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Abstract—Timely detection of cyber attacks is essential for
minimizing attack impact, but it requires accurate real-time situ-
ational awareness (SA). In practice, SA is hampered by frequent
false alerts from anomaly-based intrusion detection systems (IDS),
causing alarm fatigue. Investigating alerts by humans can enhance
SA, but it is resource-intensive and it is often unclear which
alerts to prioritize. In this paper, we propose a framework for
optimizing human-in-the-loop attack detection, consisting of three
key components: 1) dynamic alert prioritization, which ranks
alerts based on previous alerts and investigations, 2) human alert
investigation, referring to the manual analysis of alerts, and 3)
sequential hypothesis testing, a method that confirms a hypothesis
based on incoming alerts, with pruned hidden Markov models
(HMMs). We formulate the problem as that of active learning
in an HMM, and we propose two alert prioritization policies,
namely Max Ratio and Max KL. The proposed policies aim
to select the most informative alerts based on historical data
and prior investigations, thereby minimizing the detection time.
Simulation results show that our proposed policies reduce the time
to detection by up to 79% compared to a static baseline policy,
while maintaining a target mean time between false detections
(MTBFD).

Index Terms—Situational awareness, intrusion detection, active
learning, hidden Markov model, multihypothesis testing

I. INTRODUCTION

Maintaining real-time situational awareness (SA) through
continuous monitoring of the cyber environment is a pre-
requisite for the timely detection of cyber attacks, thus en-
abling prompt mitigation of their potential impact [1], [2].
However, maintaining SA has become more challenging due
to the increasing frequency and sophistication of attacks, as
well as the high rate of false positives from anomaly-based
intrusion detection systems (IDSs) [3], [4]. In practice, security
operations center (SOC) operators are faced with a deluge of
false alerts, leading to alarm fatigue and significant delays in
detection [5]. At the same time, relying solely on machine
intelligence for detection can result in missed detections [6].

Existing works on improving situational awareness follow
one of two approaches. The first approach is to maintain SA
by using human expertise more efficiently via different alert
prioritization schemes [3], [7]. The second approach is to
develop novel machine learning (ML)-algorithms, without ac-
counting for human interaction [8], [9]. These two approaches
do unavoidably end up with two pitfalls; on the one hand, the
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Fig. 1. Illustration of the proposed human-in-the-loop framework for optimiz-
ing attack detection. The machine uses one of two dynamic alert prioritization
policies for choosing alerts to investigate, Max Ratio or Max KL, aiming to
minimize the expected time to detection. The human investigates the chosen
alerts and returns the investigation outcomes. The machine updates its belief
accordingly and chooses the hypothesis that best explains observed alerts and
investigations, leading to improved real-time SA.

first approach struggles with identifying the most informative
alerts to investigate, and on the other hand, the second approach
can lead to inaccurate SA due to false alerts [2]. A promising
approach to cope with false positives would be to establish a
human-in-the-loop machine intelligence system, which effec-
tively integrates human expertise with machine-based decision
support. The advantage of such an integrated approach is that
it can leverage the capabilities and expertise of human security
analysts, combined with the computational advantages of ML-
based inference. Even though efficient coordination between
human and machine intelligence would be highly desirable,
how to establish it is unclear due to the lack of a formal
framework.

To address this issue, in this paper we propose an active
learning framework that dynamically prioritizes alerts based
on their estimated significance, incorporates the outcomes of
human investigations, and integrates them into a dynamic
detection scheme built upon sequential hypothesis testing. The
proposed scheme is illustrated in Fig. 1. The proposed frame-
work consists of two machine learning components and one



human component: 1) dynamic alert prioritization policy, 2)
human alert investigation, and 3) sequential hypothesis testing.
We model the attacker’s actions using states in a hidden Markov
model (HMM), which may trigger alerts through an intrusion
detection system (IDS). The alerts are used for maintaining a
belief about the attacker’s progression, which is the basis for
dynamic alert prioritization formulated as an active learning
problem. The prioritized alerts are investigated by security
analysts, who report the investigation outcomes (i.e., True
or False) to be used for improving the belief. Since the
prioritized alerts depend on the belief, the high-priority alerts
can be the most informative alerts, thereby maximizing the
performance of sequential hypothesis testing used for deciding
whether an attack is ongoing.

Within the framework, we propose two dynamic policies,
Max Ratio and Max KL, aiming at the quickest detection of
attacks by maximizing the model’s confidence of whether an
attack is ongoing. The design of Max Ratio and Max KL are
based on our intuition of sequential hypothesis testing and on
analytical results about the sequential probability ratio test,
respectively. Upon receiving the chosen alerts from the machine
learning component (i.e., our policies), the security analysts
(i.e., human) investigate the alerts to identify the root cause, and
the outcomes (i.e., True or False) are used for improving
the belief, accounting for potential investigation errors. Then,
we employ sequential hypothesis testing to detect potential
attacks. As long as we cannot confirm an ongoing attack,
we initiate further investigations, and these investigations will
benefit from the outcome of previous investigations. This loop
results in timely detection of attacks since the dynamic policies
repeatedly select the alerts with the highest influence on the
confidence of the detection decision. Our main contributions
are as follows:

• Dynamic alert prioritization policies: We propose two
policies for choosing the most informative alerts for timely
attack detection. The two policies are based on the expected
change in the likelihood ratio, i.e., the ratio of the likelihoods
of the observed alerts given two hypotheses and on the
Kullback–Leibler (KL) divergence of past alerts, respectively.

• Active learning framework: We propose a detection frame-
work where hypotheses are created by pruning an HMM
constructed based on an attack graph as depicted in Fig. 1,
and active learning is used on the HMMs for minimizing the
time to detection. In our framework, active learning results in
updating the observation probabilities in the HMMs for past
observations based on a confidence function, which takes into
account potential investigation errors, effectively supporting
timely detection.

• Evaluation and analysis: We evaluate the policies on a real-
world attack graph with three different confidence functions.
Our results show that our policies reduce the time to detec-
tion by up to 79% compared to static priorities.

The rest of the paper is structured as follows. Section II

discusses related work. The system model and problem formu-
lation are provided in Section III. In Section IV, the proposed
policies are formulated, and they are evaluated in Section V.
Section VI concludes the paper.

II. RELATED WORK

Related to ours are works on sequential multihypothesis test-
ing applied to change detection [10]–[13]. Harroua et al. [11]
detected denial of service (DoS) attacks using kernel den-
sity estimation to obtain a detection threshold. A generalized
likelihood ratio test (GLRT) based method was proposed to
detect the injection of malicious data in [12]. The authors
in [13] modeled the stochastic behavior of the attacker and
compared observations from adversarial behavior with those
from benign behavior. Common to these works [11]–[13] is
that the interaction, e.g., investigation of alerts, is not consid-
ered. Considering interactions with the environment, authors
in [10] formulated asymptotically optimal tests for a class of
Markovian observation models.

A different line of works has attempted to model the security
state, i.e., the progression of attackers [14]–[20]. In [14], a
partially observable Markov decision process is used to choose
defensive actions focusing on a single machine. Assuming
that the system state is observable, Iannucci et al. [15], [16]
considered that the exploits available to the attacker may be
affected by a defense action and used this for optimizing
defense. Using Bayesian attack graphs, Miehling et al. [17],
[18] addressed optimal incident response in a framework where
response affects the exploits available to the attacker, and thus
it provides information for improving SA.

