement learning (RL) model to maximize the level of
operational effectiveness while the security analysts shift every
two weeks. In [28], the authors computed a composite risk score

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3592127

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

using the predefined significance of alerts and used the score
to distribute alerts to analysts. Common to these works [16],
[17], [26] is that the alert priorities are assumed to be known,
and the focus is on assigning alerts to analysts [29], without
maintaining a belief about the attacker’s progression. On the
contrary, in our work, alert priorities are computed based on
the current belief, so as to maximize belief accuracy.

Situational awareness (SA): A different line of works main-
tains SA without investigating alerts [20], [31]–[38]. Authors
of [31] used a partially observable Markov decision process
(POMDP) to estimate the security state of the host and to
choose defensive actions while minimizing the defender’s cost.
In [32], the authors proposed a hierarchy of local engines and
global engines. Each local engine has an attack-response tree
that calculates the security state of the host, and the global
engine collects the security states from local engines and com-
putes the defense actions. Iannucci et al. [33], [34] computed
responses by considering the fact that a defense action may
change the available exploits and may limit other attacks.
Holgado et al. [37] trained a HMM using supervised and
unsupervised methods, and used it for predicting the attacker’s
progression. Shawly et al. [38] considered multiple interleaved
attacks, i.e., attacks performed simultaneously to confuse the
defender. The authors compared two architectures for updating
parameters of HMMs and to differentiate alerts from different
attacks so to detect interleaved attacks. Miehling et al. [35]
modeled the security state by Bayesian attack graphs. Given
the noisy alerts, the model calculates the belief regarding the
attacker’s privilege. The authors of [36] extended the model by
including multiple dependencies for exploits and probabilistic
alerts. These works either focus on a single host [31], assume
that the system state is observable [33], [34], and learn about the
security state through interaction with attacker [32], [35], [36],
but they do not consider the prioritization of alerts and their
investigation, which is the focus of our work. In our previous
work [20], we showed that dynamic alert prioritization based on
the current belief can significantly enhance SA, but the resulting
approach is computationally demanding.

Computation time: Related to our work are previous at-
tempts to address the problem of state explosion in HMMs and
POMDPs. Authors in [39] proposed to reduce the number of
states by aggregating the states with low probabilities into a
single state. For POMDPs, authors in [40] proposed to merge
the states with similar reward and transition probabilities. Com-
pared to these prior works, which require manual aggregation
performed a priori, we propose to use the defender’s belief for
dynamically identifying the states that can be aggregated so as
to minimize the impact on belief accuracy.

High-level dependency graphs: In [37], the authors used a
high-level dependency graph where each state may correspond
to multiple exploits, motivated by that an IDSs cannot distin-
guish between similar exploits. Their evaluation showed that
using such a simplified model one can effectively track the
attacker’s progression. Similarly, Girdhar et al. used a high-
level graph to choose defense actions [41]. Furthermore, the

authors in [42] used a high-level dependency graph to confirm
attack scenarios in real time. Lastly, Liu et al. proposed a three-
stage intrusion detection mechanism that maps alerts to the
most likely attack scenario [43]. These works demonstrate that
high-level dependency graphs can be effective for a variety of
security tasks, but none of them have considered the problem
of dynamic alert prioritization.

Active learning: Our methodology is closely related to active
learning for HMMs [44], where the learner can decide what
extra observations, called queries, to make about the system
state and at what time. Contrary to existing works, in our
model queries can only concern existing alerts and their result
could be noisy as well, which makes the learning problem
fundamentally distinct from existing literature. In this work,
we extend the active learning framework presented in [20] by
proposing two methods for improving computational efficiency
and by extending the evaluation to a real attack tree [30]. The
state space reduction method we propose effectively reduces
the computational time of belief updates, making it possible to
evaluate the alert prioritization policies on a real attack tree.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In order to model the progression of an attacker in the
system, we adopt an attack graph model in which security
states are represented by nodes and exploits are represented by
directed edges. This abstraction is often called a dependency
graph [45]. In order to build the dependency graph, all possible
security states are enumerated and interconnected by exploits.
Dependency graphs can be constructed based on vulnerability
information about the system components using network scan-
ning tools like TVA [46].

We model the dependency graph by a directed acyclic
hypergraph H = (N , E), where N = {c1, . . . , cnc

} is the set of
nodes (i.e., security conditions), and E = {e1, . . . , ene

} is the
set of directed hyperedges (i.e., exploits), where nc = |N | and
ne = |E|. Each condition corresponds to a certain compromise
of a system component (e.g., privilege escalation), and can
be true or false. We refer to the attacker’s progression as the
state, and thus the initial state is where the attacker has not
compromised any system component. The subset N g ⊆ N is
the set of goal conditions and represents the attacker’s final
goal. The defender identifies the goal states based on their
importance, e.g., corresponding to critical assets and data. For
instance, gaining root privilege on a customer database can be
the goal state of an attacker aiming at data exfiltration.

We define a hyperedge ex ∈ E as an ordered pair of two
sets such that ex = (N−

x ,N+
x), where N−

x ⊆ N is the set of
preconditions to execute exploit ex, and N+

x ⊆ N is the set
of postconditions after the successful execution of exploit ex.
Thus, a hyperedge (i.e., an exploit) connects its preconditions
to its postconditions. If all preconditions for exploit ex are not
satisfied, the attacker cannot perform the exploit. There are
also exploits that do not require any preconditions such that
N−

x = ∅. We denote by E0 ⊆ E the set of such exploits, and
we refer to them as initial exploits, i.e., the attacker’s entry

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3592127

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

: Spoofed

OPEN message

: Spoofed

NOTIFICATION

message

: Spoofed

KEEPALIVE

message

: TCP sequence

number predic on

a ack

: Send spoofed

message containing

TCP reset

: Type of

spoofed message

: Compromising

BGP router

: Send

spoofed BGP

message

: Insert correct

packet sequence

number

: Send spoofed

message to router

causing reset

: Reset a BGP

session

OR

OR

AND

OR

Fig. 2. Example of a BGP session reset attack tree from [30]. Each node
in the tree is an activity, and requires the success of other activities: AND
means all activities along the incoming edge, while OR means any of the
activities.

Fig. 3. Dependency graph with 11 conditions and 15 exploits cor-
responding to the BGP session reset attack [30]. Each exploit ex is
connected to preconditions N−

x and postconditions N+
x (e.g., N−

4 =
{c4} and N+

4 = {c9}, hence, e4 = ({c4}, {c9}). There are six
initial exploits, E0 = {e1, e2, e3, e4, e8, e12} and a goal condition
Ng = {c11}.

points to the network. If the attacker succeeds with an exploit,
the postconditions N+

x become true. The gained postconditions
may be preconditions for future exploits. For example, Fig. 2
shows a commonly used attack tree representation of a BGP
session reset attack presented in [30], [47]. In this scenario,
the attacker aims to perform a denial of service attack by
resetting the BGP session. To accomplish this, the attacker
can follow one of two independent attack paths: (a) spoofing
BGP messages (e1, e2, and e3), or (b) spoofing a TCP message
(e4) containing an RST flag. The spoofed TCP/BGP messages
(e10 and e11) must be injected with a valid sequence number,
which can be achieved by predicting and inserting the correct
sequence number (e4 and e9). Once injected, the spoofed
message can force the router to reset (e13). Alternatively, the
BGP router can be directly compromised by hijacking a router
management session (e12). In total, there are three attack paths
leading to the target nodes, i.e., two indirect paths and one
direct path, providing flexibility and realism for the attack
simulations. Fig. 3 shows the corresponding dependency graph
representation adopted in this paper.

We define the security state of the system as the subset of
conditions that are true, i.e., s ⊆ N , and we denote by S ⊆ 2N

the set of all security states. The security state effectively
models the attacker’s progress in compromising components.
We denote by E+(si) the exploits that are available to the
attacker in the state si ∈ S. We make the assumption that
the successful use of an exploit does not affect the success
of exploits already used, which is reasonable if remediation
actions, e.g., eviction and restoration, are not included in the
model. This assumption is referred to as monotonicity [36],
[45], [48], and allows to skip enumerating all combinations of
security conditions in S.

A. Attacker Model

Time is slotted, and in every time step an attacker can
choose to perform a set Et ⊆ E+(si) of exploits so as to
compromise additional components. We consider that there is
a set Φ of attacker types, and the choice of exploits depends
on the attacker type φl.

We denote by Z = {z1, z2, . . . , znz
} the set of alerts

that the IDS can generate and by A = {1, 2, . . . , nz} the
set of alert indices where nz is the number of alert types.
We associate each exploit ex ∈ E with a subset Z(ex) =
{zAx(1), zAx(2), . . . , zAx(nex)

} ⊆ Z , where Ax ⊆ A, and nex

is the number of distinct alerts that exploit ex may raise. Note
that some exploits may not generate any alert, while different
exploits can generate the same alert. This assumption is aligned
with common practice, i.e., that an IDS may trigger multiple
types of alerts due to an adversarial action performed by an
attacker [9], [37]. We denote the probability of false alerts for
alert za by ζa .

An attacker of type φl is characterized by the probability
αex(φl) > 0 that the attacker chooses ex ∈ E+(si) (resp.
αex(φl) = 0 for ex ∈ E \ E+(si)). Using this model, the set
of exploits used by the attacker is chosen at random in every
time slot, resulting in a random sequence of attack steps. We let
βex(φl) denote the probability that the attacker succeeds with
exploit ex ∈ Et, and it gains the conditions (si′ = si ∪ N+

x).
Also, we denote the probability that alert za will be triggered if
the attacker attempts to use exploit ex ∈ Et by δxa(φl), where
a is the index of an alert that may be triggered by exploit
ex. These three probabilities allow us to model attackers with
different tactics and skill levels. We assume the defender is not
aware of the type of the attacker, but is aware of the different

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3592127

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

types of attackers, which is a reasonable assumption in practice.

B. Defender Model

The defender can observe the alerts from the IDS. As with
any anomaly-based IDSs, we consider that alerts are noisy, i.e.
alerts may be generated for benign events by legitimate users,
called false positives, and may not be generated for malicious
events, called false negatives.

