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Abstract—Real-time situational awareness (SA) plays an essen-
tial role in accurate and timely incident response. Maintaining SA
is, however, extremely costly due to excessive false alerts generated
by intrusion detection systems, which require prioritization and
manual investigation by security analysts. In this paper, we
propose a novel approach to prioritizing alerts so as to maximize
SA, by formulating the problem as that of active learning in a
hidden Markov model (HMM). We propose to use the entropy of
the belief of the security state as a proxy for the mean squared
error (MSE) of the belief, and we develop two computationally
tractable policies for choosing alerts to investigate that minimize
the entropy, taking into account the potential uncertainty of the
investigations’ results. We use simulations to compare our policies
to a variety of baseline policies. We find that our policies reduce
the MSE of the belief of the security state by up to 50% compared
to static baseline policies, and they are robust to high false alert
rates and to the investigation errors.

Index Terms—Situational awareness, intrusion detection, hidden
Markov model, active learning

I. INTRODUCTION

Accurate and timely incident response is essential for miti-
gating the impact of advanced persistent threat on networked
systems, from critical infrastructures through financial institu-
tions to governmental systems. The consequences of inaccurate
incident response could be detrimental through limiting benign
users’ access to networked resources. Non-timely response
actions, at the same time, could allow attackers ample time
to achieve their objective.

A prerequisite for accurate and timely incident response
is real-time situational awareness (SA), i.e., maintaining an
accurate belief about potentially ongoing attacks and threats
against the system. Maintaining SA in practice is, however,
extremely challenging and resource intensive, as it has to be
based on observing alerts from intrusion detection systems
(IDSs), which typically generate a large amount of false alerts
[1]. The investigation of alerts is typically done by highly
skilled security analysts, and hence as the network size and the
number of alerts grow, the investigation of all alerts becomes
infeasible due to limited human resources.

Existing attempts to improve SA through improved alert in-
vestigation have developed schemes that prioritize alerts based
on the level of importance of different types of alerts [2]–
[4], and are thus static. Such schemes do not, however, take
into account information available about the system, and in
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Fig. 1. Illustration of dynamic alert prioritization policies.

addition, sophisticated attackers could learn to bypass such
static prioritization schemes [5]. Dynamic alert prioritization
could address this issue, but since the defender cannot observe
the security state of the system, it is unclear how to assign
priorities to alerts dynamically so as to maximize SA in real-
time, subject to a constraint in terms of the alerts.

In this paper, we address the problem of dynamic alert
prioritization to maximize SA, defined as the mean squared
error (MSE) of the belief of the security state. We formulate
the problem of SA as a hidden Markov model (HMM), where
the security state is hidden from the defender and the defender’s
observations are noisy alerts. We then formulate alert prioritiza-
tion as a novel variant of the active learning problem, where the
defender can choose to investigate a limited number of alerts
for reducing the observation noise, as illustrated in Fig. 1. Our
main contributions are as follows:
• Information-based Active Learning Framework for

SA: We propose to formulate real-time SA as a novel ac-
tive learning problem for HMMs and to use the uncertainty
of the defender’s belief as a proxy for minimizing the MSE
of the belief, as the uncertainty can be computed in real-
time unlike the MSE. We provide belief update equations
that account for our model of active learning, extending
the traditional forward-backward algorithm.

• Dynamic Alert-prioritization Policies: We propose two
policies for dynamic alert prioritization based on the
entropy of the belief. The first policy chooses alerts whose
investigation would lead to the highest reduction of the
belief entropy. The second policy chooses the alerts with
the lowest likelihood ratio, i.e., largest uncertainty, given
the current belief.

• Simulation-based Evaluation: We use simulations to
evaluate the proposed policies against a variety of base-



lines, including commonly used static policies. Our results
show that the proposed policies lead to significantly lower
MSE, are more robust to investigation errors and to false
positives, and achieve a certain MSE reduction at the price
of significantly less investigations.

The rest of the paper is organized as follows. We discuss
the related works in Section II. Section III describes our
system model and problem formulation, and Section IV details
the belief update equations for active learning. In Section V,
we introduce the proposed policies for minimizing the state
estimation error. We evaluate the proposed policies in Section
VI, and we conclude the paper in Section VII.

II. RELATED WORK

A number of recent works consider the investigation of noisy
alerts from IDSs by security analysts [1]–[4]. Authors of [2] for-
mulated the problem of allocating alerts to security analysts as
a game, and proposed heuristics for solving the resulting game.
A zero-sum Markov game model was proposed in [3], and
an approach based on dynamic programming and Q-maximin
value iteration was developed for the optimal allocation of alerts
to analysts. Shah et al. [4] used a reinforcement learning (RL)
model to maximize the level of operational effectiveness while
the security analysts shift every two weeks. Common to these
works [2]–[4] is that the alert priorities are assumed to be
known, and the focus is on assigning alerts to analysts [5].
On the contrary, in our work the focus is on prioritizing the
alerts based on the real-time belief of the security state, so as
to maximize SA.