Holgado et al. proposed to build a high-level attack graph by
merging multiple exploits into a single attack state, justified by
that IDSs cannot differentiate between individual exploits [19].
They then used the high-level attack graph to predict the
attacker’s progression using the forward-backward algorithm.
In [20], a high-level attack representation was used to identify
mitigation strategies for severe exploits. Javed et al. developed
a multi-layered architecture using high-level attack profiles to
detect and to mitigate multi-stage attacks in real-time in [21].
In [22], authors suggested a three-step approach relying on
a set of high-level attack models to identify the most likely
attack scenario. These works do not, however, consider the
investigation of alerts or the minimization of the time to
detection.

There have been different approaches to the investigation
of alerts to improve the defender’s SA [1]–[6]. The efficient
allocation of alerts to security analysts was studied by modeling
the problem as a game in [3]. Dunstatter et al. [4] used dynamic
programming and Q-maximin value iteration for efficient alert
allocation. The authors in [1] used reinforcement learning to
optimize alert investigations considering the shifts of security
analysts. While these works improved the efficiency of alert
investigation, they rely on static alert priorities computed based
on the criticality of alerts. To tackle the limitation of static alert



TABLE I
TABLE OF FREQUENTLY USED NOTATION

Notation Definition

S Set of states, S = {si, i ∈ I}
St State at time t (r.v.)
πt,t1
i Belief P(St1 = si) computed at time t

Yt Alert vector observed at time t (r.v.)
B Investigation budget
ω Investigation error probability
γ0 Alert probability adjustment factor
H Set of hypotheses
δi,j Probability of true alert j in state i
ζj Probability of false alert j
Yt Alerts observed at time t
Y1:t Sequence of alert vectors observed up to time t, Y1:t = (Y1, . . . , Yt)

ot1,j1t Investigation outcome at time t of alert j observed at time t′

O1:t Sequence of investigation outcomes up to time t
Vt Alert(s) to investigate at time t
V1:t Alert investigations performed up to time t

priorities, authors in [2] studied the dynamic prioritization of
alerts based on their potential information gain. The proposed
framework allows the investigation of a subset of the most
recent alerts with noisy investigation outcomes. While different
from the traditional active learning framework for HMMs [23],
which allows additional observations about the system state, the
approach in [2] does not scale due to the state representation,
and it does not consider the issue of intrusion detection. Shah
et al. aimed to investigate all alerts under the tradeoff between
the cost to hire analysts and the ideal mix of security analysts’
expertise levels [5]. However, investigating all alerts may be
impossible, depending on the size of the network. In their
following work [6], they used the human-defined significance
of each alert to compute the composite risk score and allocated
alerts to security analysts. Although this approach dynamically
calculates the risk score, it still relies on the human-defined
risk score.

Unlike previous works where a large volume of alerts leads
to alarm fatigue and human-defined risk score causes significant
delays in detection, we propose a framework and algorithms for
minimizing the expected time to attack detection through active
learning, exploring a novel combination of sequential hypoth-
esis testing with active learning in a HMM. Our framework
presents a novel combination of machine learning and human
competence for maximizing cyber situational awareness.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the interaction between an attacker, whose aim
is to compromise the system, and a defender, whose aim is
to detect the attacker in the system. We consider that time is
slotted and use t ∈ Z+, where Z+ is the set of nonnegative
integers, as time index.

A. Attack model

We model the progression of the attacker in the system by
an attack graph. The attack graph consists of nodes and edges,
where each node corresponds to an attack state (i.e., security
state), and involves adversarial activity by the attacker, e.g.,

according to the MITRE Att&ck model [24]. We denote by
S = {s1, . . . , sI} the set of attack states, and by i ∈ I =
{1, . . . , I} the index of the attack state where |S| = I . An
edge ei,i′ = (si, si′) means the attacker’s transition from state
si to state si′ . We denote by asisi′ = P(St+1 = si′ |St = si)
the state transition probability from state si to state si′ .

The adversarial activity in state si may trigger a set of alerts
Ji ⊆ J by IDS, where J = {1, . . . , J} is the set of alert
indices and J is the number of distinct alerts. The probability
that the attacker’s activity triggers alert j ∈ Ji in security state
si at time t is δij = P(Y j

t = 1|St = si) > 0 where Y j
t is the

status of alert j at time slot t. In addition to true alerts, the IDS
raises false alerts with probability ζj regardless of the security
state since the false alerts are triggered by legitimate users’
activities not relevant to the attacker’s security state. Note that
the stochastic processes (St, Yt) form a hidden Markov model
(HMM), and we denote by λ the parameters of the HMM.

B. Defender Model

The defender can observe alerts triggered by the IDS. We
denote by Yt = {Y 1

t , . . . , Y
j
t . . . , Y J

t } ∈ {0, 1}J the alerts
observed during time slot t, where Y j

t = 1 corresponds to a
positive alert, and Y j

t = 0 corresponds to a negative alert. We
denote by Y1:t = {Y1, . . . , Yt} the alert vectors observed until
time t.

In addition, in each time slot t, the defender uses an
alert prioritization policy for choosing a set Vt ⊆ Y +

1:t =
{(t1, j1)|Y j

t1 = 1, 0 ≤ t1 ≤ t, j1 ∈ J } of positive alerts that
the human security analysts should investigate, subject to its
investigation budget |Vt| ≤ B. The same positive alert can be
investigated several times in subsequent time slots since the
alert investigation is an error-prone process in practice. Hence,
we model this as follows. Let us consider the investigation of
alert Y j1

t1 at time t. For a false positive alert, the investigation
outcome is ot1,j1t = 1 with probability ω, and ot1,j1t = 0 with
probability 1 − ω. For a true positive alert, the investigation
outcome is ot1,j1t = 0 with probability ω, and ot1,j1t = 1
with probability 1−ω. We refer to ω as the investigation error
probability of a security analyst assuming the uniform error on
all alerts j1 ∈ J for simplicity. The defender is not aware of the
ground truth, but it has an estimate of ω. Our model of error-
prone alert investigations can model human security analysts
and potential future machine learning algorithms capable of
alert investigation. In our model both are characterised by their
respective investigation error probability, which may of course
be different.

Fig. 2 shows how the investigation outcome influences the
observation probabilities. Depending on the outcome ot1,j1t of
the investigation of alert Y j1

t1 at time t, the defender updates
the likelihood of the alert being a false positive,

ζt1,j1t =

{
min(γ(ω)ζt1,j1t−1 , 1) for ot1,j1t = 0,

1
γ(ω)ζ

t1,j1
t−1 for ot1,j1t = 1,

(1)
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Fig. 2. Human security analysts investigate the prioritized alerts. The outcome
of the alert investigation is used for updating the observation probabilities and
hence the belief about the attacker’s progression.

where ζt1,j1t1−1 = ζj1 , i.e., the raw probability of false alert j1,
and γ(ω) is the confidence function defined for ω ∈ [0, 0.5].
Intuitively, γ(ω) captures the confidence attributed to an in-
vestigation outcome, as a function of the investigation error
probability. To obtain insight into how to design this function,
in our model we consider linear, concave, and convex functions
as alternatives

γ(ω) =


2(1− γ0)ω + γ0, (linear),

4(1− γ0)ω
2 + γ0, (concave),

4(γ0 − 1)(ω − 0.5)2 + 1 (convex),

(2)

where γ0 > 1 is a parameter. These alternatives allow us to cap-
ture different models of confidence in error-prone investigation
outcomes; e.g., a convex function would imply that confidence
decreases faster than linear as the error probability increases,
while a concave function implies a slower than linear decrease.
Similarly, the defender updates the probability of being a true
positive alert as

δt1,j1,it =

{
1

γ(ω)δ
t1,j1,i
t−1 for ot1,j1t = 0,

min(γ(ω)δt1,j1,it−1 , 1) for ot1,j1t = 1,
(3)

where δt1,j1,it1−1 = δij1 , i.e., the raw probability of true alert j1
in state i.