Let us denote the alert vector at time t by yt ∈ Y = {0, 1}nz ,
where 0 is an inactive alert, and 1 is an active alert. Given the
observed alerts at time t, the defender can choose to investigate
the alert(s) Vt ⊆ {a |yat = 1, a ∈ A} where the superscript a is
the index of an alert, and the number of alerts to investigate is
limited by the investigation budget I such that |Vt| ≤ I . Such an
investigation corresponds to a security analyst looking at event
logs that triggered the alert(s). Based on the outcome of the in-
vestigation, the defender clears or confirms the alert(s) Vt. Our
model accounts for the probability of the investigation error by
defining the probability ω that the outcome of the investigation
is incorrect (i.e., a false positive is confirmed or a true positive
is cleared). For simplicity, we present the analysis for a single
ω. In practice, analysts may have different investigation error
probabilities, possibly depending on the type of the alert as
well. While our model may not fully capture the capabilities of
the analysts, it enables us to examine the relationship between
investigation error probability and SA, including analysts with
different investigation error probabilities. We denote by ŷt the
alert vector after the investigation, and note that ŷt can only
differ from yt in the investigated alert(s).

Thus, at time t the defender has access to the observed alerts
Y = {y0, y1, . . . , yt}, the investigations V = {v0, v1, . . . , vt},
and the alerts after investigation Ŷ = {ŷ0, ŷ1, . . . , ŷt}.
These together constitute the history at time t as ht =
(π0, v0, y0, ŷ0, . . . , vt, yt, ŷt), which the defender can use for
maintaining a belief πt of the security state, based on its initial
belief π0. The defender’s belief regarding the security state and
the attacker’s type at time step t is

πt =


π1,1
t π1,2

t . . . π1,nΦ

t

π2,1
t π2,2

t . . . π2,nΦ

t
...

...
. . .

...
πnS ,1
t πnS ,2

t . . . πnS ,nΦ

t

 , (1)

where nS is the number of possible states (i.e., nS = |S|),
and nΦ is the number of attacker types (i.e., nΦ = |Φ|). Thus,
πil
t = P (St = si,Φt = φl | Ht = ht) is the probability that

si is the true security state and φl is the true type, given the
history ht. The belief πt is a doubly-stochastic matrix since
each row and column is a probability mass function given the
security state and the attacker’s type, respectively.

C. Problem Formulation

The objective of the defender is to maximize its SA given
the noisy alerts, i.e., the accuracy of its estimate of the security
state of the system. A natural way to capture this objective is
to minimize the MSE of the belief. Recall that the columns and

rows of the belief matrix πt stand for the attacker type and the
states, hence the MSE can be expressed as

MSE(πt, St) =
1

nc

nc∑
j=1

(
1{cj∈St}−

nS∑
i=1

(
1{cj∈si}·

nΦ∑
l=1

πil
t

))2

,

(2)

where 1{·} is an indicator function that is 1 (resp. 0) if the
condition is true (resp. false), cj ∈ N is a condition, and St

is the attacker’s security state at time t. Considering an infinite
time horizon, we define the operator’s cost under policy κ as

Jκ = lim
T→∞

1

T

T∑
t=1

γtMSE(πκ
t , St), (3)

where γ ∈ (0, 1) is the discount factor for the future uncertainty,
ω is the investigation error probability, and we are interested
in finding a policy

κ∗ ∈ argmin
κ∈K

Jκ. (4)

The policy κ selects actions Vt+1 given a belief Πt and
alert vector Yt+1 taking into account the investigation error
probability ω, and is thus a mapping

κ : [0, 1]nΦ×nS × {0, 1}nz −→ {1, . . . , nz}I . (5)

The formulated problem is an active learning problem for
an HMM, where queries are limited to a subset of existing
observations, and we are interested in understanding the struc-
ture of near-optimal policies and factors that may affect their
performance.

IV. DYNAMIC ALERT PRIORITIZATION FRAMEWORK

Our framework consists of four key modules: IDS, belief
update, dynamic prioritization policy, and alert investigation, as
illustrated in Fig. 4. After the IDS generates alerts at time t, the
dynamic alert prioritization policy determines which alerts to
investigate based on the defender’s current belief of the security
state (Section V) and a model of the analysts’ capabilities.
Selected alerts are then investigated by security analysts.

After the security analysts investigate the alerts, the belief
update module calculates the probability of the investigation
outcomes, conditioned on the selected exploits, to refine the
belief (eqn. (19)). This calculation is applied to all alerts,
incorporating the probabilities of all possible combinations of
combinations of exploits to determine the overall probability
of the investigation outcomes (eqn. (17)). The belief update
component uses these probabilities to update the belief about
the security state. This refined belief can subsequently be
used for downstream tasks, such as planning incident response
actions, though these tasks are outside the scope of this paper.

A. Belief Update with Active Learning

We start with describing the belief update, assuming that a
policy for choosing alerts to investigate exists. The defender
updates its belief as new observations yt+1 and the result
ŷt+1 of the investigation vt+1 become available. For a raw

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3592127

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

MaxEntropy policy

Bayes factor policy

or

IDS Dynamic prioritization policy Alert investigation

Before
investigation

After
investigation

1

Belief update

Belief before
investigation

investigation

State space
reduction

Exploit space
reduction

𝑟𝑎𝑘𝑛𝑙
𝑣 (ℰ𝑡)

TP
(True

Positive) Belief after
investigation

Alert (𝑎): 𝑒2

𝑒3

𝑒4

𝑒2

𝑒3

𝑒4

𝑒2

𝑒3

𝑒4

𝑒2

𝑒3

𝑒4

𝛿1𝑎(𝜑𝑙):

𝜁𝑎:

𝛿2𝑎(𝜑𝑙):

2

0.5

0.3

0

0

𝛿3𝑎(𝜑𝑙):

3

0

0.4

0.5

0

0

4

0

0.2

0

0.5

0

68%32% 74%0%

: Positive : Negative

𝑒2

𝑒3

𝑒4

26%

𝑒2

𝑒3

𝑒4

0%
𝑒1 𝑒1 𝑒1 𝑒1 𝑒1 𝑒1

: Compromised : Clean

𝛿4𝑎(𝜑𝑙):

1

0

0.2

0

0

0.5 0

Fig. 4. Dynamic alert prioritization framework. Alert prioritization is based on the most recent belief and observed alerts. Security analysts investigate alerts,
and the noisy investigation outcomes are used for updating the belief together with non-investigated alerts. Importantly, the belief update takes into account that
investigation outcomes may be erroneous.

alert vector yt+1 = yn, investigation vt+1 = v and inves-
tigated alert vector ŷt+1 = ŷk the belief update is πt+1 =
Ti′l′(πt, ŷk, yn, v)si′∈S,φl′∈Φ, where Ti′l′(πt, ŷk, yn, v) is the
update function for the i′th state and the l′th attacker type.
The update for each entry of the belief matrix can be obtained
using Bayes’ theorem,

πi′l′

t+1 = Ti′l′(πt, ŷk, yn, v)

= P (St+1 = si′ ,Φt+1 = φl′ | Ŷt+1 = ŷk, Vt+1 = v,

Yt+1 = yn,Πt = πt)

=
pni′l′(πt)r

v
i′nkl′(πt)

σ(πt, ŷk, yn, v)
.

(6)

The above terms are defined as

pni′l′(πt) = P (St+1 = si′ ,Φt+1 = φl′ , Yt+1 = yn |
Vt+1 = v,Πt = πt)

=
∑

si∈S,φl∈Φ

πil
t p

n
ii′lqll′

(7)

rvi′nkl′(πt) = P (Ŷt+1 = ŷk | Yt+1 = yn, St+1 = si′ ,

Φt+1 = φl′ , Vt+1 = v,Πt = πt)

=
∑

si∈S,φl∈Φ

πil
t r

v
ii′nkll′

(8)

σ(πt, ŷk, yn, v) = P (Ŷt+1 = ŷk, Yt+1 = yn | Vt+1 = v,

Πt = πt)

=
∑

si′∈S,φl′∈Φ

rvi′nkl′(πt)p
n
i′l′(πt),

(9)

where pnii′l = P (St+1 = si′ , Yt+1 = yn | Vt+1 = v, St =
si,Φt = φl), rvii′nkll′ = P (Ŷt+1 = ŷk | Vt+1 = v, Yt+1 =
yn, St+1 = si′ ,Φt+1 = φl′ , St = si,Φt = φl), and qll′ =
P (Φt+1 = φl′ |Φt = φl). For qll′ , we assume that the attacker
type does not change during an attack, such that qll′ = 1
(resp. 0) for l = l′ (resp. l ̸= l′). The assumption that the
attacker’s capabilities are unchanged throughout the course of
an attack is reasonable, as attackers employ their most sophis-
ticated techniques from the outset to compromise a targeted
system, including potential zero-day attacks [49]. In eqn. (7),
pnii′l = P (St+1 = si′ , Yt+1 = yn | Vt+1 = v, St = si,Φt = φl)

where the joint probability of the state si′ and the alert vector
yn is independent of investigation v. Thus, we can write

pnii′l = P (St+1 = si′ , Yt+1 = yn | St = si,Φt = φl)

=
∑

Et∈P(E+(si))

P (St+1 = si′ | Yt+1 = yn, Et = Et, St = si,

Φt = φl)

· P (Yt+1 = yn | Et = Et, St = si,Φt = φl)

· P (Et = Et | St = si,Φt = φl)

=
∑

Et∈P(E+(si))

P (St+1 = si′ | Et = Et, St = si,Φt = φl)

· P (Yt+1 = yn | Et = Et,Φt = φl)

· P (Et = Et | St = si,Φt = φl),
(10)

where E+(si) is the set of available exploits in the state si, and
P(E+(si)) is the power set of the available exploits. The state
si′ is independent of the alert vector yn given the exploits Et,
the state si, and the attacker type φl, and that the alert vector
yn is independent of the state si given the exploits Et. The
terms in eqn. (10) can be expressed as

P (St+1 = si′ | Et = Et, St = si,Φt = φl)

=
∑

o∈F(si,si′ ,φl,Et)

∏
{ex | ex∈o,ex=1}

βex(φl)

·
∏

{ex | ex∈o,ex=0}

(1− βex(φl)),

(11)

P (Yt+1 = yn | Et = Et,Φt = φl)

=
∏
a∈A

P (Y a
t+1 = yan | Et = Et,Φt = φl),

(12)

P (Et = Et | St = si,Φt = φl)

=
∏

ex∈Et∩E+(si)

αex(φl) ·
∏

ex∈E+(si)\Et

(1− αex(φl)),

(13)

where F(si, si′ , φl, v, Et) is the outcome (i.e., success or fail-
ure) of attempted exploits causing the state transition from si
to si′ under attacker type φl and exploits Et; outcome o is the
set of exploits, and each exploit ex is either 1 (i.e., success) or

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3592127

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

0 (i.e., failure). Note that eqn. (12) makes use of conditional
independence of the individual alerts za ∈ Z given the exploits
Et. The alert probabilities are given by

P (Y a
t+1 = yan | Et = Et,Φt = φl)

=


(1− ζa)

∏
ex∈Et∩E(za)(1− δxa(φl))

if yan = 0

1−
(
(1− ζa)

∏
ex∈Et∩E(za)(1− δxa(φl))

)
if yan = 1,

(14)

where E(za) is the set of exploits that may raise alert za,
δxa(φl) is the probability that the attacker type φl triggers the
alert za by using the exploit ex, and ζa is the probability of
the alert za being a false alert.