A different line of works considers intrusion response sys-
tems (IRSs) coupled with the estimation of the security state
(i.e., the attacker’s progression) [6]–[11]. Authors of [6] used
a partially observable Markov decision process (POMDP) to
estimate the security state of the host and to choose defensive
actions while minimizing the defender’s cost. In [7], the authors
proposed a hierarchy of local engines and global engines. Each
local engine has an attack-response tree that calculates the
security state of the host, and the global engine collects the
security states from local engines and computes the defense
actions. Iannucci et al. [8], [9] computed responses by consid-
ering the fact that a defense action may change the available
exploits and may limit other attacks. Miehling et al. [10]
modeled the security state by Bayesian attack graphs. Given
the noisy alerts, the model calculates the belief regarding the
attacker’s privilege. The authors of [11] extended the model by
including multiple dependencies for exploits and probabilistic
alerts. These works either focus on a single host [6], assume
that the system state is observable [8], [9], and learn about the
security state through interaction with attacker [7], [10], [11],
but they do not consider the prioritization of alerts and their
investigation, which is the focus of our work.

Our methodology is closely related to active learning for
HMMs [12], where the learner can decide what extra obser-
vations, called queries, to make about the system state and at
what time. Contrary to this work, in our model queries can only

Fig. 2. Dependency graph with 12 conditions and 13 exploits in [11]. Each
exploit ex is connected to preconditions N−x and postconditions N+

x (e.g.,
N−4 = {c1, c2} and N+

4 = {c5}, hence, e4 = ({c1, c2}, {c5}). There are
four initial exploits, E0 = {e1, e2, e3, e11} and two goal conditions Ng =
{c11, c12}.

concern existing alerts and their result could be noisy as well,
which makes the learning problem fundamentally distinct from
existing literature.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In order to model the progression of an attacker in the
system, we adopt an attack graph model in which security
states are represented by nodes and exploits are represented by
directed edges. This abstraction is often called a dependency
graph [13]. In order to build the dependency graph, all possible
security states are enumerated and interconnected by exploits.
Dependency graphs can be constructed based on vulnerability
information about the system components using network scan-
ning tools like TVA [14].

We model the dependency graph by a directed acyclic
hypergraph H = (N , E) shown in Fig. 2, where N =
{c1, . . . , cnc} is the set of nodes (i.e., security conditions),
and E = {e1, . . . , ene} is the set of directed hyperedges (i.e.,
exploits), where nc = |N | and ne = |E|. Each condition
corresponds to a certain compromise of a system component
(e.g., privilege escalation), and can be true or false. By denoting
benign and malicious conditions by false and true respectively,
we can increase the number of true conditions based on
the attacker’s progression. We refer to the progression as a
state, and thus the initial state is where the attacker has not
compromised any system component. The subset N g ⊆ N is
the set of goal conditions and represents the attacker’s final
goal. The defender identifies the goal states based on their
importance, e.g., corresponding to critical assets and data. For
instance, gaining root privilege on a customer database can be
the goal state of an attacker aiming at data exfiltration.

We define a hyperedge ex ∈ E as an ordered pair of two
sets such that ex = (N−x ,N+

x ), where N−x ⊆ N is the set of
preconditions to execute exploit ex, and N+

x ⊆ N is the set
of postconditions after the successful execution of exploit ex.
Thus, a hyperedge (i.e., an exploit) connects its preconditions
to its postconditions. If all preconditions for exploit ex are not



satisfied, the attacker cannot perform the exploit. There are
also exploits that do not require any preconditions such that
N−x = ∅. We denote by E0 ⊆ E the set of such exploits, and
we refer to them as initial exploits, i.e., the attacker’s entry
points to the network. If the attacker succeeds with an exploit,
the postconditions N+

x become true. The gained postconditions
may be preconditions for future exploits.

We define the security state of the system as the subset of
conditions that are true, i.e., s ⊆ N , and we denote by S ⊆ 2N

the set of all security states. The security state effectively
models the attacker’s progress in compromising components.
We denote by E+(si) the exploits that are available to the
attacker in the state si ∈ S. We make the assumption that
the successful use of an exploit does not affect the success of
exploits already used. This assumption is referred to as mono-
tonicity [11], allowing to eliminate the necessity of enumerating
all combinations of security conditions for S.

A. Attacker Model

Time is slotted, and in every time step an attacker can
choose to perform a set Et ⊆ E+(si) of exploits so as to
compromise additional components. We consider that there is
a set Φ of attacker types, and the choice of exploits depends on
the attacker type ϕl. An attacker type ϕl is characterized by the
probability αex(ϕl) > 0 that the attacker chooses ex ∈ E+(si)
(resp. αex(ϕl) = 0 for ex ∈ E \ E+(si)), by the probability
βex(ϕl) that it succeeds with ex ∈ Et gaining the additional
conditions (si′ = si∪N+

x ), and by the probability δxa(ϕl) that
the alert za will be triggered if the attacker attempts to use
exploit ex ∈ Et, where a is the index of an alert that may be
potentially triggered by exploit ex. These three probabilities
allow us to model attackers with different tactics and skill
levels. We assume the defender is not aware of the type of
the attacker, but is aware of the different types of attackers.

B. Defender model

The defender can observe the alerts from an IDS. As
anomaly-based IDSs, we consider that alerts are noisy, i.e. alerts
may be generated for benign events by legitimate users, called
false positives, and may not be generated for malicious events,
called false negatives.

We denote by Z = {z1, z2, . . . , znz
} the set of alerts

that the IDS can generate and by A = {1, 2, . . . , nz} the
set of alert indices where nz is the number of alert types.
We associate each exploit ex ∈ E with a subset Z(ex) =
{zAx(1), zAx(2), . . . , zAx(nex )} ⊆ Z , where Ax ⊆ A, and nex
is the number of distinct alerts that exploit ex may raise. Note
that some exploits may not generate any alert, while different
exploits can generate the same alert. We denote by ζa the
probability of false alerts for alert za.