Given the outcomes of the alert investigations and condi-
tioned on the attacker being in state si, we can express the
likelihood of alert observations as

P(Yt1 = yt1 |O1:t = o1:t,V1:t = v1:t, St1 = si)

=

J∏
j=1

P(Y j1
t1 = yjt |O1:t = o1:t,V1:t = v1:t, St1 = si),

(4)

where each term is the likelihood of observing an individual
alert, we denote by V1:t = {V1, . . . ,Vt} the investigated
alerts up to time slot t, and by O1:t = {O1, . . . , Ot} the
outcome of the investigations up to time slot t where Ot =
{Ot1,j1

t |(t1, j1) ∈ Vt}. Observe that the individual alerts are
conditionally independent given the attack state and previous

investigations, hence the product form. We can express the
likelihood of an individual alert as

P(Y j1
t1 = yj1t1 |O1:t = o1:t,V1:t = v1:t, St1 = si)

=

{
(1− ζt1,j1t )(1− δt1,j1,it ) if yj1t1 = 0,
1− (1− ζt1,j1t )(1− δt1,j1,it ) if yj1t1 = 1.

We denote by Ft = {Y1:t, O1:t−1,V1:t−1} the information
available to the defender at time t, before choosing the alerts Vt
to investigate, consisting of past alerts, investigation outcomes
and investigation decisions.

The defender uses the multihypothesis sequential generalized
probability ratio test (MSGPRT) to the detect the attacker’s
progression based on the observations [10], [25], [26]. The de-
fender does so by maintaining a set H, |H| = H of hypotheses,
where each hypothesis h ∈ H corresponds to an HMM model
λh generating the observations. Fig. 4 illustrates the hypothesis
models constructed by iteratively removing attack states from
the complete attack graph λ, and we denote by Ih ⊆ I the
indices of states included in hypothesis h.

Let us denote by ph(Y1:t = y1:t|Ft = ft, Ot = ot,Vt =
vt)= P(Y1:t = y1:t|Ft = ft, Ot = ot,Vt = vt,Λt = λh). Then
for hypothesis ĥ = argmaxh∈H ph(Y1:t = y1:t|Ft = ft, Ot =
ot,Vt = vt), the defender computes the probability ratio with
respect to hypothesis 1 as

Rvt,ot
t|ĥ

=
pĥ(Y1:t = y1:t|Ft = ft, Ot = ot,Vt = vt)

p1(Y1:t = y1:t|Ft = ft, Ot = ot,Vt = vt)
, (5)

and compares it to the detection threshold θĥ, which results in
a decision

ηt =

{
ĥ if Rvt,ot

t|ĥ
> θĥ,

∅ otherwise,

where ∅ means undefined. We can then define the detection
time for model λĥ as

dĥ = min
{
t|ηt = ĥ

}
.

C. Problem Formulation

Let us denote by κ the policy of the defender for choosing the
set Vt of alerts to be investigated by human security analysts.
We make the reasonable assumption that the policy is causal,
i.e., the choice of Vt is based on Ft,

κ : Ft −→ Y +
1:t

B
. (6)

The defender would like to detect the attacker’s progression
to state s2, which it does by confirming any hypothesis model
λh, h > 1. We thus define the detection time under policy κ
as that of any hypothesis h > 1,

dκ = min
h>1

dh,κ.
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The objective of the defender is to find a policy that minimizes
the expected detection latency, i.e.,

κ∗ = argmin
κ∈K

sup
ts1→s2

>0
E(ts1→s2 )[dκ − ts1→s2 ], (7)

subject to a constraint on the time between false alerts

E(∞)[dκ] ≥ τ,

where E(ts1→s2 ) and E(∞) denote the expectations when the
true state transition happens at time ts1→s2 and when there is
no state transition at all, respectively. The problem faced by
the defender is an active learning problem for quickest change
detection in an HMM.

IV. PROPOSED POLICIES

In what follows, we first outline the sequential probability
ratio test (PRT) underlying the proposed policies, we then pro-
pose the two dynamic alert prioritization policies to solve (6)
subject to (7), i.e., policies for choosing the set Vt of alerts to
be investigated by human security analysts.

A. Likelihood ratio and sequential probability ratio test (SPRT)

Let us denote by pt,t1i|h = P(Y1:t1 = y1:t1 , St1 = si|Ft =

ft,Λt1 = λh) the joint probability that the observed alerts
up to time t1 are y1:t1 and the state at time t1 is si given
that the hypothesis is λh at time t and given past alerts and
investigations ft. The defender can compute pt,t1i|h using the
forward algorithm in a recursive manner [27], obtaining the
lower triangular matrices

pt,t1 =


pt,t11|1 0 . . . 0

pt,t11|2 pt,t12|2 . . . 0
...

...
. . .

...
pt,t11|H pt,t12|H . . . pt,t1I|H

 ,

where each column corresponds to a state, each row corre-
sponds to a hypothesis, and 1 ≤ t1 ≤ t. The matrices can
be computed recursively, hence the update is computationally

efficient. We can use the likelihoods pt,t1i|h to express the
likelihood ratio defined in (5) as

Rĥ
t =

∑I
i=1 p

t,t1
i|ĥ∑I

i′=1 p
t,t1
i′|1

.

In addition, assuming a uniform prior about the hypotheses, we
can express the belief P(St1 = si|Ft = ft) at time t about the
state St1 at time t1 ≤ t as

πt,t1
i =

∑H
h=1 p

t,t1
i|h∑I

i′=1

∑H
h′=1 p

t,t1
i′|h′

. (8)

We will use the above likelihoods and beliefs for defining
the alert investigation policies, but before we do so, let us
recall some fundamental concepts related to the sequential PRT
(SPRT) under i.i.d. observations.

Definition 1 (Risk). Consider a HMM with S = {s1, . . . , sI},
asisi′ = 0, i.e., no state transitions, and hypotheses hi =
{S0 = si}, i.e., i.i.d. observations. The probability of error
(misdetection) under hypothesis h at time thdκ

is defined as

Pmax ≜ max
h∈H

Ph{ηth′
dκ

̸= h},

and the risk of incorrectly confirming hypothesis h is defined
as

Rh ≜ max
h′ ̸=h

Ph′{ηthdκ = h}.

Definition 2. The KL divergence of distribution p from distri-
bution q, both defined over discrete set X , is

D(p||q) =
∑
x∈X

p(x)
log p(x)

log q(x)
. (9)

Using these definitions, let us recall a fundamental result
about the expected time to detection of the SPRT under i.i.d
observations [10], [28].

Lemma 1 ( [28] Chapter 3.2). Consider an HMM with
S = {s1, . . . , sI}, asisi′ = 0, and hypotheses hi = {S0 = si},
i.e., i.i.d. observations. Let D(Ph(Yt) ∥ Ph′(Yt)) be the KL
divergence of the likelihood of observation vector Yt without
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investigating alerts under hypothesis h and h′. Then, the
expected time to detection is given by

E[thd ] =
− log(Rh)

minh′ ̸=h D(Ph(Yt) ∥ Ph′(Yt))
(1 + o(1)).

The above result shows that if observations are i.i.d., then
the expected time to detection is inversely proportional to
the KL divergence of the distribution of the observed alerts
under different hypotheses, as illustrated in Fig. 5. Another
interpretation of the result is that the expected change of the
probability ratio per time step equals the KL divergence of the
distribution of the observed alerts under different hypotheses. In
our model, the observations are not i.i.d. due to the dependence
of the observation probabilities on the state of the HMM, yet
these results provide important intuition for the design of our
alert prioritization policies.