We can further express rvii′nkll′ as

rvii′nkll′ = P (Ŷt+1 = ŷk | Vt+1 = v, Yt+1 = yn, St+1 = si′ ,

Φt+1 = φl′ , St = si,Φt = φl)

=

P (Ŷt+1 = ŷk,Φt+1 = φl′ | Vt+1 = v,
Yt+1 = yn, St+1 = si′ , St = si,Φt = φl)

P (Φt+1 = φl′ | Vt+1 = v, Yt+1 = yn,
St+1 = si′ , St = si,Φt = φl)

=

P (Ŷt+1 = ŷk | Vt+1 = v, Yt+1 = yn, St+1 = si′ ,

St = si,Φt = φl) · (Φt+1 = φl′ | Φt = φl)

P (Φt+1 = φl′ | Φt = φl)
,

(15)

where P (Φt+1 = φl′ | Vt+1 = v, Yt+1 = yn, St+1 = si′ , St =
si,Φt = φl) = P (Φt+1 = φl′ |Φt = φl) due to the assumption
on the attacker type, and P (Φt+1 = φl′ | Φt = φl) = qll′ .

The first term in the numerator of eqn. (15) can further be
expressed as

P (Ŷt+1= ŷk |Vt+1=v, Yt+1=yn, St+1=si′ , St=si,Φt=φl)

=
∑

Et∈P(E+(si))

P (Ŷt+1 = ŷk | Et = Et, Vt+1 = v,

Yt+1 = yn, St+1 = si′ , St = si,Φt = φl)

· P (Et = Et | Vt+1 = v, Yt+1 = yn,

St+1 = si′ , St = si,Φt = φl),
(16)

=
∑

Et∈P(E+(si))

P (Ŷt+1 = ŷk | Et = Et, Vt+1 = v,

Yt+1 = yn,Φt = φl)

· P (Et = Et | Yt+1 = yn, St+1 = si′ ,

St = si,Φt = φl),
(17)

where eqn. (17) is due to the fact that the investigated alert
vector ŷk is independent of the states si and si′ given the
exploits Et, the investigation v, the raw alert vector yn, and
the attacker type φl, and that the choices of exploits Et are

independent of the investigation v. Consider now the result of
the investigation

P (Ŷt+1 = ŷk | Et = Et, Vt+1 = v, Yt+1 = yn,Φt = φl)

=
∏
a∈A

P (Ŷ a
t+1 = ŷak | Et = Et, Vt+1 = v, Y a

t+1 = yan,

Φt = φl),

(18)

where we make use of the conditional independence of indi-
vidual investigations given the set of attempted exploits and
the corresponding alert. For ease of notation, let rvaknl(Et) =
P (Ŷ a

t+1 = ŷak | Et = Et, Vt+1 = v, Y a
t+1 = yan,Φt = φl).

Clearly, P (Ŷ a
t+1 = Y a

t+1) = 1 for a ̸∈ Vt+1, and a ∈ Vt+1

implies Y a
t+1 = 1, hence using that E(za) is the set of exploits

that may trigger alert za, we can express the terms in eqn. (18)
as

rvaknl(Et)=P (Ŷ a
t+1=ŷak | Et=Et, Vt+1=v, Y a

t+1=yan,Φt=φl)

=



1 if a ̸∈ v, yan = ŷak ,
ζa

∏
ex∈Et∩E(za)(1− δxa(φl))(1− ω)

+ (1−
∏

ex∈Et∩E(za)(1− δxa(φl)))ω

1−
(
(1−ζa)

∏
ex∈Et∩E(za)(1−δxa(φl))

)
if a ∈ v, yan = 1, ŷak = 0,

ζa
∏

ex∈Et∩E(za)(1− δxa(φl))ω

+ (1−
∏

ex∈Et∩E(za)(1− δxa(φl)))(1− ω)

1−
(
(1−ζa)

∏
ex∈Et∩E(za)(1−δxa(φl))

)
if a ∈ v, yan = 1, ŷak = 1,

(19)

where ω is the probability that the defender’s investiga-
tion incorrectly identifies the cause of the alert. The terms
ζa

∏
ex∈Et∩E(za)(1 − δxa(φl)) and (1 −

∏
ex∈Et∩E(za)(1 −

δxa(φl))) in eqn. (19) stand for the probability of the alert
being a false positive and the probability of the alert being a
true positive, respectively. Let us consider now the last term in
eqn. (17). For attacker type φl, the probability of exploits Et
given the transition from si to si′ and the alert vector yn can
be expressed as

P (Et = Et | Yt+1 = yn, St+1 = si′ , St = si,Φt = φl)

=
P (Et = Et, Yt+1 = yn | St+1 = si′ , St = si,Φt = φl)

P (Yt+1 = yn | St+1 = si′ , St = si,Φt = φl)

=
P (Yt+1 = yn, Et = Et | St+1 = si′ , St = si,Φt = φl)∑

E′
t∈P(E(si,si′))

P (Yt+1 = yn, Et = E ′t | St+1 = si′ ,

St = si,Φt = φl)

=

P (Yt+1 = yn | Et = Et,Φt = φl)
· P (Et = Et | St+1 = si′ , St = si,Φt = φl)∑

E′
t∈P(E(si,si′))

P (Yt+1 = yn | Et = E ′t,Φt = φl)

· P (Et = E ′t | St+1 = si′ , St = si,Φt = φl)

,

(20)

where we use the fact that the alert vector is independent of
the states given the attacker type and the exploits, E(si, si′)

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3592127

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

is the exploits that result in the transition from si to si′ , and
P(E(si, si′)) is the power set of the exploits causing the tran-
sition from si to si′ . P (Yt+1 = yn |Et = Et,Φt = φl) is given
by eqn. (12), and P (Et = Et |St+1 = si′ , St = si,Φt = φl) is
the probability of exploits given the transitions as

P (Et = Et | St+1 = si′ , St = si,Φt = φl)

=

P (St+1 = si′ | Et = Et, St = si,Φt = φl)
· P (Et = Et | St = si,Φt = φl)

P (St+1 = si′ | St = si,Φt = φl)
,

(21)

where P (St+1 = si′ | Et = Et, St = si,Φt = φl) is given by
eqn. (11), P (Et = Et |St = si,Φt = φl) is given by eqn. (13),
and P (St+1 = si′ | St = si,Φt = φl) is expressed as

P (St+1 = si′ | St = si,Φt = φl)

=
∑

o∈F(si,si′ ,φl)

∏
{ex | ex∈o,ex=1}

αex(φl)βex(φl)

·
∏

{ex | ex∈o,ex=0}

(1− αex(φl)βex(φl)),

(22)

where F(si, si′ , φl) is the outcome (i.e., success or failure) of
attempted exploits causing the state transition from si to si′

under attacker type φl.

V. DESIGN OF DEFENDER POLICIES

A fundamental challenge in the considered problem is that
the type of the attacker and the current state are unknown to
the defender. Hence, it is not possible to formulate defender
policies that directly minimize the MSE. To circumvent this
issue, we propose to use (un)certainty as a substitute metric
for the MSE in formulating defender policies, motivated by the
observation that accurate SA corresponds to a low uncertainty
in the belief about the system’s security state (we provide
results in Appendix B that support this intuition). The most
common way to quantify (un)certainty is through the entropy
of the operator’s belief, defined at time step t as

H(πt) = −
nS∑
i=1

nΦ∑
l=1

πil
t log(πil

t). (23)

As an alternative, we also explore the likelihood ratio of the
observations, called the Bayes factor. In what follows, we
present two policies based on these metrics of uncertainty for
maximizing situational awareness. We present the policies for
the case I = 1, we then discuss how to use them for I > 1.

A. MaxEntropy Policy

The MaxEntropy policy aims to choose alerts za ∈ Z that,
after investigation, would provide the highest reduction of the
entropy1 of the belief. This choice accounts for the uncertainty
about the investigation outcome ŷat ∈ {0, 1} and for the impact

1For a discrete random variable X ∈ D the entropy is defined as H(X) =∑
x∈D px log px, where px = P (X = x).

of the outcome on the belief update, and is expected to yield
the greatest reduction in belief entropy. The policy requires the
computation of Ti′l′(πt, ŷk, yn, v) for the potentially resulting
2|{a | yan = 1}| investigated alert vectors ŷk, and for each such
alert vector the probability P (St+1 = si′ ,Φt+1 = φl′ , Ŷ

a
t+1 =

ŷak |Vt+1 = a, Y a
t+1 = 1,Πt = πt) of its occurrence, which can

be computed by conditioning on the set Et of exploits used by
the attacker. In order to obtain the result of an investigation for
the state si′ and the attacker type φl′ , we marginalize eqn. (19)
and eqn. (11) over the power set of exploits P(E+(si)) as

P (St+1 = si′ , Ŷ
a
t+1 = ŷak | Vt+1 = a, Y a

t+1 = 1, St = si,

Φt = φl)

=
∑

Et∈P(E+(si))

P (Ŷ a
t+1 = ŷak | Et = Et, Vt+1 = a,

Y a
t+1 = 1,Φt = φl)

· P (Et = Et | Y a
t+1 = 1, St = si,Φt = φl)

· P (St+1 = si′ | Et = Et, St = si,Φt = φl),
(24)

where P (Ŷ a
t+1 = ŷak | Et = Et, Vt+1 = a, Y a

t+1 = yan,Φt = φl)
is given by eqn. (19), and P (St+1 = si′ |Et = Et, St = si,Φt =
φl) is given by eqn. (11). The probability of exploits is

P (Et = Et | Y a
t+1 = 1, St = si,Φt = φl)

=

P (Et = Et | St = si,Φt = φl)
· P (Y a

t+1 = 1 | Et = Et,Φt = φl)∑
E′
t∈P(E+(si))

P (Et = E ′t | St = si,Φt = φl)

· P (Y a
t+1 = 1 | Et = Et,Φt = φl)