Let us denote by yt ∈ Y = {0, 1}nz the alert vector at time
t, where 0 is an inactive alert, and 1 is an active alert. Given the
observed alerts, at time t the defender can choose to investigate
the alert(s) Vt ⊆ {a | yat = 1, a ∈ A} where the superscript a
is the index of an alert, and the number of alerts to investigate
is limited by the investigation budget I such that |Vt| ≤ I .

Such an investigation corresponds to a security analyst looking
at event logs that triggered the alert(s). Based on the outcome
of the investigation the defender clears or confirms the alert(s)
Vt. Our model accounts for the probability of the investigation
error by defining the probability ω that the outcome of the
investigation is incorrect (i.e., a false positive is confirmed or a
true positive is cleared). We denote by ŷt the alert vector after
the investigation, and note that ŷt can only differ from yt in
the investigated alert(s).

Thus, at time t the defender has access to the observed alerts
Y = {y0, y1, . . . , yt}, the investigations V = {v0, v1, . . . , vt},
and the alerts after investigation Ŷ = {ŷ0, ŷ1, . . . , ŷt}.
These together constitute the history at time t as ht =
(π0, v0, y0, ŷ0, . . . , vt, yt, ŷt), which the defender can use for
maintaining a belief πt of the security state, based on its initial
belief π0. The defender’s belief regarding the security state and
the attacker’s type at time step t is

πt =


π1,1
t π1,2

t . . . π1,nΦ

t

π2,1
t π2,2

t . . . π2,nΦ

t
...

...
. . .

...
πnS ,1
t πnS ,2

t . . . πnS ,nΦ

t

 , (1)

where nS is the number of possible states (i.e., nS = |S|),
and nΦ is the number of attacker types (i.e., nΦ = |Φ|). Thus,
πilt = P (St = si,Φt = ϕl | Ht = ht) is the probability that
si is the true security state and ϕl is the true type, given the
history ht. The belief πt is a doubly-stochastic matrix since
each row and column is a probability mass function given the
security state and the attacker’s type, respectively.

C. Problem Formulation
The objective of the defender is to maximize its SA given

the noisy alerts, i.e., the accuracy of its estimate of the security
state of the system. A natural way to capture this objective is
to minimize the MSE of the belief. Recall that the columns and
rows of the belief matrix πt stand for the attacker type and the
states, hence the MSE can be expressed as

MSE(πt, St) =
1

nc

nc∑
j=1

(
1{cj∈St}

−
nS∑
i=1

(
1{cj∈si} ·

nΦ∑
l=1

πilt
))2

,

(2)

where 1{·} is an indicator function that is 1 (resp. 0) if the
condition is true (resp. false), cj ∈ N is a condition, and St
is the attacker’s security state at time t. Considering an infinite
time horizon, we define the operator’s cost under policy κ as

Jκ = lim
T→∞

1

T

T∑
t=1

γtMSE(πκt , St), (3)

where γ ∈ (0, 1) is the discount factor for the future uncertainty,
ω is the the investigation error probability, and we are interested
in finding a policy

κ∗ ∈ arg min
κ∈K

Jκ. (4)



The policy κ selects actions Vt+1 given a belief Πt and
alert vector Yt+1 taking into account the investigation error
probability ω, and is thus a mapping

κ : [0, 1]nΦ×nS × {0, 1}nz −→ {1, . . . , nz}I . (5)

The formulated problem is an active learning problem for
an HMM, where queries are limited to a subset of existing
observations, and we are interested in understanding the struc-
ture of near-optimal policies and factors that may affect their
performance.

IV. BELIEF UPDATE WITH ACTIVE LEARNING

We start with describing the belief update, assuming that a
policy for choosing alerts to investigate exists. The defender
updates its belief as new observations yt+1 and the result
ŷt+1 of the investigation vt+1 become available. For a raw
alert vector yt+1 = yn, investigation vt+1 = v and inves-
tigated alert vector ŷt+1 = ŷk the belief update is πt+1 =
Ti′l′(πt, ŷk, yn, v)ϕi′∈Φ,sl′∈S , where Ti′l′(πt, ŷk, yn, v) is the
update function for the i′th state and the l′th attacker type.
The update for each entry of the belief matrix can be obtained
using Bayes’ theorem,

πi
′l′

t+1 = Ti′l′(πt, ŷk, yn, v)

= P (St+1 = si′ ,Φt+1 = ϕl′ | Ŷt+1 = ŷk, Vt+1 = v,

Yt+1 = yn,Πt = πt)

=
pni′l′(πt)r

v
i′nkl′(πt)

σ(πt, ŷk, yn, v)
.