Our framework combines the alert prioritization policies with
the defender model to detect a potential intrusion. Let us recall
that alert investigations update the observation probabilities in
(1) and (3), leading to changes in the KL divergence and in the
likelihood ratio. Our proposed policies (i.e., the machine) rank
the alerts based on the changed KL divergence or likelihood
ratio. Security analysts (i.e., the human) then investigate the
highest ranked alerts and return the investigation outcomes to
the machine. This interaction between machine and human is
repeated until the likelihood ratio in (5) reaches the detection
threshold.

B. Max KL divergence (MKL) policy

The first alert prioritization policy we propose is based
on the above asymptotic result on the relationship between
the expected time to detection and the risk of incorrectly
confirming a hypothesis. The key tenet of the proposed max
KL (MKL) divergence policy is to choose alerts to investigate,
aiming to maximize the KL divergence of the distribution of
the observed alerts after the investigation.

For formulating the policy, let ĥ =
argmaxh∈H\{1} ph(Y1:t = y1:t|Ft = ft) be the most
likely hypothesis at time t prior to alert investigation, and
ph(Yt′ |Ft = ft, Ot = ot,Vt = vt) = P(Yt′ |Ft = ft, Ot =
ot,Vt = vt,Λt = λh) the distribution of observations Yt′

under hypothesis h, given past observations and investigation
outcomes ft and the choice vt of alert investigations at
time t. Then, at time t, our objective is to choose a set of
investigations that solves

max
vt⊆Y +

1:t,|vt|≤B
E
[ t∑
t′=1

D
(
pĥ(Yt′ |Ft = ft,Vt = vt)

∥ p1(Yt′ |Ft = ft,Vt = vt)
)]

−
t∑

t′=1

D(pĥ(Yt′ |Ft = ft)∥p1(Yt′ |Ft = ft)),

(10)

where the expectation in (10) is taken with respect to the
outcome Ot of the investigation of alerts vt.

For ease of exposition, let us first consider a single in-
vestigation |Vt| = 1, and let Vt = {(t1, j1)}, for some
0 ≤ t1 ≤ t. Recall that the investigation outcome Ot1,j1

t is a
random variable, and its realization influences the distribution
of the observations made at times t ≥ t1, hence the KL
divergence of the observations under different hypotheses. We
can express the expected KL divergence of the observations at
time t when investigating alert j1 observed at time t1 as

E
[
D(pĥ(Yt|Ft = ft,Vt = {(t1, j1)})

∥ p1(Yt|Ft = ft,Vt = {(t1, j1)}))
]

=
∑

o
t1,j1
t ∈{0,1}

P(Ot1,j1
t = ot1,j1t |Ft = ft,Vt = {(t1, j1)})

·D
(
pĥ(Yt|Ft = ft, O

t1,j1
t = ot1,j1t ,Vt = {(t1, j1)})

∥ p1(Yt|Ft = ft, O
t1,j1
t = ot1,j1t ,Vt = {(t1, j1)})

)
,

(11)

where the probability of the investigation outcome can be
computed as

P(Ot1,j1
t = ot1,j1t |Ft = ft,Vt = {(t1, j1)})

=

I∑
i=1

P(Ot1,j1
t = ot1,j1t |St1 = si,Vt = {(t1, j1)}) · πt,t1

i ,
(12)

and πt,t1
i is given by (8). Based on the investigation error

probability ω, we can write

P(Ot1,j1
t = ot1,j1t |St = si,Vt = {(t1, j1)})

=



ζ
t1,j1
t

1−(1−ζ
t1,j1
t )(1−δ

t1,j1,i
t )

(1− ω)

+
1−(1−ζ

t1,j1
t )(1−δ

t1,j1,i
t )−ζ

t1,j1
t

1−(1−ζ
t1,j1
t )(1−δ

t1,j1,i
t )

ω, for ot1,j1t = 0,

1−(1−ζ
t1,j1
t )(1−δ

t1,j1,i
t )−ζ

t1,j1
t

1−(1−ζ
t1,j1
t )(1−δ

t1,j1,i
t )

(1− ω)

+
ζ
t1,j1
t

1−(1−ζ
t1,j1
t )(1−δ

t1,j1,i
t )

ω, for ot1,j1t = 1.

Evaluating the KL divergence in (11) is computationally chal-
lenging as the set of possible observations grows exponentially



with the number J of alerts. In what follows we provide results
that enable efficient computation of the KL divergence under
certain conditions.

Proposition 1. Consider alert vector Y1:t. The KL divergence
of Y1:t under hypotheses ĥ and 1 satisfies

t∑
t1=1

D(pĥ(Yt1 = yt1 |Ft = ft) ∥ p1(Yt1 = yt1 |Ft = ft))

=

t∑
t1=1

J∑
j=1

D(pĥ(Y
j
t1 = yjt1 |Ft = ft)

∥ p1(Y j
t1 = yjt1 |Ft = ft)),

Proof. We prove the result by showing that alerts at time t1
are independent. Let us consider alert vector Yt1 , and consider
alerts Y j1

t1 and Y j2
t1 , j1, j2 ∈ J , with probability given by (4).

For h ∈ H, we then have

ph(Y
j1
t1 = yj1t1 , Y

j2
t1 = yj2t1 |Ft = ft)

=
∑
si∈S

ph(Y
j1
t1 = yj1t1 , Y

j2
t1 = yj2t1 |St1 = si,Ft = ft)

· P(St1 = si|Ft = ft)

=
∑
si∈S

ph(Y
j1
t1 = yj1t1 |St1 = si,Ft = ft)

· ph(Y j2
t1 = yj2t1 |St1 = si,Ft = ft)ph(St1 = si|Ft = ft)

=
∑
si∈S

[ph(Y
j1
t1 = yj1t1 |St1 = si,Ft = ft)

· ph(St1 = si|Ft = ft)]

·
∑
si∈S

[ph(Y
j2
t1 = yj2t1 |St1 = si,Ft = ft)

· ph(St1 = si|Ft = ft)]

= ph(Y
j1
t1 = yj1t1 |Ft = ft)ph(Y

j2
t1 = yj2t1 |Ft = ft).

The independence of alerts Y j
t and Y j′

t for j ̸= j′, together
with the chain rule of KL divergence [29] implies that the KL
divergence under hypotheses ĥ and 1 at time t1 satisfies

D(pĥ(Yt1 = yt1 |Ft = ft) ∥ p1(Yt1 = yt1 |Ft = ft))

=

J∑
j=1

D(pĥ(Y
j
t1 = yjt1 |Ft = ft) ∥ p1(Y j

t1 = yjt1 |Ft = ft)),

which proves the result.

Next, we show the independence of the investigation outcomes
for different alerts observed at the same time slot.

Proposition 2. Let t1 ≤ t. Then, the investigation outcome
Ot1,j1

t for alert j1 observed at time t1 is independent of the
investigation outcome Ot1,j2

t of alert j2 observed at time t1.

Proof. Let us consider alerts Y j1
t1 and Y j2

t1 , j1, j2 ∈ J , with
probability given by (4), and let vt = {(t1, j1), (t1, j2)}. Under

hypothesis h ∈ H, the joint probability of the investigation
outcomes is

ph(O
t1,j1
t = ot1,j1t , Ot1,j2

t = ot1,j2t |Vt = vt,Ft = ft)

=
∑
si∈S

ph(O
t1,j1
t = ot1,j1t , Ot1,j2

t = ot1,j2t |St1 = si,

Vt = vt,Ft = ft)

· P(St1 = si|Ft = ft)

=
∑
si∈S

ph(O
t1,j1
t = ot1,j1t |St1 = si,Vt = {(t1, j1)},

Ft = ft)

· ph(Ot1,j2
t = ot1,j2t |St1 = si,Vt = {(t1, j2)},Ft = ft)

· ph(St1 = si|Ft = ft)

=
∑
si∈S

[ph(O
t1,j1
t = ot1,j1t |St1 = si,Vt = {(t1, j1)},

Ft = ft)

· ph(St1 = si|Ft = ft)]

·
∑
si∈S

[ph(O
t1,j2
t = ot1,j2t |St1 = si,Vt = {(t1, j2)},

Ft = ft)

· ph(St1 = si|Ft = ft)]

= ph(O
t1,j1
t = ot1,j1t |Vt = {(t1, j1)},Ft = ft)

· ph(Ot1,j2
t = ot1,j2t |Vt = {(t1, j2)},Ft = ft).