,

(25)

where P (Et = Et |St = si,Φt = φl) is given by eqn. (13), and
P (Y a

t+1 = 1 | Et = Et,Φt = φl) is given by eqn. (14). Then,
since the next attacker type is only dependent on the previous
attacker type, we obtain

P (St+1 = si′ ,Φt+1 = φi′ , Ŷ
a
t+1 = ŷak | Vt+1 = a, Y a

t+1 = 1,

St = si,Φt = φl)

= P (St+1 = si′ , Ŷ
a
t+1 = ŷak | Vt+1 = a, Y a

t+1 = 1,

St = si,Φt = φl) · P (Φt+1 = φl′ |Φt = φl).
(26)

The updated belief taking into account the outcome of the
investigation can then be expressed as

P (St+1 = si′ ,Φt+1 = φi′ , Ŷ
a
t+1 = ŷak | Vt+1 = a, Y a

t+1 = 1,

Πt = πt)

=
∑

si∈S,φl∈Φ

P (St+1 = si′ ,Φt+1 = φi′ , Ŷ
a
t+1 = ŷak |

Vt+1 = a, Y a
t+1 = 1, St = si,Φt = φl)

· P (St = si,Φt = φl |Πt = πt),
(27)

where P (St = si,Φt = φl | Πt = πt) = πil
t . The MaxEntropy

policy κM then chooses the I alerts that, if investigated, would

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3592127

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

lead to the highest reduction of the entropy of the belief.
For this, the policy ranks the alerts in decreasing order of
H(St+1,Φt+1, Ŷ

a′

t+1 | Y a′

t+1 = 1, Vt+1 = a′,Πt = πt) and
greedily chooses the first I alerts.

B. Bayes Factor Policy

For an alert vector yn, the Bayes factor policy computes for
every a ∈ {a′|ya′

n = 1} the likelihood ratio of the alert being
a true positive under the hypothesis that ζa = 0 (i.e., no false
positives) vs. it being a false positive, i.e.,

Ka =
P (Y a

t+1 = 1 | Y −a
t+1 = y−a

n ,Πt = πt)|ζa=0

ζa
, (28)

where −a is the set of alert indices except for the alert index
a (i.e., −a = A \ {a}), Y −a

t+1 is the alert vector except for
the alert index a, and P (Y a

t+1 = 1 | Y −a
t+1 = y−a

n ,Πt =
πt)|ζa=0 =

∑
si∈St,φl∈Φt

P (Y a
t+1 = 1 | Y −a

t+1 = y−a
n , St =

si,Φt = φl)|ζa=0 · P (St = si,Φt = φl | Πt = πt). Consider
the probability of an alert given other alerts and current state

P (Y a
t+1 = 1 | Y −a

t+1 = y−a
n , St = si,Φt = φl)|ζa=0

=
P (Y a

t+1 = 1, Y −a
t+1 = y−a

n | St = si,Φt = φl)|ζa=0

P (Y −a
t+1 = y−a

n | St = si,Φt = φl)

=

∑
Et∈P(E+(si))

P (Yt+1 = yn | Et = Et,Φt = φl)|ζa=0

·P (Et = Et | St = si,Φt = φl)∑
Et∈P(E+(si))

P (Y −a
t+1 = y−a

n | Et = Et,Φt = φl)

· P (Et = Et | St = si,Φt = φl)
,

(29)

where a is the index of a raised alert such that a ∈ {a′|ya′

n = 1},
and P (Et = Et | St = si,Φt = φl) is given by eqn. (13).

Considering that each alert yan is independent of other alerts
y−a
n given the exploits Et and the attacker type φl, we can

express the above probabilities as

P (Y −a
t+1 = y−a

n | Et = Et,Φt = φl)

=
∏

a′∈A\{a}

P (Y a′

t+1 = ya
′

n | Et = Et,Φt = φl), (30)

P (Yt+1 = yn | Et = Et,Φt = φl)|ζa=0

= P (Y a
t+1 = 1 | Et = Et,Φt = φl)|ζa=0

· P (Y −a
t+1 = y−a

n | Et = Et,Φt = φl)

=
(
1−

∏
ex∈Et∩E(za)

(1− δxa(φl))
)

·
∏

a′∈A\{a}

P (Y a′

t+1 = ya
′

n | Et = Et,Φt = φl),

(31)

where each term in eqn. (30) and eqn. (31) is given by eqn. (14).
Note that Ka = 1 stands for the highest uncertainty of an alert.
Then, the Bayes factor policy κB ranks the alerts in increasing
order of (Ka − 1)2 and chooses the first I alerts. This policy
prioritizes the most ambiguous alert, i.e., the one for which the
investigation outcome is most uncertain, but does not account
for the impact of the outcome of the belief update. Hence its
computational cost is lower than that of the MaxEntropy policy.

C. Experts with Heterogeneous Skills

The above policies can be extended to M > 1 security
analysts with different skills, as follows. For 1 ≤ m ≤ M ,
let ωm and Im be the investigation error probability and the
investigation budget of analyst m, respectively. We then sort the
analysts in ascending order of ωm. For each alert a′ ∈ {a|yat =
1}, we calculate the entropy H(St+1,Φt+1, Ŷ

a′

t+1 | Y a′

t+1 =

1, Vt+1 = a′,Πt = πt) or the ambiguity score (Ka′ − 1)2

using the investigation error probability ωm. Next, we rank the
alerts in descending order of entropy or ascending order of
ambiguity score, following the MaxEntropy and Bayes factor
policies, respectively. Finally, for each m ∈ {1, . . . ,M}, we
select the first Im alerts that have not been assigned to any
prior analyst m′ < m.

D. Illustrative Example

We illustrate our proposed framework using the example
shown in Fig. 4. In this example, there are four security
conditions (|N | = {c1, c2, c3, c4}), four exploits (|E| =
{e1, e2, e3, e4}), and two attacker types (|Φ| = {φ1, φ2}).
Exploits e1, e2, e3, and e4 trigger alerts a = 1, a = 2, a = 3,
and a = 4, respectively. For simplicity, we assume the attacker
always chooses the exploit needed to compromise the next
security condition, i.e., P (Et = ex|St = si,Φt = φl) = 1,
given N−

x ⊆ si and N+
x ∩ si = ∅. The initial belief π0 was

uniformly distributed across attacker types, and assumed that
the system is not compromised, i.e., s1 = ∅. Upon time slot
t, the belief is as shown in Fig. 4 (i.e., assigns 32% and 68%
probability to states {c1} and {c1, c2}, respectively. The alert
vector is y = (0, 1, 1, 0).

The MaxEntropy policy requires computation of the entropy
H(St+1,Φt+1, Ŷ

a
t+1 | Y a′

t+1 = 1, Vt+1 = a′,Πt = πt) for alert
2 and alert 3, yielding values of 2.13 and 2.46, respectively.
Consequently, the MaxEntropy policy selects alert 3.

For illustrating the Bayes factor policy, we can use eqn. (29)
to obtain K2 = 0.53 and K3 = 1.13. Observe that K3 is
closer to 1, which implies that alert 3 is more ambiguous than
alert 2. Therefore, the Bayes factor policy prioritizes alert 3 for
investigation.

In contrast, consider a static investigation policy that pri-
oritizes alerts in ascending order of their false positive rates,
referred to as MinFP. This static policy would select alert
a = 2, which would not improve the belief as effectively.

TABLE I
PROBABILITY OF CHOOSING EXPLOITS

Attack tree Exploit Index (x) 1 2 3 4 5 6 7 8

Synthetic αex (φ2) 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2
Real αex (φ2) 0.1 0.15 0.2 0.1 0.3 0.3 0.3 0.08

Attack tree Exploit Index (x) 9 10 11 12 13 14 15 -

Synthetic αex (φ2) 0.2 0.2 0.3 0.2 0.2 - - -
Real αex (φ2) 0.3 0.3 0.3 0.4 0.3 0.3 0.3 -

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3592127

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Sta cally reduced exploit space
Exploit (ℰ�)

Probability of exploit

� �� ℰ� � si , t)

Exploit

Dynamically reduced state space
State) Sorted state)

Cumula ve

Distribu on (c �))
Belief ()

State space reduc on (dynamic)

Exploit space reduc on (sta c)

Descending order,

Cumula ve sum

1
�

�

Probability of exploit

� �� ℰ� � si , t)

Fig. 5. Illustration of state space and exploit space reduction.

E. Complexity Analysis

Recall that we denote by nz the number of alerts and by nS

the number of possible states. Also, let us denote by NE the
maximum number of available exploits among all states (i.e.,
NE = maxs∈S |E+(s)|). The Bayes factor policy considers
all possible exploits in each state. Thus, given a state, the
policy computes the power set of exploits to consider all
possible exploits and require O(2NE) computations. We repeat
the computation for all states and all alerts and thus obtain
O(nznS2

NE). In addition, MaxEntropy factors all combina-
tions of the successes and failures of exploits Et ⊆ E+(s) by
using the power set. Thus, the worst case is Et = E+(s), and
the complexity of MaxEntropy is O(nznS2

2NE).
The belief update in eqn. (6) consists of pni′l′(πt), rvi′nkl′(πt),

and σ(πt, ŷk, yn, v). However, we derive σ(πt, ŷk, yn, v) by
summing the numerator. Thus, we focus on the terms in the
numerator. The terms pni′l′(πt) and rvi′nkl′(πt) consider all
possible successes and failures of exploits Et ⊆ E+(s). In
the worst case Et = E+(s), and we consider all possible
successes and failures of NE exploits and all possible exploits
given a state, at complexity O(22NE). This computation is
repeated for all states, resulting in O(nS2

2NE) computations.
Each term in the numerator requires such a computation; hence
the belief update requires O(nS2

2NE+1) computations. Since
2NE+1 ≫ nz , we can state the computational burden of the
Bayes factor policy is relatively low compared to that of the
belief update.

F. State Space Reduction

The above analysis shows that the computational complexity
of the belief update in eqn. (6) depends on the size of the
state space. Hence, to reduce the computational burden, in
what follows, we propose an approach for dynamic state space
reduction, shown in Fig. 5. Our proposed approach makes use
of the belief πt for focusing on the set of states with high
cumulative probability. For this, we first compute the belief
πi′

t =
∑

φl∈Φ πi′l
t of state si′ at time t. We then sort the

Fig. 6. Dependency graph with 12 conditions and 13 exploits in [36]. Each
exploit ex is connected to preconditions N−

x and postconditions N+
x (e.g.,

N−
4 = {c1, c2} and N+

4 = {c5}, hence, e4 = ({c1, c2}, {c5}). There are
four initial exploits, E0 = {e1, e2, e3, e11} and two goal conditions Ng =
{c11, c12}.

states in the descending order of the belief πi′

t and calculate
the cumulative belief of the ranked states,

c(πi
t) =

∑
{si′ |πi′

t ≤πi
t,si′∈S,si∈S}

πi′

t . (32)

We then define the reduced state space at rate rS ∈ [0, 1] as

Sr(πt) = {si|c(πi
t) ≤ 1− rS , si ∈ S} ∪ {argmax

si′∈S
πi′

t }, (33)

i.e., consisting of the states with a cumulative probability at
most rS and the set of most likely states. We then use Sr(πt)
instead of S in eqns. (7), (8), (9) and (27).