(6)

The above terms are defined as

pni′l′(πt) = P (St+1 = si′ ,Φt+1 = ϕl′ , Yt+1 = yn |
Vt+1 = v,Πt = πt)

=
∑

si∈S,ϕl∈Φ

πilt p
n
ii′lqll′

(7)

rvi′nkl′(πt) = P (Ŷt+1 = ŷk | Yt+1 = yn, St+1 = si′ ,

Φt+1 = ϕl′ , Vt+1 = v,Πt = πt)

=
∑

si∈S,ϕl∈Φ

πilt r
v
ii′nkll′

(8)

σ(πt, ŷk, yn, v) = P (Ŷt+1 = ŷk, Yt+1 = yn | Vt+1 = v,

Πt = πt)

=
∑

si′∈S,ϕl′∈Φ

rvi′nkl′(πt)pi′l′(πt),
(9)

where pnii′l = P (St+1 = si′ , Yt+1 = yn | Vt+1 = v, St =
si,Φt = ϕl), rvii′nkll′ = P (Ŷt+1 = ŷk | Vt+1 = v, Yt+1 =
yn, St+1 = si′ ,Φt+1 = ϕl′ , St = si,Φt = ϕl), and qll′ =
P (Φt+1 = ϕl′ |Φt = ϕl). For qll′ , we assume that the attacker
type does not change during its attack such that qll′ = 1 (resp.
0) for l = l′ (resp. l 6= l′).

In eqn. (7), pnii′l = P (St+1 = si′ , Yt+1 = yn |Vt+1 = v, St =
si,Φt = ϕl) where the joint probability of the state si′ and the

alert vector yn is independent of investigation v. Thus, we can
write

pnii′l = P (St+1 = si′ , Yt+1 = yn | St = si,Φt = ϕl)

=
∑

Et∈P(E+(si))

P (St+1 = si′ | Yt+1 = yn, Et = Et, St = si,

Φt = ϕl)

· P (Yt+1 = yn | Et = Et, St = si,Φt = ϕl)

· P (Et = Et | St = si,Φt = ϕl)

=
∑

Et∈P(E+(si))

P (St+1 = si′ | Et = Et, St = si,Φt = ϕl)

· P (Yt+1 = yn | Et = Et,Φt = ϕl)

· P (Et = Et | St = si,Φt = ϕl),
(10)

where E+(si) is the set of available exploits in the state si, and
P(E+(si)) is the power set of the available exploits. The state
si′ is independent of the alert vector yn given the exploits Et,
the state si, and the attacker type ϕl, and that the alert vector
yn is independent of the state si given the exploits Et. The
terms in eqn. (10) can be expressed as

P (St+1 = si′ | Et = Et, St = si,Φt = ϕl)

=
∑

o∈F(si,si′ ,ϕl,Et)

∏
{ex | ex∈o,ex=1}

βex(ϕl)

·
∏

{ex | ex∈o,ex=0}

(1− βex(ϕl)),

(11)

P (Yt+1 = yn | Et = Et,Φt = ϕl)

=
∏
a∈A

P (Y at+1 = yan | Et = Et,Φt = ϕl),
(12)

P (Et = Et | St = si,Φt = ϕl)

=
∏

ex∈Et∩E+(si)

αex(ϕl) ·
∏

ex∈E+(si)\Et

(1− αex(ϕl)),

(13)

where F(si, si′ , ϕl, v, Et) is the outcome (i.e., success or fail-
ure) of attempted exploits causing the state transition from si
to si′ under attacker type ϕl and exploits Et; outcome o is the
set of exploits, and each exploit ex is either 1 (i.e., success) or
0 (i.e., failure). Note that eqn. (12) makes use of conditional
independence of the individual alerts za ∈ Z given the exploits
Et. The alert probabilities are given by

P (Y at+1 = yan | Et = Et,Φt = ϕl)

=


(1− ζa)

∏
ex∈Et∩E(za)(1− δxa(ϕl))

if yan = 0

1−
(

(1− ζa)
∏
ex∈Et∩E(za)(1− δxa(ϕl))

)
if yan = 1,

(14)

where E(za) is the set of exploits that may raise alert za,
δxa(ϕl) is the probability that the attacker type ϕl triggers the



alert za by using the exploit ex, and ζa is the probability of
the alert za being a false alert.

We can further express rvii′nkll′ as

rvii′nkll′ = P (Ŷt+1 = ŷk | Vt+1 = v, Yt+1 = yn, St+1 = si′ ,

Φt+1 = ϕl′ , St = si,Φt = ϕl)

=

P (Ŷt+1 = ŷk,Φt+1 = ϕl′ | Vt+1 = v,
Yt+1 = yn, St+1 = si′ , St = si,Φt = ϕl)

P (Φt+1 = ϕl′ | Vt+1 = v, Yt+1 = yn,
St+1 = si′ , St = si,Φt = ϕl)

=

P (Ŷt+1 = ŷk | Vt+1 = v, Yt+1 = yn, St+1 = si′ ,

St = si,Φt = ϕl) · (Φt+1 = ϕl′ | Φt = ϕl)

P (Φt+1 = ϕl′ | Φt = ϕl)
,

(15)

where P (Φt+1 = ϕl′ | Vt+1 = v, Yt+1 = yn, St+1 = si′ , St =
si,Φt = ϕl) = P (Φt+1 = ϕl′ |Φt = ϕl) due to the assumption
on the attacker type, and P (Φt+1 = ϕl′ | Φt = ϕl) = qll′ .