Thus, the investigation outcomes are independent.

An important consequence of Proposition 1 and Proposition 2
is the following.

Proposition 3. Let vt = {(t1, j1), (t1, j2)}. Then the expected
change of the KL divergence is additive up to time t1, i.e.,

E[
t1∑

t′=1

D(ph(Yt′ |Ft = ft,Vt = {(t1, j1), (t1, j2)})

∥ p1(Yt′ |Ft = ft,Vt = {(t1, j1), (t1, j2)}))]

=

t1∑
t′=1

D(ph(Yt′ |Ft = ft)∥p1(Yt′ |Ft = ft))

+ ∆D
t1,j1
t1 +∆D

t1,j2
t1 .

Proof. Let us consider the investigation outcomes Ot1,j1
t and

Ot1,j2
t . Observe that the investigation outcomes Ot1,j1

t and
Ot1,j2

t only affect the probability of the corresponding alerts



Algorithm 1: MKL policy
Input: Past observations ft = (y1:t, o1:t−1, v1:t−1);

Investigation budget B
Output: vt (Alerts to investigate)

1 nA = 0; v⃗ = ∅
2 for t1 ← 1 to t do
3 for j1 ← 1 to J do
4 if Y j1

t1 = 1 then
5 Compute ∆D

t1,j1
t1 using (16)

6 v⃗.insert((t1, j1))
7 nA ++
8 end
9 end

10 Sort v⃗ in the descending order of ∆D
t1,j1
t1

11 vF = {v⃗(1), . . . , v⃗(B)}
vL = {v⃗(nA −B + 1), . . . , v⃗(nA)}
σF =

∑
(t1,j1)∈vF

∆D
t1,j1
t1

σL =
∑

(t1,j1)∈vL
∆D

t1,j1
t1

12 if |σF | ≥ |σL| then
13 vt = vF
14 else
15 vt = vL
16 end

Y j1
t1 and Y j2

t1 , respectively, we can thus write

E[
t1∑

t′=1

D(ph(Yt′ = yt′ |Ft = ft,Vt})

∥ p1(Yt′ = yt′ |Ft = ft,Vt))]

=

t1∑
t′=1

J∑
j=1

D(ph(Y
j
t′ = yjt′ |Ft = ft)

∥p1(Y j
t′ = yjt′ |Ft = ft))

(13)

−D(ph(Y
j1
t1 = 1|Ft = ft)∥p1(Y j1

t1 = 1|Ft = ft))

−D(ph(Y
j2
t1 = 1|Ft = ft)∥p1(Y j2

t1 = 1|Ft = ft))

+ E[D(ph(Y
j1
t1 = 1|Ft = ft,Vt = {(t1, j1)})

∥p1(Y j1
t1 = 1|Ft = ft,Vt = {(t1, j1)))]

(14)

+ E[D(ph(Y
j2
t1 = 1|Ft = ft,Vt = {(t1, j2))

∥p1(Y j2
t1 = 1|Ft = ft,Vt = {(t1, j2)))],

(15)

=

t1∑
t′=1

J∑
j=1

D(ph(Y
j
t′ = yjt′ |Ft = ft)∥p1(Y j

t′ = yjt′ |Ft = ft))

+ ∆D
t1,j1
t1 +∆D

t1,j2
t1 ,

where (13) follows from Proposition 1 and (14) and (15) follow
from Proposition 2.

Thus, the change of the KL divergence is additive when
investigating alerts that occurred during the same time slot.
Additivity does not hold in general, i.e., the expected change
due to investigations of alerts observed at different time slots
is not additive. Nonetheless, for computational efficiency, we
propose to approximate the expected change ∆D

t1,j1
t by the

expected change ∆D
t1,j1
t1 , based on the assumption that the

expected change in the KL divergence is the same regardless
of whether the alert is investigated immediately upon receiving
an observation or at a later time, i.e., ∆D

t1,j1
t ≈ ∆D

t1,j1
t1 .

Algorithm 1 shows the pseudocode of the proposed MKL
policy. At time t, the policy considers the expected change of
the KL divergence for each positive alert (Line 5),

∆D
t1,j1
t1 = E

[
D(pĥ(Y

j1
t1 = 1|Ft = ft,Vt = {(t1, j1)})

∥ p1(Y j1
t1 = 1|Ft = ft,Vt = {(t1, j1)}))

]
−D(pĥ(Y

j1
t1 = 1|Ft = ft) ∥ p1(Y j1

t1 = 1|Ft = ft)).
(16)

The policy then sorts the alerts in descending order of ∆D
t1,j1
t1

(Line 10), and computes the sum of the first B alerts and the
sum of the last B alerts (Line 11). It then picks the B alerts
with the largest absolute sum value (Lines 12 to 16), which are
the alerts to be investigated by the security analysts at time t.

C. Max Ratio (MR) policy

The proposed max ratio (MR) policy builds on the intuition
that maximization of the likelihood ratio through investigations
would minimize the time to detection, as it would expedite
reaching the detection threshold. To define the policy, let us
define the random variable

Rvt
t|ĥ

=
pĥ(Y1:t = y1:t|Ft = ft,Vt = vt)

p1(Y1:t = y1:t|Ft = ft,Vt = vt)
,

i.e., the probability ratio as a function of the investigation
outcome if the defender investigates alert vt. As before, we
denote by ĥ = argmaxh∈H\{1} ph(Y1:t = y1:t|Ft = ft) the
most likely hypothesis at time t, prior to the investigation.
Formally, the MR policy κMR at time slot t aims to choose a
set of alerts that solves

max
vt⊆Y +

1:t,|vt|≤B

∣∣∣∣E[Rvt
t|ĥ

]∣∣∣∣, (17)

where the expectation is taken with respect to the distribution
of the investigation outcomes, given in (12).

Computing the expectation in (17) is challenging for two
reasons. First, computing the likelihood ratio Rvt,ot

t|ĥ
defined

in (5) depending on the outcome ot of the investigation of alerts
vt observed in the past involves recomputing the likelihoods
up to time t using the forward algorithm. As a consequence,
computing the expected likelihood ratio E[Rvt

t|ĥ
] over all pos-

sible outcomes is computationally intensive. Second, solving
(17) requires the computation of the expected change of the
likelihood ratio due to the outcome of the investigation of sets



of alerts, hence (17) is a combinatorial optimization problem.
To overcome these computational challenges, in what follows
we propose a low complexity approximation.

For ease of exposition, let us first consider the expected like-
lihood ratio after the investigation of a single alert vt = (t1, j1)
chosen at time t,

E[Rvt
t|ĥ

] = E
[
pĥ(Y1:t = y1:t|Ft = ft,Vt = {(t1, j1)})
p1(Y1:t = y1:t|Ft = ft,Vt = {(t1, j1)})

]
.