The computational complexity of the belief update,
the Bayes factor policy, and the MaxEntropy policy
become O(|Sr(πt)|22NE+1), O(nz|Sr(πt)|2NE), and
O(nz|Sr(πt)|22NE), respectively, where |Sr(πt)| < nS .

Algorithm 1: State space reduction
Input: Belief πt

Output: Reduced state space Sr(πt)
1 Let I ← {1, . . . , nS}
2 Let Sr(πt)← ∅
3 foreach si ∈ S do
4 Compute marginal belief πi

t ←
∑

ϕl∈Φ πi,l
t

5 end
6 Let Sr(πt)← Sr(πt) ∪ {argmaxsi′∈S πi′

t }
7 Sort I in descending order of πi

t

8 Compute cumulative belief
c(πi

t)←
∑

{si′ |πi′
t ≤πi

t,si′∈S,si∈S} π
i′

t

9 foreach i ∈ I do
10 if c(πi

t) < 1− rS then
11 Sr(πt)← Sr(πt) ∪ {si})
12 end
13 Return Sr(πt)

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3592127

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Observe that state space reduction reduces computational
complexity by omitting low-probability states, based on the
current belief. If the reduction rate rS is low, only low-
probability states are excluded, resulting in a small decrease
of the belief accuracy. The reduction rate rS can thus be used
for finding a trade-off between the reduction in computational
complexity and in belief accuracy.

Algorithm 1 shows the pseudocode for the state-space reduc-
tion method. The algorithm first sums over the attacker types
to obtain the belief of state i at time t (Line 4). To ensure that
the reduced state set is non-empty, it always retains the most
probable state (Line 6). Next, the states are sorted in decreasing
order of the belief, and the cumulative belief is computed
accordingly (Lines 7 and 8). Finally, the algorithm retains the
states whose cumulative belief is less than the threshold 1− rS
(Line 11).

G. Exploit Space Reduction

An alternative to state space reduction is to reduce the
number of exploits considered as shown in Fig. 5. The rationale
for exploit space reduction is that eqn. (10) involves a sum over
the power set of exploits, and hence one way to improve the
scalability of the belief update would be to disregard sets of
exploits that have a low probability. Given state si, the proposed
exploit space reduction at rate rE defines the considered set of
exploits as

PrE (E+t (si)) = {Et|P (Et = Et | St = si,Φt = φl) > rE ,

Et ∈P(E+(si))},
(34)

TABLE II
TRUE AND FALSE ALERT RATES USED FOR THE EVALUATION

True alert rate (δxa(φl))

Attack Exploit Alert index (a)

Tree index (x) 1 2 3 4 5 6 7 8 9 10 11

1 0.8 0 0 0 0 0 0 0 - - -
2 0.1 0.6 0 0 0 0 0 0 - - -
3 0 0.8 0 0 0 0 0 0 - - -
4 0 0 0.5 0 0 0 0 0 - - -
5 0 0 0 0.7 0 0 0 0 - - -
6 0 0 0.6 0 0 0 0 0 - - -

Synthetic 7 0 0 0.1 0.7 0 0 0 0 - - -
8 0 0 0 0 0.7 0 0 0 - - -
9 0 0 0 0 0.6 0.4 0 0 - - -
10 0 0 0 0 0 0.7 0 0 - - -
11 0.4 0.6 0 0 0 0 0 0 - - -
12 0 0 0 0 0 0 0.7 0 - - -
13 0 0 0 0 0 0 0 0.8 - - -

1 0.3 0 0 0 0 0 0 0 0 0 0
2 0.4 0.2 0 0 0 0 0 0 0 0 0
3 0 0.3 0.4 0 0 0 0 0 0 0 0
4 0 0 0.3 0.4 0 0 0 0 0 0 0
5 0 0 0 0.3 0.4 0.2 0 0 0 0 0
6 0 0 0 0.3 0.4 0.2 0 0 0 0 0
7 0 0 0 0.3 0.4 0.2 0 0 0 0 0

Real 8 0.4 0 0 0.2 0 0 0 0 0 0 0
9 0 0 0 0 0 0.2 0.6 0 0 0 0
10 0 0 0 0 0 0 0 0.4 0.2 0 0
11 0 0 0 0 0 0 0 0.4 0.2 0 0
12 0.4 0 0.3 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0.6 0
14 0 0 0 0 0 0 0 0 0 0 0.8
15 0 0 0 0 0 0 0 0 0 0 0.8

False alert rate (ζa)

Synthetic 0.25 0.3 0.25 0.3 0.25 0.4 0.35 0.3 - - -

Real 0.3 0.25 0.3 0.25 0.2 0.25 0.2 0.15 0.3 0.6 0.5

i.e., the set consists of exploits that have a joint probability
of at least rE . Exploit space reduction then involves using
PrE (E+t (si)) instead of P(E+(si)) for the belief update in
eqns. (10), (17), (24), and (25).

Using exploit space reduction, the computational com-
plexity of the belief update, the Bayes factor policy,
and the MaxEntropy policy become O(2nS |PrE (E+t (si))|2),
O(nznS |PrE (E+t (si))|), and O(nznS |PrE (E+t (si))|2), re-
spectively, where |PrE (E+t (si))| < 22NE . Observe that ex-
ploit space reduction reduces the computational complexity by
excluding low probability actions, i.e., low probability state
transitions. However, if the reduction rate rE is high, it may
exclude combinations of exploits that may lead to a significant
degradation in the accuracy of the belief. The reduction rate
rE can thus be used for exploring the trade-off between the de-
crease of the belief accuracy and the reduction in computational
complexity.

Algorithm 2 shows the pseudocode for the exploit space
reduction method for a given state for a given state si ∈ S.
The algorithm iterates through all exploit combinations E ∈
P(E+(si)) and computes their probabilities (Line 3). If the
probability of an exploit combination exceeds the threshold
rE , it is included in the reduced exploit set (Line 5). After
processing all combinations, the algorithm returns the reduced
exploit space for the given state (Line 7).

H. Practical Considerations

1) Model paremeter estimation: Real-world deployment of
the proposed framework requires attack graphs to be con-
structed, which can be done using tools such as MulVAL
to model multi-stage, multi-host attack vectors through sim-
ulation [50]. Transition and observation probabilities required
for analysis may be obtained through automated penetration
testing methodologies [37], [51] with anomaly-based IDS [52].
For instance, an automated penetration testing tool can be
used for scanning the networked system, identifying the set
of potentially available exploits, selecting and executing a
sequence of actions, and for recording these activities [51]. By
analyzing recorded activities alongside IDS-generated alerts, a
supervised learning technique [37] can be employed to estimate

Algorithm 2: Exploit space reduction
Input: State si, exploit space reduction rate rE
Output: Reduced exploit space PrE (E+(si))

1 Initialize the reduced exploit-combination set
PrE (E+t (si))← ∅

2 foreach E ∈P(E+(si)) do
3 Compute likelihood P (Et = E | St = si,Φt = φl)

using (13)
4 if P (Et = E | St = si,Φt = φl) > rE then
5 PrE (E+(si)).insert(E)
6 end
7 Return PrE (E+(si))

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3592127

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

the transition probabilities (αex(φl) and βex(φl)) as well as the
observation probabilities (δxa(φl) and ζa).

2) Computational cost: The two proposed approximation
methods enhance the practicality of the belief update and
the dynamic alert-prioritization policies. State-space reduction
omits computations for low-probability states based on the
most recent belief, i.e., the computations are adapted dynami-
cally. Exploit-space reduction, on the contrary, eliminates low-
probability exploit combinations, which are independent of
the belief. State-space reduction incurs O(nS log nS) com-
putational cost at each belief update, as it involves sorting
states based on the probabilities. In contrast, exploit-space
reduction performs a one-time computation only, hence it is
computationally cheaper.

For large scale systems, real-time belief computation and
alert prioritization may be infeasible on the resulting attack
graphs, despite the proposed state space and exploit space
reduction techniques. To address this issue, the computational
complexity could be kept reasonable by constructing one attack
graph per subnet in an organization, effectively reducing the
number of states and exploits that have to be considered in a
single model.

VI. NUMERICAL RESULTS

In what follows, we evaluate the proposed policies and the
proposed state space and exploit space reduction methods using
simulations on two dependency graphs2

A. Evaluation Methodology

For the evaluation, we use the dependency graphs shown
in Fig. 6 and Fig. 3. We refer to the two dependency graphs
as the synthetic and the real dependency graphs, respectively.
The synthetic graph consists of 12 security conditions and 13
exploits, yielding a total of 87 valid security states. Compared
to Fig. 3, attacker progression in this graph is more constrained,
as most security states are linked by AND conditions, except
for exploits e6 to e9. While OR conditions allow for ran-
domness in the order of using exploits, different attack paths
ultimately merge with AND conditions, necessitating multiple
initial exploits. Overall, this dependency graph contains two
independent attack paths: (a) the path starting from e1 to e3,
and (b) the path starting from e3 to e11. The real dependency
graph has a state space that is 6.6 times larger than that of the
synthetic dependency graph, resulting in a significant increase
in computation time. Furthermore, the maximum number of
exploits in a single state is five for the synthetic graph and six
for the real graph. Given that the computational complexity
of belief update is O(nS2

2NE+1), the real graph exhibits
26.4 times higher computational complexity compared to the
synthetic graph. Thus, we use the real dependency graph to
demonstrate the decrease in computational complexity achieved
through our proposed reduction techniques.