The first term in the numerator of eqn. (15) can further be
expressed as

P (Ŷt+1 = ŷk |Vt+1 =v, Yt+1 =yn, St+1 =si′ , St=si,Φt=ϕl)

=
∑

Et∈P(E+(si))

P (Ŷt+1 = ŷk | Et = Et, Vt+1 = v,

Yt+1 = yn, St+1 = si′ , St = si,Φt = ϕl)

· P (Et = Et | Vt+1 = v, Yt+1 = yn,

St+1 = si′ , St = si,Φt = ϕl),
(16)

=
∑

Et∈P(E+(si))

P (Ŷt+1 = ŷk | Et = Et, Vt+1 = v,

Yt+1 = yn,Φt = ϕl)

· P (Et = Et | Yt+1 = yn, St+1 = si′ ,

St = si,Φt = ϕl),
(17)

where eqn. (17) is due to the fact that the investigated alert
vector ŷk is independent of the states si and si′ given the
exploits Et, the investigation v, the raw alert vector yn, and
the attacker type ϕl, and that the choices of exploits Et are
independent of the investigation v. Consider now the result of
the investigation

P (Ŷt+1 = ŷk | Et = Et, Vt+1 = v, Yt+1 = yn,Φt = ϕl)

=
∏
a∈A

P (Ŷ at+1 = ŷak | Et = Et, Vt+1 = v, Y at+1 = yan,

Φt = ϕl),

(18)

where we make use of the conditional independence of indi-
vidual investigations given the set of attempted exploits and
the corresponding alert. Clearly, P (Ŷ at+1 = Y at+1) = 1 for
a 6∈ Vt+1, and a ∈ Vt+1 implies Y at+1 = 1, hence using that
E(za) is the set of exploits that may trigger alert za, we can
express the terms in eqn. (18) as

P (Ŷ at+1 = ŷak | Et = Et, Vt+1 = v, Y at+1 = yan,Φt = ϕl)

=



1

if a 6∈ v, yan = ŷak
ζa
∏
ex∈Et∩E(za)(1− δxa(ϕl))(1− ω)

+ (1−
∏
ex∈Et∩E(za)(1− δxa(ϕl)))ω

1−
(

(1−ζa)
∏

ex∈Et∩E(za)(1−δxa(ϕl))

)
if a ∈ v, yan = 1, ŷak = 0

ζa
∏
ex∈Et∩E(za)(1− δxa(ϕl))ω

+ (1−
∏
ex∈Et∩E(za)(1− δxa(ϕl)))(1− ω)

1−
(

(1−ζa)
∏

ex∈Et∩E(za)(1−δxa(ϕl))

)
if a ∈ v, yan = 1, ŷak = 1,

(19)

where ω is the probability that the defender’s investiga-
tion incorrectly identifies the cause of the alert. The terms
ζa
∏
ex∈Et∩E(za)(1 − δxa(ϕl)) and (1 −

∏
ex∈Et∩E(za)(1 −

δxa(ϕl))) in eqn. (19) stand for the probability of the alert
being a false positive and the probability of the alert being a
true positive, respectively.

Let us consider now the last term in eqn. (17). For attacker
type ϕl, the probability of exploits Et given the transition from
si to si′ and the alert vector yn can be expressed as

P (Et = Et | Yt+1 = yn, St+1 = si′ , St = si,Φt = ϕl)

=
P (Et = Et, Yt+1 = yn | St+1 = si′ , St = si,Φt = ϕl)

P (Yt+1 = yn | St+1 = si′ , St = si,Φt = ϕl)

=
P (Yt+1 = yn, Et = Et | St+1 = si′ , St = si,Φt = ϕl)∑
E′t∈P(E(si,si′ ))

P (Yt+1 = yn, Et = E ′t | St+1 = si′ ,

St = si,Φt = ϕl)

=

P (Yt+1 = yn | Et = Et,Φt = ϕl)
· P (Et = Et | St+1 = si′ , St = si,Φt = ϕl)∑

E′t∈P(E(si,si′ ))
P (Yt+1 = yn | Et = E ′t,Φt = ϕl)

· P (Et = E ′t | St+1 = si′ , St = si,Φt = ϕl)

,

(20)

where we use the fact that the alert vector is independent of
the states given the attacker type and the exploits, E(si, si′)
is the exploits that result in the transition from si to si′ , and
P(E(si, si′)) is the power set of the exploits causing the tran-
sition from si to si′ . P (Yt+1 = yn |Et = Et,Φt = ϕl) is given
by eqn. (12), and P (Et = Et |St+1 = si′ , St = si,Φt = ϕl) is
the probability of exploits given the transitions as

P (Et = Et | St+1 = si′ , St = si,Φt = ϕl)

=

P (St+1 = si′ | Et = Et, St = si,Φt = ϕl)
· P (Et = Et | St = si,Φt = ϕl)

P (St+1 = si′ | St = si,Φt = ϕl)
,

(21)

where P (St+1 = si′ | Et = Et, St = si,Φt = ϕl) is given by
eqn. (11), P (Et = Et |St = si,Φt = ϕl) is given by eqn. (13),
and P (St+1 = si′ | St = si,Φt = ϕl) is expressed as



P (St+1 = si′ | St = si,Φt = ϕl)

=
∑

o∈F(si,si′ ,ϕl)

∏
{ex | ex∈o,ex=1}

αex(ϕl)βex(ϕl)

·
∏

{ex | ex∈o,ex=0}

(1− αex(ϕl)βex(ϕl)),

(22)

where F(si, si′ , ϕl) is the outcome (i.e., success or failure) of
attempted exploits causing the state transition from si to si′

under attacker type ϕl.