The approximation we introduce is based on the assumption
that when investigating an alert observed at time t1, the
expected change of the likelihood ratio up to time t is close to
that at time t1, i.e., when the alert was observed, formally

∆R
t1,j1
t|ĥ = E[Rvt

t|ĥ
]−Rt|ĥ≈ E[Rvt

t1|ĥ
]−Rt1|ĥ=∆R

t1,j1
t1|ĥ . (18)

The expected likelihood ratio of observations up to time t1
after investigating alert (t1, j1) can be expressed as

E[Rvt
t1|ĥ

] = E
[
pĥ(Y1:t1 = y1:t1 |Ft = ft,Vt = {(t1, j1)})
p1(Y1:t1 = y1:t1 |Ft = ft,Vt = {(t1, j1)})

]

=
∑

o
t1,j1
t ∈{0,1}

( pĥ(Y1:t1 = y1:t1 |Ft = ft, O
t1,j1
t = ot1,j1t ,
Vt = {(t1, j1)})

p1(Y1:t1 = y1:t1 |Ft = ft, O
t1,j1
t = ot1,j1t ,
Vt = {(t1, j1)})

· P(Ot1,j1
t = ot1,j1t |Ft = ft)

)
.

The likelihood ratio, conditioned on the investigation outcome,
can itself be computed as

pĥ(Y1:t1 = y1:t1 |Ft = ft, O
t1,j1
t = ot1,j1t ,Vt = {(t1, j1)})

p1(Y1:t1 = y1:t1 |Ft = ft, O
t1,j1
t = ot1,j1t ,Vt = {(t1, j1)})

=

∑
i∈Iĥ

pt,t1
i|ĥ
· ct1,j1,it

pt,t11|1 · c
t1,j1,1
t

,

where ct1,j1,it is the factor of likelihood change due to the
outcome of the alert investigation. The likelihood change factor
itself can be expressed as

ct1,j1,it =
1− (1− ζt1,j1t )(1− δt1,j1,it )

1− (1− ζt1,j1t−1 )(1− δt1,j1,it−1 )
,

where ζt1,j1t and δt1,j1,it are given by (1) and (3), respectively.
The numerator and the denominator are the likelihoods after
the investigation and before the investigation, respectively. The
denominator cancels out the likelihood before the investigation
in pt,t1i|h .

Let us now extend our focus to multiple alerts observed at
the same time. The following result shows that computing the
likelihood ratio change due to alerts that were observed at the
same time can be done efficiently.

Proposition 4. Let vt = {(t1, j1), (t1, j2)}. Then

E
[
pĥ(Y1:t1 = y1:t1 |Ft = ft,Vt = vt)

p1(Y1:t1 = y1:t1 , |Ft = ft,Vt = vt)

]

=
∑
i∈Iĥ

pt,t1
i|ĥ

pt,t11|1
E
[
ct1,j1,it

ct1,j1,1t

]
E
[
ct1,j2,it

ct1,j2,1t

] ,

where the first expectation is taken with respect to P(Ot1,j1t =
ot1,j1t |Ft = ft), and the second expectation is taken with
respect to P(Ot1,j2t = ot1,j2t |Ft = ft).

Proof. Let us express the likelihood ratio conditional on the
investigation outcomes,

pĥ(Y1:t1 = y1:t1 |Ft = ft, O
t1,j1
t = ot1,j1t , Ot1,j2

t = ot1,j2t ,
Vt = vt)

p1(Y1:t1 = y1:t1 |Ft = ft, O
t1,j1
t = ot1,j1t , Ot1,j2

t = ot1,j2t ,
Vt = vt)

=

∑
i∈Iĥ

pt,t1
i|ĥ
· ct1,j1,it · ct1,j2,it

pt,t11|1 · c
t1,j1,1
t · ct1,j2,1t

.

Recall that by Proposition 2 the outcomes of the investigations
of alerts (t1, j1) and (t1, j2) are independent, and hence

E
[
ct1,j1,it ct1,j2,it

ct1,j1,1t ct1,j2,1t

]
= E

[
ct1,j1,it

ct1,j1,1t

]
E
[
ct1,j2,it

ct1,j2,1t

]
,

where the first, second and third expectation is taken with
respect to P(Ot1,j1

t = {ot1,j1t , ot1,j2t }|Ft = ft), P(Ot1,j1
t =

ot1,j1t |Ft = ft) and P(Ot1,j2
t = ot1,j2t |Ft = ft), respectively.

It is easy to see that the above result holds for any number
of alerts observed at the same time. It does, however, not
hold in general for Vt = {(t1, j1), (t2, j2)} if t2 ̸= t1.
Nonetheless, for computational efficiency, we propose using
(18) to approximate the expected change in the probability ratio
when an alert observed at time slot t1 is investigated at time
t. This approximation assumes that the expected change in the
probability ratio is the same, regardless of whether the alert is
investigated immediately upon observation or at a later time.

The MR policy is based on the above, and its pseudocode
is shown in Algorithm 2. At time t the policy takes ∆R

t1,j1
t1|ĥ

as input, i.e., the expected change of the probability ratio for
every past positive alert Vt = {(t1, j1)} (Line 5). It sorts the
alerts in descending order of ∆R

t1,j1
t1|ĥ (Line 10) and picks the

B alerts with highest expected probability ratio changes and
the B alerts with lowest probability ratio changes (Line 11).
It then chooses the set with the largest absolute sum (Line 12
to 16), which is then the set of alerts to be investigated by the
security analysts at time t.



Algorithm 2: MR policy
Input: Past observations ft = (y1:t, o1:t−1, v1:t−1);

Investigation budget B
Output: vt (Alerts to investigate)

1 nA = 0; v⃗ = ∅
2 for t1 ← 1 to t do
3 for j1 ← 1 to J do
4 if Y j1

t1 = 1 then
5 Compute ∆R

t1,j1
t1|ĥ

6 v⃗.insert((t1, j1))
7 nA ++
8 end
9 end

10 Sort v⃗ in descending order of ∆R
t1,j1
t1|ĥ

11 vF = {v⃗(1), . . . , v⃗(B)}
vL = {v⃗(nA −B + 1), . . . , v⃗(nA)}
σF =

∑
(t1,j1)∈vF

∆R
t1,j1
t1|ĥ ,

σL =
∑

(t1,j1)∈vL
∆R

t1,j1
t1|ĥ .

12 if |σF | ≥ |σL| then
13 vt = vF
14 else
15 vt = vL
16 end

D. Discussion

While the MKL and the MR policies are similar in that
they maximize the ability of the MSGPRT to make a deci-
sion by greedily choosing alerts to be investigated, they are
conceptually different in how they try to achieve this. The
MKL policy bases its decisions on the dissimilarity of the
distribution of the alerts that would be observed after the
alert investigation, i.e., it does not aim at maximizing the
likelihood of the already made observations. On the contrary,
the MR policy is directly concerned with how well the model
is aligned with the already made observations, quantified by
the likelihood of the observations, and tries to find alerts to
investigate that would allow the model to better explain the
existing observations. In addition, it is worth noting that the
computational complexity of the MR policy is lower than that
of the MKL policy due to the multiplication and log operations
in (9).

V. NUMERICAL RESULTS

In this section, we evaluate the proposed policies using
simulations on a realistic attack graph.

A. Attack graph and attack scenarios

Our framework assumes that the defender has a predefined
attack graph that describes the attacker’s behavior. This as-
sumption implies that the performance of our model could

degrade if the attacker adopts a dynamic strategy or if vul-
nerabilities in the network change.