The attacker is characterized by the probability αex(φl) of
selecting exploit ex, the probability βex(φl) of successfully

2Source code is available at https://github.com/ywkim09/alert_prioritization..

executing exploit ex, and the probability δxa(φl) of triggering
a true alert when using exploit xa. The IDS raises false alerts
with probability ζa for alert a. Our choice of these parameters
is as follows. We consider two attacker types (i.e., |Φ| = 2),
where the first type and the second type are a benign user
and a malicious attacker, respectively. The benign user does
not use any exploits (αex(φ1) = 0 ∀ex ∈ E). The malicious
attacker chooses exploits with probabilities shown in Table I.
Table II shows the probability of true and false alerts. After
choosing the exploits, the exploits in the synthetic dependency
graph succeed with probability βex(φl) = 0.3 for ex ∈ E0
and βex(φl) = 0.2 for ex ∈ E \ E0. The exploits in the real
dependency graph succeed with probability βex(φl) = 0.3 for
all exploits ∀ex ∈ E . To account for the defender’s limited
resources (number of security analysts and time), we use an
investigation budget of I = 1 by default, which stands for
the number of alerts the defender can investigate in each step.
We performed each attack simulation for 50 time steps, and
the results shown are the averages of 100 simulations. In
each simulation, the defender’s initial belief π0 is uniformly
distributed over the attacker types, and assumes that the system
is not compromised, i.e., s1 = ∅.

As baselines for comparison, we consider five policies. Using
the first policy, the defender investigates all alerts, providing a
lower bound on the achievable MSE. We refer to this as All.
Using the second baseline policy, the defender investigates the
alert with the lowest false positive rate, referred to as MinFP.
This policy is motivated by the fact that security analysts tend
to investigate alerts they deem reliable [7]. Using the third
baseline policy, the defender investigates an alert chosen at
random, referred to as Random. The fourth baseline is an alert
priorization policy trained using RL, referred to as RL [53].
We describe the methodology for training the RL agent in
Appendix A. Finally, under the No Investigation policy, the
attacker does not investigate any alerts, providing an upper
bound on the MSE. This policy is based on [36], assuming
no defensive actions are taken.

For a numerical comparison of policies, we use the reduction
of normalized mean absolute error (RNMAE) to measure the
reduction of MSE of a policy κ,

RNMAEκ
t =

MSE(πNI
t , St)−MSE(πκ

t , St)

MSE(πNI
t , St)−MSE(πAll

t , St)
, (35)

where πκ
t is the belief at time step t, and NI and All stand for

the No Investigation and the All policy, respectively. Thus, a
higher RNMAE indicates greater improvement in SA.

B. Impact of Investigation Policies on MSE

Fig. 7 shows the MSE as a function of time for the considered
policies for two values of the investigation error probability
ω. The figure shows that the MSE increases sharply during
the first few time steps for all policies. This can be attributed
to two factors: i) low number of alerts during the first time
steps, and ii) the confusion matrix of the IDS, as shown in
Table II, which makes it hard to maintain high SA. Specifically,
alerts a ∈ {1, 2} can be associated with multiple initial exploits

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3592127

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

0 10 20 30 40 50

Step (t)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
S
E

All

Bayes

MaxEntropy

MinFP

No Investigation

Random

RL

ω=0

ω=0.05

ω=0

ω=0.05

Fig. 7. MSE of attack state belief as a function of time t for I = 1
with 95% confidence intervals.

10−6 10−5 10−4 10−3 10−2 10−1

Investigation error probability (ω)

0.1

0.2

0.3

0.4

0.5

0.6

M
S
E

All

Bayes

MaxEntropy

MinFP

No Investigation

Random

RL

Fig. 8. MSE of attack state belief vs. the investigation error probability
ω at t = 50, I = 1 with 95% confidence intervals.

ex ∈ E0, making it difficult to infer the attacker’s state based
solely on the alerts observed during the initial time slots.
The results are, however, very distinct after t = 8. Without
investigation, the MSE continues to increase throughout the
simulation. On the contrary, using the proposed policies, the
MSE remains nearly constant or decreases slightly depending
on the investigation error probability ω. The RL policy exhibits
performance comparable to our two proposed policies when
ω = 0. However, its performance degrades substantially as ω
increases, highlighting its sensitivity to incorrect investigation
outcomes. Thus, the results show that the MaxEntropy and
Bayes policies outperform the Random, the RL, and the MinFP
baseline policies significantly, especially when ω > 0. Further-
more, we observe that the MSE is much lower for investigation
error probability ω = 0, suggesting that the initial poor SA can
be recovered thanks to dynamic alert prioritization.

Table III shows the RNMAE of the different policies com-
puted using eqn. (35) at t = 50. The table shows that the
RNMAE achieved by MaxEntropy and Bayes in comparison to
MinFP and Random is significantly higher, up to 50 percent
points for ω > 0, which indicates the importance of the
dynamic prioritization of alerts and the superior performance of
the proposed policies compared to static prioritization (MinFP).
Compared to our proposed policies, Random exhibits a lower
RNMAE by 34 percentage points. it is thus likely to investigate
uninformative alerts. MinFP also shows a lower RNMAE by
33 percentage point, even though it attempts to prioritize true
alerts. To understand the poor performance of MinFP, it is
important to note that different exploits may trigger different
alerts, meaning that as the attack progresses, different alerts
will be triggered. However, MinFP relies solely on false alert
rates without considering which exploits can be used given the
attacker’s likely progression (captured by the belief). Conse-
quently, an alert with a low false positive rate may be chosen,
even though it is unrelated to currently available exploits
and hence is uninformative. In contrast, our proposed policies
prioritize ambiguous alerts and alerts with high-entropy based
on the most recent belief, thereby increasing the probability
of selecting an alert that is relevant to the ongoing attack and
whose investigation can improve the belief. Notably, investiga-

tion errors ω > 0 affect the RL policy significantly, much more
than our proposed policies. We attribute this to the increased
variance of rewards due to investigation errors, which hinders
training from converging to a good policy. Overall, MinFP
and RL outperform Random, hence in what follows we omit
Random from the figures. Fig. 8 shows the MSEs at t = 50
as a function of the investigation error probability ω. Note
that ω = 0.5 implies the investigation adds no information,
and is thus equivalent to No Investigation. We observe that
the MSE of the All policy, which serves as a lower bound,
increases smoothly with the increase in the error probability
ω, and so does the MSE of the proposed policies and RL.
However, as discussed earlier in Table III, the increase in ω
increases the MSE of the RL policy more noticeably (e.g.,
at ω = 0.1 the RL policy performs as the MinFP policy).
On the one hand, the figure highlights the importance of the
defender’s certainty regarding the investigation results. On the
other hand, it also shows that investigation error probability
causes a graceful degradation of the state estimate. Table IV
illustrates the RNMAE achieved by the proposed policies (i.e.,
MaxEntropy and Bayes) compared to No Investigation for
different values of the investigation error probability ω. The
results show that Bayes mostly achieves a higher RNMAE than
MaxEntropy. Since its computation burden is lower as well, we
argue that Bayes should be the preferred method for dynamic
alert prioritization if the investigation error probability is non-
negligible. In what follows, we use MinFP as the baseline due
to the large computational cost of training RL policies.

C. Impact of the Investigation Budget

We next evaluate the impact of the investigation budget I
on the MSE. Fig. 9 shows the MSEs at t = 50 as a function
of the investigation budget I . To obtain meaningful results for
high values of I , we increased the false positive (FP) rate ζa

TABLE III
RNMAE OF POLICIES AT t = 50.

Bayes MaxEntropy MinFP Random RL

ω = 0 90.21% 93.14% 60.14% 58.84% 92.38%
ω = 0.05 88.81% 80.40% 44.04% 34.51% 66.45%

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3592127

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

1 2 3 4 5 6 7 8

Investigation Budget (I)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
S
E

All

Bayes

MaxEntropy

MinFP

No Investigation

ω=0

ω=0.05

ω=0

ω=0.05

Fig. 9. MSEs of the belief as a function of the investigation budget I
at t = 50 with 95% confidence intervals.

0 1
8

1
4

3
8

1
2

Relative investigation error probability (ω1/(ω1+ω2))

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
S
E

All

Bayes

MaxEntropy

MinFP

No Investigation

ω1 +ω2=0.3

ω1 +ω2=0.4

ω1 +ω2=0.3

ω1 +ω2=0.4

Fig. 10. MSEs of the belief as a function of the relative investigation
error probability ω1/(ω1 + ω2) of one of two analysts, including 95%
confidence intervals.

of all alerts by 0.2 for the evaluation, hence there are 4 false
alerts on average per time step. While it is no surprise that
No Investigation is insensitive to the investigation budget, we
observe that the proposed policies require a significantly lower
investigation budget (I = 2 instead of I = 5 and I = 6 for
ω = 0 and ω = 0.05, respectively) for performing as well as the
All policy compared to the MinFP policy, which shows that our
policies can identify the most informative alerts to investigate.
In practical terms, our proposed policies achieve high SA at a
low investigation budget.

D. Impact of Heterogeneous Expertise

We now turn to the question how the combination of analysts
with different skill levels affects SA. We consider I = 2 secu-
rity analysts with different combinations of investigation error
probabilities ω1 and ω2, by varying ω1 while keeping ω1 + ω2

constant. Fig. 10 shows the MSEs at t = 50 as a function of
the relative investigation error probability ω1/(ω1+ω2) of one
of the two analysts, for a total investigation error probability
ω1 + ω2 ∈ {0.3, 0.4}. Thus, analysts are equally skilled at the
right end of the horizontal axis, while they have very different
skill levels at the left end. The figure shows that the MSE
is lowest when the skill levels are as different as possible,
highlighting the advantage of having at least one highly skilled
analyst. Overall, we can observe that the MSE is a concave
function of the relative investigation error for all policies, i.e,
there is an increasing marginal gain in improving the skills of
the more skilled analyst.

TABLE IV
RNMAE OF POLICIES FOR DIFFERENT ω AT t = 50, I = 1.

ω 0.0 1× 10−6 1× 10−5 1× 10−4

Bayes 94.81% 91.27% 89.95% 89.30%
MaxEntropy 94.83% 91.56% 88.61% 81.89%

ω 1× 10−3 1× 10−2 5× 10−2 1× 10−1

Bayes 89.30% 89.36% 82.84% 88.34%
MaxEntropy 79.48% 81.49% 78.67% 98.50%

E. Impact of the False Alert Rate

Next, we investigate the impact of the false alert rate on
the MSE. Fig. 11 shows the MSE at t = 50 as a function
of the average false positive rate. We vary the average false
positive rate by decreasing/increasing the false positive rate in
the synthetic dependency graph shown in Table II uniformly
(the default average FP rate is 0.3), which results in scenarios
with highly different alert quality. The figure shows a significant
degradation of the belief accuracy as the FP rate increases
when using MinFP, indicating the inevitable degradation of
SA due to low-quality alerts. However, MaxEntropy and Bayes
exhibit a performance relatively close to All, they are not
significantly affected by the low quality of the alerts. Notably,
the MaxEntropy policy outperforms the Bayes Factor policy
for ω = 0.05 and

∑
a∈A ζa
|A| = 1 for ∀a ∈ A. The main

reason is that the Bayes Factor policy does not take into
account the investigation error probability and its impact on
the belief update in selecting the alert to be investigated, while
the MaxEntropy policy does take this into account, at the cost
of higher computational cost. Thus, we can conclude that our
policies can efficiently choose the most informative alerts as a
function of the system state, despite high FP rates, and doing
so is sufficient to perform almost as well as when investigating
all alerts, at much lower cost.