V. DESIGN OF DEFENDER POLICIES

A fundamental challenge in the considered problem is that
the type of the attacker and the current state are unknown to the
defender, hence it is not possible to formulate defender policies
that directly minimize the MSE. To circumvent this issue, we
propose to use (un)certainty as a substitute metric for the MSE
in formulating defender policies, motivated by the observation
that accurate SA corresponds to a low uncertainty in the belief
about the system’s security state. The most common way to
quantify (un)certainty is through the entropy of the operator’s
belief, defined at time step t as

H(πt) = −
nS∑
i=1

nΦ∑
l=1

πilt log(πilt ). (23)

As an alternative we also explore the likelihood ratio of
the observations, called the Bayes factor. In what follows we
present two policies based on these metrics of uncertainty for
maximizing situational awareness. We present the policies for
the case I = 1, we then discuss how to use them for I > 1.

A. MaxEntropy policy

The MaxEntropy policy aims to choose alerts za ∈ Z that,
after investigation, would provide the highest reduction of the
entropy1 of the belief. The policy requires the computation of
Ti′l′(πt, ŷk, yn, v) for the potentially resulting 2|{a | yan = 1}|
investigated alert vectors ŷk, and for each such alert vector the
probability P (St+1 = si′ ,Φt+1 = ϕl′ , Ŷ

a
t+1 = ŷak | Vt+1 =

a, Y at+1 = 1,Πt = πt) of its occurrence, which can be
computed by conditioning on the set Et of exploits used by
the attacker. In order to obtain the result of an investigation for

1For a discrete random variable X ∈ D the entropy is defined as H(X) =∑
x∈D px log px, where px = P (X = x).

the state si′ and the attacker type ϕl′ , we marginalize eqn. (19)
and eqn. (11) over the power set of exploits P(E+(si)) as

P (St+1 = si′ , Ŷ
a
t+1 = ŷak | Vt+1 = a, Y at+1 = 1, St = si,

Φt = ϕl)

=
∑

Et∈P(E+(si))

P (Ŷ at+1 = ŷak | Et = Et, Vt+1 = a,

Y at+1 = 1,Φt = ϕl)

· P (Et = Et | Y at+1 = 1, St = si,Φt = ϕl)

· P (St+1 = si′ | Et = Et, St = si,Φt = ϕl),
(24)

where P (Ŷ at+1 = ŷak | Et = Et, Vt+1 = a, Y at+1 = yan,Φt = ϕl)
is given by eqn. (19), and P (St+1 = si′ |Et = Et, St = si,Φt =
ϕl) is given by eqn. (11). The probability of exploits is

P (Et = Et | Y at+1 = 1, St = si,Φt = ϕl)

=

P (Et = Et | St = si,Φt = ϕl)
· P (Y at+1 = 1 | Et = Et,Φt = ϕl)∑

E′t∈P(E+(si))
P (Et = E ′t | St = si,Φt = ϕl)

· P (Y at+1 = 1 | Et = Et,Φt = ϕl)

,

(25)

where P (Et = Et |St = si,Φt = ϕl) is given by eqn. (13), and
P (Y at+1 = 1 | Et = Et,Φt = ϕl) is given by eqn. (14). Then,
since the next attacker type is only dependent on the previous
attacker type, we obtain

P (St+1 = si′ ,Φt+1 = ϕi′ , Ŷ
a
t+1 = ŷak | Vt+1 = a, Y at+1 = 1,

St = si,Φt = ϕl)

= P (St+1 = si′ , Ŷ
a
t+1 = ŷak | Vt+1 = a, Y at+1 = 1,

St = si,Φt = ϕl) · P (Φt+1 = ϕl′ |Φt = ϕl).
(26)

The updated belief taking into account the outcome of the
investigation can then be expressed as

P (St+1 = si′ ,Φt+1 = ϕi′ , Ŷ
a
t+1 = ŷak | Vt+1 = a, Y at+1 = 1,

Πt = πt)

=
∑

si∈St,ϕl∈Φt

P (St+1 = si′ ,Φt+1 = ϕi′ , Ŷ
a
t+1 = ŷak |

Vt+1 = a, Y at+1 = 1, St = si,Φt = ϕl)

· P (St = si,Φt = ϕl |Πt = πt),
(27)

where P (St = si,Φt = ϕl | Πt = πt) = πilt . The MaxEntropy
policy κM then chooses the I alerts that, if investigated, would
lead to the highest reduction of the entropy of the belief.
For this, the policy ranks the alerts in decreasing order of
H(St+1,Φt+1, Ŷ

a
t+1 | Y a

′

t+1 = 1, Vt+1 = a′,Πt = πt) and
greedily chooses the first I alerts.

B. Bayes factor policy

For an alert vector yn, the Bayes factor policy computes for
every a ∈ {a′|ya′n = 1} the likelihood ratio of the alert being



a true positive under the hypothesis that ζa = 0 (i.e., no false
positives) vs. it being a false positive, i.e.,

Ka =
P (Y at+1 = 1 | Y −at+1 = y−an ,Πt = πt)|ζa=0

ζa
, (28)

where −a is the set of alert indices except for the alert index
a (i.e., −a = A \ {a}), Y −at+1 is the alert vector except for
the alert index a, and P (Y at+1 = 1 | Y −at+1 = y−an ,Πt =
πt)|ζa=0 =

∑
si∈St,ϕl∈Φt

P (Y at+1 = 1 | Y −at+1 = y−an , St =
si,Φt = ϕl)|ζa=0 · P (St = si,Φt = ϕl | Πt = πt). Consider
the probability of an alert given other alerts and current state

P (Y at+1 = 1 | Y −at+1 = y−an , St = si,Φt = ϕl)|ζa=0

=
P (Y at+1 = 1, Y −at+1 = y−an | St = si,Φt = ϕl)|ζa=0

P (Y −at+1 = y−an | St = si,Φt = ϕl)

=

∑
Et∈P(E+(si))

P (Yt+1 = yn | Et = Et,Φt = ϕl)|ζa=0

·P (Et = Et | St = si,Φt = ϕl)∑
Et∈P(E+(si))

P (Y −at+1 = y−an | Et = Et,Φt = ϕl)

· P (Et = Et | St = si,Φt = ϕl)
,

(29)

where a is the index of a raised alert such that a ∈ {a′|ya′n = 1},
and P (Et = Et | St = si,Φt = ϕl) is given by eqn. (13).