We evaluate the proposed policies on a DoS attack graph,
shown in Fig. 3. DoS attacks aim at making network ser-
vices unavailable to legitimate users. This is achieved by
overwhelming the target with excessive traffic or requests,
exhausting the resources of the target system. DoS attacks
are relatively common and may have significant impact in
financial institutes [30], power systems [31], and e-government
infrastructures [32]; thus their timely detection is important.
We use the DoS attack graph based on the LLDDOS1.0 attack
in [19], which consists of five attack steps: 1) IPsweep, 2)
sadmind ping, 3) break into, 4) installation, and 5) launch, of
which only three steps (i.e., sadmind ping, break into, and
launch) raise alerts by the IDS. We thus obtain an attack
graph with three states, where states 2 to 4 in the attack
graph correspond to the following attack steps: sadmind ping,
break into, and launch, respectively. Each state represents the
use of potentially multiple exploits. We then add a safe state
(s1) and a transition from the safe state s1 to the intrusion
attempt state s2, resulting in an attack graph with |S| = 4
states. Table II shows the transition probabilities asi,si′ for
i, i′ ∈ I, and Table III shows the probability of true and
false alerts, adopted from [19]. We refer to the resulting HMM
as the non-stealthy attack scenario. As a second scenario, we
consider a modification of the above HMM, where the true alert
probability for Alert 3 is 10 times smaller, making attack states
2 and 3 more difficult to observe. We refer to this modified
HMM as the stealthy attacker scenario. Thus, we use two
scenarios for the evaluation: the non-stealthy attacker and the
stealthy attacker.

In our simulation, each time slot represents 20 minutes
because security analysts may need up to 20 minutes to inves-
tigate an alert, based on [33]. In practice, alert investigations
typically take only a few minutes [34], suggesting that the time
slot is sufficient for investigating a single alert. Additionally, we
note that each state in our attack tree abstracts multiple exploits,
which increases the probability of remaining in a given state.
Thus, generating an alert vector every 20 minutes is sufficient
to track the attacker’s progression.

B. Evaluation methodology

The initial belief of the defender is π1,1
1 = P(S0 = s1) = 1,

and we use γ0 = 2 for the alert probability adjustment factor.

TABLE II
TRANSITION PROBABILITIES OF THE HMM FROM [19].

Current Next state (i′)

State (i) 1 2 3 4

1 0.95 0.05 0 0
2 0 0.974 0.013 0.013
3 0 0.010 0.962 0.028
4 0 0.011 0.011 0.978
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Fig. 6. Mean detection delay and mean time between false detections as a
function of the detection threshold for the linear confidence function, ω = 0,
the non-stealthy attack scenario, and investigation budget B = 1. (Each time
step is equivalent to 20 minutes.)

We consider investigation error probabilities ω ∈ [0, 0.5] for
the evaluation.

We use four baseline algorithms for the evaluation. The
first baseline does not perform investigation, referred to as No
investigation. The second baseline investigates B alerts chosen
uniform at random, referred to as Random. The third baseline
chooses the B alerts with smallest false alert probabilities
among the positive alerts, referred to as Min FP. The fourth
baseline is a dynamic investigation policy called Bayes factor
policy, proposed in [2], which prioritizes the most ambiguous
alerts observed at time t, referred to as Bayes factor.

We compute the detection latency in each simulation and for
each policy as the difference between the time of confirming the
attacker’s intrusion dκ and the time the intrusion started ts1→s2 .
The presented results are based on 100 simulations of 20, 000
time steps each; we refer to the mean of the detection latency
as the mean time to detection. Besides the time to detection, we
use the mean squared error (MSE) of the belief πt,t

i to evaluate
the learning process, defined as

MSE(πt,t
i , St) =

∑
i∈I

(
1{si=St} − πt,t

i

)2
,

where 1{si=St} is the indicator function.
We compute the true positive rate (TPR) and false positive

rate (FPR) at time t = 20 to demonstrate the improved accuracy
of intrusion detection using a human-in-the-loop approach [35].
The TPR and FPR represent the proportion of correct and
incorrect intrusion detections identified by our framework,
respectively. These metrics are calculated as follows:

TPR =
TP

TP + FN
,

FPR =
FP

FP + TN
,

where TP is the number of true positive detections, FN is
the number of false negative detections, FP is the number of

false positive detections, and TN is the number of true negative
detections.

C. Mean time to detection

Fig. 6 shows the mean time to (true) detection (left axis) and
the mean time between false detections (MTBFD) (right axis)
as a function of the detection threshold θĥ (log.scale) for the
non-stealthy scenario under the linear model. The figure shows
that any form of alert investigation reduces the time to detection
compared to No investigation even for an investigation budget
as low as B = 1. More importantly, the two proposed policies
achieve significantly lower time to detection and significantly
higher MTBFD for all values of the detection threshold than
the baselines. The proposed policies and Bayes factor perform
almost equally well for an investigation budget of B = 1, and
provide a high MTBFD for very low values of the detection
threshold. This shows that they can effectively mitigate the
effect of false alerts through alert investigation. We note that
the MTBFD levels out at 20, 000 due to the length of the
simulations. Comparing the baselines, we observe that MinFP
performs consistently better than Random, although both per-
form poorly compared to the proposed policies. The mean time
to detection increases approximately logarithmically with the
detection threshold (note the log. scale on the horizontal axis)
for all policies. In what follows, we set the detection threshold
to achieve an MTBFD τ that is 90% of the number of time
steps in the simulations, i.e., τ = 18, 000 time steps.

Fig. 7 shows the mean time to (true) detection as a function
of the investigation error ω for the non-stealthy scenario under
linear, concave, and convex confidence functions (defined in
(2)). The figure shows that the proposed policies and Bayes
factor reduce the mean time to detection compared to the
Random and the Min FP policies by up to a factor of four,
except when the investigation error is close to 0.5, i.e., when
investigations are uninformative. We note that Bayes factor
significantly reduces the mean time to detection, although the
design of Bayes factor aims at the improvement of belief [2].
This can be explained by the fact that an improved belief
increases the probability of hypothesis h ≥ 2, leading to
a reduction in the mean time to detection. Comparing the
results obtained using different confidence functions, we note
that the convex confidence function performs worst, hence
we do not show results for this confidence function in the

TABLE III
TRUE AND FALSE ALERT RATES USED IN THE EVALUATION [19].

True alert rate (δij )
Attack Alert index (j)

state (i) 1 2 3 4 5 6 7 8 9
1 0 0 0 0 0 0 0 0 0
2 0 0 0.962 0 0.038 0 0 0 0
3 0 0 0.667 0 0 0.333 0 0 0
4 0.011 0.064 0 0.372 0 0.021 0.021 0.489 0.021

False alert rate (ζj )
0.03 0.1 0.53 0.43 0.13 0.43 0.06 0.48 0.06
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investigation error probability (ω) for the stealthy attack scenario, mean
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subsequent figures. In the considered non-stealthy scenario, the
results for the linear and for the concave confidence functions
are similar, and the figure shows that the time to detection
increases approximately linearly with the investigation error
probability. That is, the proposed policies and Bayes factor
exhibit graceful degradation under error-prone investigations,
which is a desirable property in general.

Fig. 8 shows corresponding results for the stealthy attacker
scenario under the linear and the concave confidence functions.
Comparing Fig. 8 to Fig. 7, we can observe that the mean
time to detection is almost an order of magnitude higher for
all policies due to the reduction in the true positive rate of
alert 3, confirming that the scenario is more difficult from the
defender’s perspective. Despite the difficulty of the scenario,
the proposed policies outperform the baselines by up to a factor
of three to five. Focusing on the baselines, the figure shows that
while the Random and Bayes factor perform relatively poorly,
the Min FP policy performs relatively close to the proposed
policies, especially for low investigation error probability ω. On
the one hand, the big improvement in the relative performance
of Min FP compared to the non-stealthy scenario is due to
the modification of alert 3, which has a high false positive
rate and high true positive rate, and hence those alerts rarely
get investigated under the Min FP policy, even though they
are very informative in certain attack states. On the other
hand, the degraded performance of Bayes factor compared to
the non-stealthy scenario is because the stealthiness and the
investigation errors significantly degrade the accuracy of the
belief for state s2 despite using Bayes factor, and the inaccurate
belief in turn increases the time to detection. This result shows
that the proposed policies are more robust to changes in the
correlation structure of false and true alerts compared to static
policies.