F. Computation Time vs. Belief Accuracy

Finally, we explore the impact of the proposed methods for
state space reduction and for exploit space reduction on the
computation time and on the MSE. For the evaluation we use
the real dependency graph.

Fig. 12 shows the MSE (left axis) and computation time
(right axis, log.scale) as a function of the state reduction rate
rS for investigation error ω = 0. We observe that our policies
consistently outperforms MinFP, and that Bayes reduces the
MSE compared to MinFP by up to a factor of 1.6. The
figure shows that state reduction decreases the computation
time significantly already for a rate of rS = 0.01, at the
price of a small increase of the MSE. This indicates that (i)
without state space reduction, a large fraction of computation

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3592127

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

0.0 0.2 0.4 0.6 0.8 1.0

Average False Positive Rate (∑
a∈ 

ζa/||)

0.0

0.2

0.4

0.6

0.8

1.0
M

S
E

All

Bayes

MaxEntropy

MinFP

No Investigation

ω=0

ω=0.05

ω=0

ω=0.05

Fig. 11. MSEs of the belief as a function of the false positive rate for I = 1
at t = 50 with 95% confidence intervals.

time was used for low-probability states, and (ii) considering
these low probability states does not contribute significantly to
SA. Hence, in what follows we use a state reduction rate of
rS = 0.01.

Fig. 13 shows the MSE (left axis) and the computation time
(right axis, log.scale) as a function of the exploit reduction
rate rE for rS = 0.01. The figure shows that the MSEs of all
policies become almost equal at rE = 0.1, and at the same time
the improvement in terms of the computation time is negligible.
This indicates that exploit space reduction is not a promising
approach for reducing computational complexity.

Table V summarizes the relative increase of the MSE for
reduction rate r, defined as

RCMSEκ(r) =
MSE(πκ

50(r), S50)−MSE(πκ
50(0), S50)

MSE(πκ
50(0), S50)

,

(36)

where κ is the alert investigation policy. Thus, a larger RCMSE
means greater degradation in SA. The table also shows the
relative reduction of the computation time (RCT), i.e., the de-
crease of the computation time normalized by the computation
time without state space or exploit space reduction. The table
shows results for the Bayes and MaxEntropy policies. The table
shows that for rS = 0.01 and rE = 0.01, state space reduction
results in 56% point larger reduction in computation time than
exploit space reduction, while the degradation in MSE is less
than 9% using state space reduction. Based on these results
and based on comparing Fig. 13 to Fig. 12, it is apparent that
state space reduction is the preferred method for reducing the
computational time at minimal impact on accuracy.

TABLE V
REDUCTION IN THE COMPUTATION TIME WITH THE DEGRADATION OF MSE

State space reduction
rS 0 0.01 0.05 0.1 0.2 0.3 0.4 0.5

RCT(rS) 0.00% 84.74% 91.98% 93.85% 94.97% 95.23% 95.20% 95.20%
Relative change of MSE (RCMSEκ(rS))

Bayes 0.00% 3.29% 26.20% 76.12% 191.70% 238.12% 239.59% 239.59%
MaxEntropy 0.00% 10.85% 32.53% 53.00% 136.78% 180.68% 185.06% 185.40%

Exploit space reduction
rE 0 0.01 0.05 0.1 0.2 0.3 0.4 0.5

RCT(rE) 0.00% 33.79% 60.78% 74.67% 74.86% 74.67% 74.76% 75.54%
Relative change of MSE (RCMSEκ(rE))

Bayes 0.00% 21.37% 43.53% 235.32% 235.32% 240.21% 240.21% 240.21%
MaxEntropy 0.00% 11.29% 42.02% 163.37% 163.37% 165.55% 165.55% 165.55%

VII. CONCLUSION

In this paper, we considered the problem of dynamic alert
prioritization for maintaining real-time SA based on noisy
alerts from an IDS. We proposed a novel formulation of the
problem, in the form of active learning for estimating the
state of a HMM, taking into account that queries may be
error prone. We proposed two policies that rely on the un-
certainty of the belief for minimizing the state estimation error,
and we proposed two techniques for improving computational
feasibility. Our simulations showed that the proposed alert
prioritization policies significantly outperform baseline policies
at moderate computational overhead, highlighting the benefit of
dynamic alert prioritization. Our results also show that state
space reduction provides significant savings in computation
time without a significant degradation of the SA. Our proposed
framework can thus facilitate maintaining real-time SA at
moderate computational cost, by only investigating the most
informative alerts.

There are several promising extensions of our proposed
framework. First, one could explore the design of policies that
are robust to noisy estimates of the dependency graph parame-
ters. Second, one could incorporate semi-autonomous incident
response actions for attack containment. A third, interesting
avenue of future work would be to learn and adapt to the
capabilities of security analysts through continuous interaction.

ACKNOWLEDGEMENT

The computations were enabled by resources provided by
the National Academic Infrastructure for Supercomputing in
Sweden (NAISS) at Linköping University and KTH Royal In-
stitute of Technology partially funded by the Swedish Research
Council through grant agreement no. 2022-06725.

REFERENCES

[1] I. Aldasoro, L. Gambacorta, P. Giudici, and T. Leach, “The drivers of
cyber risk,” J. Financ. Stab. (JFS), vol. 60, p. 100989, 2022.

[2] L. Abrams, “Netwalker ransomware hits Argentinian gov-
ernment, demands $4 million,” accessed: 2024-07-05. [On-
line]. Available: https://www.bleepingcomputer.com/news/security/
netwalker-ransomware-hits-argentinian-government-demands-4-million/

[3] A. G. Wermann, M. C. Bortolozzo, E. G. da Silva, A. Schaeffer-Filho,
L. P. Gaspary, and M. Barcellos, “ASTORIA: A framework for attack
simulation and evaluation in smart grids,” in Proc. of IEEE/IFIP Netw.
Oper. Manag. Symp. (NOMS), 2016, pp. 273–280.

[4] H. T. Neprash, C. C. McGlave, D. A. Cross, B. A. Virnig, M. A.
Puskarich, J. D. Huling, A. Z. Rozenshtein, and S. S. Nikpay, “Trends
in ransomware attacks on US hospitals, clinics, and other health care
delivery organizations, 2016-2021,” in JAMA Health Forum, vol. 3, no. 12,
2022, p. e224873.

[5] B. Gorenc and F. Sands, “Hacker machine interface: The state of SCADA
HMI vulnerabilities,” TrendLabs Research Paper, 2017.

[6] F. B. Kokulu, A. Soneji, T. Bao, Y. Shoshitaishvili, Z. Zhao, A. Doupé,
and G.-J. Ahn, “Matched and mismatched SOCs: A qualitative study
on security operations center issues,” in Proc. of ACM Conf. Comput.
Commun. Secur. (CCS), 2019, pp. 1955–1970.

[7] B. A. Alahmadi, L. Axon, and I. Martinovic, “99% false positives: A
qualitative study of SOC analysts’ perspectives on security alarms,” in
Proc. of USENIX Secur. Symp. (USENIX Security), 2022, pp. 2783–2800.

[8] S. Thudumu, P. Branch, J. Jin, and J. Singh, “A comprehensive survey
of anomaly detection techniques for high dimensional big data,” J. Big
Data (JBD), vol. 7, pp. 1–30, 2020.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3592127

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

0.0 0.1 0.2 0.3 0.4 0.5

State reduction rate (r)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
S
E

All

Bayes

MaxEntropy

MinFP

No Investigation

103

104

105

C
o
m

p
u
ta

ti
o
n
 T

im
e

Fig. 12. MSE of the belief at t = 50 as a function of the state space
reduction rate rS for I = 1 and ω = 0 with 95% confidence intervals.

0.0 0.1 0.2 0.3 0.4 0.5

Exploit reduction rate (r)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
S
E

All

Bayes

MaxEntropy

MinFP

No Investigation

103

104

105

C
o
m

p
u
ta

ti
o
n
 T

im
e

Fig. 13. MSE of the belief at t = 50 as a function of the exploit space
reduction rate rE for rS = 0.01, I = 1 and ω = 0 with 95% confidence
intervals.

[9] L. Yang, Z. Chen, C. Wang, Z. Zhang, S. Booma, P. Cao, C. Adam,
A. Withers, Z. Kalbarczyk, R. K. Iyer et al., “True attacks, attack attempts,
or benign triggers? an empirical measurement of network alerts in a
security operations center,” in Proc. of USENIX Secur. Symp. (USENIX
Security), 2024, pp. 1525–1542.

[10] F. Alotaibi and S. Maffeis, “Mateen: Adaptive ensemble learning for
network anomaly detection,” in Proc. of Int. Symp. Research in Attacks,
Intrusions, and Defenses (RAID), 2024, pp. 215–234.

[11] C. Fu, Q. Li, K. Xu, and J. Wu, “Point cloud analysis for ML-based
malicious traffic detection: Reducing majorities of false positive alarms,”
in Proc. of ACM Conf. Comput. Commun. Secur. (CCS), 2023, pp. 1005–
1019.

[12] J. Ghadermazi, A. Shah, and S. Jajodia, “A machine learning and
optimization framework for efficient alert management in a cybersecurity
operations center,” Digit. Threats: Res. Pract. (DTRAP), 2024.

[13] M. Sharif, P. Datta, A. Riddle, K. Westfall, A. Bates, V. Ganti, M. Lentz,
and D. Ott, “Drsec: Flexible distributed representations for efficient
endpoint security,” in Proc. of IEEE Symp. Secur. Priv. (S&P), 2024,
pp. 145–145.

[14] “MITRE ATT&CK®,” Accessed: 2023-11-22. [Online]. Available:
https://attack.mitre.org/

[15] “Common vulnerabilities and exposures (CVE),” Accessed: 2023-11-22.
[Online]. Available: https://cve.mitre.org/

[16] A. Schlenker, H. Xu, M. Guirguis, C. Kiekintveld, A. Sinha, M. Tambe,
S. Sonya, D. Balderas, and N. Dunstatter, “Don’t bury your head in
warnings: A game-theoretic approach for intelligent allocation of cyber-
security alerts,” in Proc. of Int. Jt. Conf. Artif. Intell. (IJCAI), 2017.