Considering that each alert yan is independent of other alerts
y−an given the exploits Et and the attacker type ϕl, we can
express the above probabilities as

P (Y −at+1 = y−an | Et = Et,Φt = ϕl)

=
∏

a′∈A\{a}

P (Y a
′

t+1 = ya
′

n | Et = Et,Φt = ϕl), (30)

P (Yt+1 = yn | Et = Et,Φt = ϕl)|ζa=0

= P (Y at+1 = 1 | Et = Et,Φt = ϕl)|ζa=0

· P (Y −at+1 = y−an | Et = Et,Φt = ϕl)

=
(

1−
∏

ex∈Et∩E(za)

(1− δxa(ϕl))
)

·
∏

a′∈A\{a}

P (Y a
′

t+1 = ya
′

n | Et = Et,Φt = ϕl),

(31)

where each term in eqn. (30) and eqn. (31) is given by eqn. (14).
Note that Ka = 1 stands for the highest uncertainty of an alert.
Then, the Bayes factor policy κB ranks the alerts in increasing
order of (Ka − 1)2 and chooses the first I alerts.

C. Complexity analysis

Recall that we denote by nz the number of alerts and by nS
the number of possible states. Also, let us denote by NE the
maximum number of available exploits among all states (i.e.,
NE = maxs∈S |E+(s)|). The Bayes factor policy considers
all possible exploits in each state. Thus, given a state, the
policy computes the power set of exploits to consider all
possible exploits and require O(2NE ) computations. We repeat
the computation for all states and all alerts and thus obtain
O(nznS2NE ). In addition, MaxEntropy factors all combina-
tions of the successes and failures of exploits Et ⊆ E+(s) by

TABLE I
TRUE AND FALSE ALERT RATES USED FOR THE EVALUATION.

True Alert Rate (δxa(ϕl))

Exploit Alert Index (a)

Index (x) 1 2 3 4 5 6 7 8

1 0.8 0 0 0 0 0 0 0
2 0.1 0.6 0 0 0 0 0 0
3 0 0.8 0 0 0 0 0 0
4 0 0 0.5 0 0 0 0 0
5 0 0 0 0.7 0 0 0 0
6 0 0 0.6 0 0 0 0 0
7 0 0 0.1 0.7 0 0 0 0
8 0 0 0 0 0.7 0 0 0
9 0 0 0 0 0.6 0.4 0 0
10 0 0 0 0 0 0.7 0 0
11 0.4 0.6 0 0 0 0 0 0
12 0 0 0 0 0 0 0.7 0
13 0 0 0 0 0 0 0 0.8

False Alert Rate (ζa)

0.25 0.3 0.25 0.3 0.25 0.4 0.35 0.3

using the power set. Thus, the worst case is Et = E+(s), and
the complexity of MaxEntropy is O(nznS22NE ).

The belief update in eqn. (6) consists of pni′l′(πt), rvi′nkl′(πt),
and σ(πt, ŷk, yn, v). However, we derive σ(πt, ŷk, yn, v) by
summing the numerator. Thus, we focus on the terms in the
numerator. The terms pni′l′(πt) and rvi′nkl′(πt) consider all
possible successes and failures of exploits Et ⊆ E+(s). In
the worst case Et = E+(s), and we consider all possible
successes and failures of NE exploits and all possible exploits
given a state, at complexity O(22NE ). This computation is
repeated for all states, resulting in O(nS22NE ) computations.
Each term in the numerator requires such a computation; hence
the belief update requires O(nS22NE+1) computations. Since
2NE+1 � nz , we can state the computational burden of the
Bayes factor policy is relatively low compared to that of the
belief update.

VI. NUMERICAL RESULTS

We evaluated the proposed policies on the dependency graph
shown in Fig. 2. For the evaluation, we consider two attacker
types (i.e., |Φ| = 2), where the first type and second type are a
benign user and a malicious attacker, respectively. The benign
user does not use any exploits (αex(ϕ1) = 0 ∀ex ∈ E),
while the attacker chooses exploits with αex(ϕ2) = 0.3 for
ex ∈ E0 and αex(ϕ2) = 0.2 for ex ∈ E \E0. After choosing the
exploits, the exploits succeed with probability βex(ϕl) = 0.3
for ex ∈ E0 and βex(ϕl) = 0.2 for ex ∈ E \ E0 and
for all attacker types ϕl ∈ Φ. The exploits trigger alerts as
shown in Table I regardless of the attacker type; the alert rates
are as in [11]. To simulate the defender’s limited resources
(e.g., the limited number of security analysts and time), we
define an investigation budget I = 1 which stands for the
number of alerts the defender investigate in each step. Given
the experimental settings, we observed that the MSE without
any investigation reaches its maximum at t = 43 on average.
Thus, by rounding the time step up, we performed each attack
simulation for 50 time steps, and the results shown are the
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averages of 100 simulations. In each simulation, the defender’s
initial belief π0 has the uniform distribution over attacker
types, assuming the network starts with the safe environment
s1 = ∅. Also, we focus on the simulation with a malicious
attacker ϕ2 since we observed low MSEs (i.e., less than 0.08)
from the simulations with the benign user ϕ1 using different
investigation policies.

As baselines for comparison, we consider four policies. Us-
ing the first policy, the defender investigates all alerts, providing
a lower bound on the achievable MSE. We refer to this as All.
Using the second policy, the defender investigates the alert with
the lowest false positive rate, referred to as MinFP. Using the
third policy, the defender investigates an alert chosen at random,
referred to as Random. Finally, under the No Investigation
policy, the attacker does not investigate any alerts, providing
an upper bound on the MSE. For a numerical comparison of
policies, we use the reduction of normalized mean absolute
error (RNMAE) to measure the reduction of MSE of a policy
κ,

RNMAEκt =
MSE(πNIt , St)−MSE(πκt , St)

MSE(πNIt , St)−MSE(πAllt , St)
, (32)

where πκt is the belief at time step t, and NI and All stand for
the No Investigation and the All policy, respectively.

Figure 3 shows the MSE as a function of time for the consid-
ered policies for two values of the investigation error probability
ω. The figure shows that the MSE increases sharply during
the first few time steps for all policies, which we attribute
to the confusion matrix of the IDS shown in Table I, where
alerts a ∈ {1, 2} can be shared by multiple initial exploits
ex ∈ E0, hence it is hard initially to infer the hidden state
based on the alerts. The results are, however, very distinct after
t = 8. Without investigation, the MSE continues to increase
throughout the simulation. On the contrary, using the proposed
policies, the MSE remains nearly constant or decreases slightly

TABLE II
RNMAE OF POLICIES AT t = 50.

Bayes MaxEntropy MinFP Random

ω = 0 94.81% 94.83% 80.11% 91.63%
ω = 0.05 82.84% 78.67% 30.06% 21.72%

depending on the investigation error probability ω. Overall, the
MaxEntropy and Bayes policies outperform the Random and
the MinFP policy significantly, especially when ω > 0.

Table II shows the RNMAE of the different policies com-
puted using eqn. (32) at t = 50. The table shows that the
RNMAE achieved by MaxEntropy and Bayes in comparison
to MinFP and Random is significantly higher, up to 50%
for ω > 0, which indicates the importance of the dynamic
prioritization of alerts and the superior performance of the
proposed policies compared to static prioritization (MinFP). We
can also observe that MinFP performs worse than Random for
ω = 0, highlighting the potential danger of static prioritization.
Overall, Random and MinFP show similar performance, hence
in what follows we use MinFP as the baseline.

Figure 4 shows the MSEs at t = 50 as a function of the
investigation error probability ω. Note that ω = 0.5 implies the
investigation adds no information, and is thus equivalent to No
Investigation. We observe that the MSE of the All policy, which
serves as a lower bound, increases smoothly with the increase
in the error probability ω, and so does the MSE of the proposed
policies. On the one hand, the figure highlights the importance
of the defender’s certainty regarding the investigation results.
On the other hand, it also shows that investigation error proba-
bility causes a graceful degradation of the state estimate. Table
III illustrates the RNMAE achieved by the proposed policies
(i.e., MaxEntropy and Bayes) compared to No Investigation for
different values of the investigation error probability ω. The
results show that Bayes mostly achieves a higher RNMAE than
MaxEntropy. Since its computation burden is lower as well, we
argue that Bayes should be the preferred method for dynamic
alert prioritization if the investigation error probability is non-
negligible.

Figure 5 shows the MSEs at t = 50 as a function of the
investigation budget I . To obtain meaningful results for high
values of I , we increased the false positive (FP) rate ζa of
all alerts by 0.2 for the evaluation, hence there are 4 false
alerts on average per time step. While it is no surpise that
No Investigation is insensitive to the investigation budget, we
observe that the proposed policies require significantly lower
investigation budget (I = 2 instead of I = 5 and I = 6 for
ω = 0 and ω = 0.05, respectively) for performing as well as
the All policy than MinFP, which shows that our policies can
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identify the most informative alerts to investigate.
Figure 6 shows the MSEs at t = 50 as a function of the

average false positive rates. We set the average false positive
rate by decreasing/increasing the false positive rates shown in
Table I uniformly (the default average FP rate is 0.3). We
observe a significant degradation of the belief’s accuracy when
using MinFP as the FP rate increases, while MaxEntropy and
Bayes exhibit a performance relatively close to All. We can
thus conclude that our policies can efficiently choose the most
informative alert, as a function of the system state, despite high
FP rates, and doing so is sufficient to perform almost as well
as when investigating all alerts, at much lower cost.

VII. CONCLUSION

In this paper, we considered the problem of dynamic alert
prioritization for maintaining SA based on noisy alerts from
an IDS. We proposed a novel formulation of the problem,
in the form of active learning for estimating the state of a
HMM, taking into account that queries may be error prone.
We proposed two policies that rely on the uncertainty of the
belief for minimizing the state estimation error. Our simu-
lations showed that the proposed policies achieve significant
improvements compared to static baseline policies, at moderate
computational overhead. Interesting directions of future work
include learning a succinct representation of the dependency
graph to improve scaling while maintaining explainability, and
incorporating containment and eradication actions.
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