[17] N. Dunstatter, M. Guirguis, and A. Tahsini, “Allocating security analysts
to cyber alerts using Markov games,” in Proc. of National Cyber Summit
(NCS), 2018, pp. 16–23.

[18] J. Lee, F. Tang, P. M. Thet, D. Yeoh, M. Rybczynski, and D. M.
Divakaran, “Sierra: Ranking anomalous activities in enterprise networks,”
in Proc. of IEEE Eur. Symp. Secur. Priv. (EuroS&P), 2022, pp. 44–59.

[19] L. Tong, A. Laszka, C. Yan, N. Zhang, and Y. Vorobeychik, “Finding
needles in a moving haystack: Prioritizing alerts with adversarial rein-
forcement learning,” in Proc. of AAAI Conf. Artif. Intell., vol. 34, no. 01,
2020, pp. 946–953.

[20] Y. Kim and G. Dán, “An active learning approach to dynamic alert
prioritization for real-time situational awareness,” in IEEE Conf. Commun.
Netw. Secur. (CNS), 2022, pp. 154–162.

[21] E. S. Escriche, J. Nyberg, Y. Kim, and G. Dán, “Channel-centric spatio-
temporal graph networks for network-based intrusion detection,” in IEEE
Conf. Commun. Netw. Secur. (CNS), 2024.

[22] A. Brown, A. Tuor, B. Hutchinson, and N. Nichols, “Recurrent neural
network attention mechanisms for interpretable system log anomaly
detection,” in Proc. of Workshop Mach. Learn. Comput. Syst. (MLCS),
2018, pp. 1–8.

[23] S. Gökstorp, J. Nyberg, Y. Kim, P. Johnson, and G. Dán, “Anomaly de-
tection in security logs using sequence modeling,” in Proc. of IEEE/IFIP
Netw. Oper. Manag. Symp. (NOMS), 2024, pp. 1–9.

[24] I. J. King, X. Shu, J. Jang, K. Eykholt, T. Lee, and H. H. Huang,
“Edgetorrent: Real-time temporal graph representations for intrusion
detection,” in Proceedings of Int. Symp. on Research in Attacks, Intrusions
and Defenses (RAID), 2023, pp. 77–91.

[25] R. A. Sadek, M. S. Soliman, and H. S. Elsayed, “Effective anomaly
intrusion detection system based on neural network with indicator variable
and rough set reduction,” Int. J. Comput. Sci. Issues. (IJCSI), vol. 10,
no. 6, p. 227, 2013.

[26] A. Shah, R. Ganesan, S. Jajodia, and H. Cam, “Dynamic optimization
of the level of operational effectiveness of a CSOC under adverse
conditions,” ACM Trans. Intell. Syst. Technol. (TIST), vol. 9, no. 5, pp.
1–20, 2018.

[27] ——, “Understanding tradeoffs between throughput, quality, and cost of
alert analysis in a CSOC,” IEEE Trans. Inf. Forensics Secur. (TIFS),
vol. 14, no. 5, pp. 1155–1170, 2018.

[28] ——, “A two-step approach to optimal selection of alerts for investigation
in a CSOC,” IEEE Trans. Inf. Forensics Secur. (TIFS), vol. 14, no. 7, pp.
1857–1870, 2018.

[29] W. Tounsi and H. Rais, “A survey on technical threat intelligence in the
age of sophisticated cyber attacks,” Comput. Secur. (CS), vol. 72, pp.
212–233, 2018.

[30] A. Roy, D. S. Kim, and K. S. Trivedi, “Scalable optimal countermeasure
selection using implicit enumeration on attack countermeasure trees,” in
Proc. of IEEE Int. Conf. on Dependable Systems and Networks (DSN),
2012, pp. 1–12.

[31] O. P. Kreidl and T. M. Frazier, “Feedback control applied to survivability:
a host-based autonomic defense system,” IEEE Trans. Reliab. (T-R),
vol. 53, no. 1, pp. 148–166, 2004.

[32] S. A. Zonouz, H. Khurana, W. H. Sanders, and T. M. Yardley, “RRE:
A game-theoretic intrusion response and recovery engine,” IEEE Trans.
Parallel Distrib. Syst. (TPDS), vol. 25, no. 2, pp. 395–406, 2013.

[33] S. Iannucci, Q. Chen, and S. Abdelwahed, “High-performance intrusion
response planning on many-core architectures,” in Proc. of Int. Conf. on
Comput. Commun. Netw. (ICCCN), 2016, pp. 1–6.

[34] S. Iannucci and S. Abdelwahed, “A probabilistic approach to autonomic
security management,” in Proc. of IEEE Int. Conf. on Autonomic Comput.
(ICAC), 2016, pp. 157–166.

[35] E. Miehling, M. Rasouli, and D. Teneketzis, “Optimal defense policies
for partially observable spreading processes on Bayesian attack graphs,”
in Proc. of ACM Workshop on Moving Target Defense (MTD), 2015, pp.
67–76.

[36] ——, “A POMDP approach to the dynamic defense of large-scale cyber
networks,” IEEE Trans. Inf. Forensics Secur. (TIFS), vol. 13, no. 10, pp.
2490–2505, 2018.

[37] P. Holgado, V. A. Villagrá, and L. Vazquez, “Real-time multistep attack
prediction based on hidden Markov models,” IEEE Trans. Dependable
Secure Comput. (TDSC), vol. 17, no. 1, pp. 134–147, 2017.

[38] T. Shawly, A. Elghariani, J. Kobes, and A. Ghafoor, “Architectures for
detecting interleaved multi-stage network attacks using hidden Markov
models,” IEEE Trans. Dependable Secure Comput. (TDSC), vol. 18, no. 5,
pp. 2316–2330, 2019.

[39] Q. Zhang and S. A. Kassam, “Finite-state Markov model for Rayleigh
fading channels,” IEEE Trans. Commun. (TCOM), vol. 47, no. 11, pp.
1688–1692, 1999.

[40] Z. Ren and B. H. Krogh, “State aggregation in Markov decision pro-
cesses,” in Proc. of IEEE Conf. Decis. Control (CDC), vol. 4, 2002, pp.
3819–3824.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3592127

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

[41] M. Girdhar, J. Hong, H. Lee, and T.-J. Song, “Hidden Markov models-
based anomaly correlations for the cyber-physical security of EV charging
stations,” IEEE Trans. Smart Grid. (TSG), vol. 13, no. 5, pp. 3903–3914,
2021.

[42] Y. Javed, M. A. Khayat, A. A. Elghariani, and A. Ghafoor, “PRISM: a hi-
erarchical intrusion detection architecture for large-scale cyber networks,”
IEEE Trans. Dependable Secure Comput. (TDSC), 2023.

[43] H. Liu, R. Jiang, B. Zhou, X. Rong, J. Li, and A. Li, “Multiple sequential
network attacks detection based on DTW-HMM,” in IEEE Int. Conf. Data
Sci. Cybersp. (DSC). IEEE, 2022, pp. 134–141.

[44] B. Anderson and M. Andrew, “Active learning for hidden Markov models:
Objective functions and algorithms,” in Proc. of Int. Conf. Mach. Learn.
(ICML), 2005.

[45] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based
network vulnerability analysis,” in Proc. of ACM Conf. Comput. Commun.
Secur. (CCS), 2002, pp. 217–224.

[46] S. Jajodia, S. Noel, and B. O’berry, “Topological analysis of network
attack vulnerability,” in Managing Cyber Threats. Springer, 2005, pp.
247–266.

[47] R. Protocol and S. Convery, “An attack tree for the border gateway
protocol,” 2002.

[48] J. Schwartz, H. Kurniawati, and E. El-Mahassni, “POMDP+ information-
decay: Incorporating defender’s behaviour in autonomous penetration
testing,” in Proc. of Int. Conf. Autom. Plan. Sched. (ICAPS), vol. 30,
2020, pp. 235–243.

[49] L. Ablon and A. Bogart, “Zero days, thousands of nights,” RAND
Corporation, Santa Monica, CA, 2017.

[50] X. Ou, S. Govindavajhala, A. W. Appel et al., “MulVAL: A logic-based
network security analyzer.” in Proc. of USENIX Secur. Symp. (USENIX
Security), vol. 8, 2005, pp. 113–128.

[51] H. Holm, “Lore a red team emulation tool,” IEEE Trans. Dependable
Secure Comput. (TDSC), vol. 20, no. 2, pp. 1596–1608, 2022.

[52] B. Caswell, J. C. Foster, R. Russell, J. Beale, and J. Posluns, Snort 2.0
intrusion detection. Syngress Publishing, 2003.

[53] L. Chavali, A. Krishnan, P. Saxena, B. Mitra, and A. S. Chivukula,
“Off-policy actor-critic deep reinforcement learning methods for alert
prioritization in intrusion detection systems,” Comput. Secur. (CS), vol.
142, p. 103854, 2024.

Yeongwoo Kim received the M.Sc. degree in elec-
trical and electronics engineering from KTH Royal
Institute of Technology, Sweden, in 2020. He is
currently pursuing the Ph.D. degree with the Division
of Network and Systems Engineering, KTH Royal
Institute of Technology, Stockholm, Sweden. His re-
search interests include machine learning algorithms
and analytic approaches for cyber security.

György Dán (Senior Member, IEEE) received the
M.Sc. degree in computer engineering from the Bu-
dapest University of Technology and Economics,
Hungary, in 1999, the M.Sc. degree in business
administration from the Corvinus University of Bu-
dapest, Hungary, in 2003, and the Ph.D. degree in
telecommunications from KTH in 2006. He was a
Consultant in the field of access networks, streaming
media, and videoconferencing from 1999 to 2001. He
was a Visiting Researcher at the Swedish Institute
of Computer Science in 2008, a Fulbright Research

Scholar at the University of Illinois at Urbana–Champaign from 2012 to
2013, and an Invited Professor at EPFL in from 2014 to 2015. He is a
Professor with the KTH Royal Institute of Technology, Stockholm, Sweden.
His research interests include the design and analysis of content management
and computing systems, game theoretical models of networked systems, and
cyber-physical system security and resilience. He was area editor of Computer
Communications from 2014 to 2021 and of IEEE Trans. on Mobile Computing
2019-2023.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3592127

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