Fig. 8 also shows that for the Min FP and for the proposed
policies, it is the concave confidence function that performs
best, slightly better than the linear confidence function. Surpris-

ingly, however, using the concave confidence function together
with the Random and Bayes factor policies results in a longer
mean time to detection than No investigation when the error
probability ω is high. We attribute this to the fact that the
Random and Bayes factor policies mostly choose false alerts to
investigate in the stealthy scenario (since there are many more
of those), and due to the high investigation error ω = 0.4 the
false alerts are often confirmed as true alerts. These mistakenly
confirmed alerts, in turn, increase the likelihood ratio in (5),
which leads to false detections. Hence, the detection threshold
has to be significantly increased to maintain τ = 18, 000,
which leads to an increase in the mean time to detection. To
verify this hypothesis, we simulated a modified Random policy,
which reinvestigates an alert two times when the investigation
outcome is true. This modification reduced the mean time to
detection to that of No investigation, confirming our hypothesis.
Motivated by its superior performance when using the proposed
policies, in what follows we show results for the concave
confidence function only, and we use the Min FP policy for
comparison, which is best among the baselines.

Table V summarizes the reduction in detection time with
respect to the best baseline policy, i.e., Min FP,

RDTκ =

E(ts1→s2
)[dκ

MinFP − ts1→s2 ]

− E(ts1→s2
)[dκ − ts1→s2 ]

E(ts1→s2 )[dκMinFP − ts1→s2 ]
.

Comparing the proposed policies Max KL and Max Ratio, we
can conclude that there is no significant difference for B = 1.

To further analyze the policies, Fig. 9 shows the MSE
of the belief as a function of time for the stealthy attacker
scenario. The figure shows that all investigation policies reduce
the MSE compared to No investigation, confirming that alert
investigations improve the belief. Importantly, the figure shows
that Random, MinFP and Bayes factor results in similar MSE
values, indicating Bayes factor cannot improve the MSE if the
attacker is stealthy. This supports our explanation for the results
shown in Fig. 8, i.e., that the Bayes factor policy cannot detect
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the attacker’s intrusion due to the degradation in the accuracy
of the belief. On the contrary, our policies maintain a low
MSE and hence they can choose the most informative alerts
for timely detection.

Finally, Table IV shows the impact of our proposed policies
on the TPR and the FPR at time t = 20 under the stealthy
attacker scenario. Overall, we observe that all policies improve
the TPR compared to No investigation, and our proposed
policies show the highest TPR, confirming their superior per-
formance. Recall that our proposed policies set lower detection
thresholds compared to the baseline policies, which implies that
our proposed policies may have a high FPRs. This is, however,
not the case. Comparing the proposed policies, Max KL has
a lower FPRs than Max ratio, while it has a similar mean
time to detection (c.f., Fig. 7 and Fig. 8). We attribute this to
the fact that Max ratio directly maximizes the likelihood ratio,
while Max KL aims to maximize distinguishability. Hence, Max
ratio may result in a quick change in the likelihood ratio,
making it more vulnerable to investigation errors. Our results
thus indicate that the Max KL policy minimizes two objectives:
the mean time to detection and the FPR.

TABLE IV
TPR AND FPR UP TO TIME STEP t = 20 WITH THE CONCAVE CONFIDENCE

FUNCTION. THE BOLDFACE MEANS THE MAXIMUM TPR AND FPR FOR
EACH INVESTIGATION ERROR ω AND ATTACK SCENARIO.

Attacker Investigation Investigation error probability (ω)

Type policy 0 0.1 0.2 0.3 0.4

(κ) TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

Max KL 1.00 0.00 0.98 0.15 0.94 0.06 0.88 0.09 0.70 0.06
Non Max ratio 1.00 0.00 0.98 0.21 0.94 0.09 0.85 0.03 0.77 0.12

Stealthy Min FP 0.73 0.12 0.71 0.12 0.70 0.12 0.71 0.12 0.67 0.12
Random 0.77 0.09 0.77 0.09 0.76 0.06 0.76 0.06 0.68 0.09

No investigation 0.64 0.09 0.64 0.09 0.64 0.09 0.64 0.09 0.64 0.09

Max KL 0.70 0.00 0.64 0.00 0.42 0.00 0.17 0.00 0.00 0.00
Max ratio 0.68 0.00 0.53 0.03 0.42 0.00 0.14 0.00 0.02 0.00

Stealthy Min FP 0.27 0.00 0.18 0.00 0.15 0.00 0.02 0.00 0.00 0.00
Random 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

No investigation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D. Impact of false alert rates

In this subsection, we explore the impact of the false alert
rate on the mean time to detection by considering different
values for the average false positive rate. Fig. 10 shows the
mean time to detection as a function of the average false alert
rate for the non-stealthy scenario. To adjust the average false
alert rate, which is 0.25 in Table III, increase or decrease
the probability ζj of each false alert by the same value, as
long as ζj ∈ [0, 1]. The figure shows that the mean time to
detection increases significantly using the No investigation and
the Min FP policies as the false positive rate increases. On
the contrary, our proposed policies are almost insensitive to
the increase in the false positive rate. We also notice that Max
KL shows slightly better performance than Max ratio when the
false positive rate is very high, indicating that the policy is
superior to the Max ratio policy.

E. Impact of investigation budget

In this subsection, we explore the impact of the investigation
budget B on the mean time to detection. Fig. 11 shows the
mean time to detection as a function of the investigation budget
B under the stealthy scenario using the concave confidence
function. We observe that the proposed policies make much
more efficient use of the investigation budget. As an example,
an investigation budget of B = 1 with the proposed policies
achieves lower or equivalent time to detection than the baseline
Min FP policy for B = 4. We can also observe that increasing
the investigation budget has a decreasing marginal gain for

TABLE V
REDUCTION IN DETECTION TIME BY OUR POLICIES UNDER THE CONCAVE

MODEL COMPARED TO MIN FP POLICY.

Policy Simulated Invesetigation error probability (ω) Average
(κ) difficulty 0 0.1 0.2 0.3 0.4 reduction

Max Non-stealthy 77.69% 72.98% 53.76% 32.89% 12.19% 49.90%
ratio Stealthy 62.52% 55.77% 48.90% 49.07% 18.55% 46.96%

Max Non-stealthy 78.62% 71.51% 60.49% 35.20% 15.66% 52.30%
KL Stealthy 64.79% 63.78% 58.53% 48.86% 26.33% 52.46%
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all policies, implying that adding more security analysts has
negligible impact on the time to detection beyond a certain
point. The figure also confirms that the Max KL policy slightly
outperforms the Max Ratio policy at the expense of a slightly
higher computational overhead imposed by the computation of
the KL divergence.

F. Impact of diverse investigation errors
In this subsection, we explore the impact of the collaboration

of security analysts with different investigation error probabili-
ties on the mean time to detection. For the evaluation, we con-
sider that there are two security analysts, one with investigation
error probability ω1 = 0.1 and budget B1 = 1 and one with
investigation error probability ω2 ∈ {0.2, 0.3, 0.4} and budget
B2 ∈ {0, . . . , 4}. Fig. 12 shows the mean time to detection as a
function of the investigation budget of security analyst 2 for the
stealthy scenario using the concave confidence function. The
figure shows that the security analyst with high investigation
error probability improves the mean time to detection if using
the proposed policies. Comparing our proposed policies, the
figure shows that Max KL outperforms Max ratio consistently.
On the contrary, adding a security analyst when using the Min
FP policy may be detrimental to the time to detection unless
its investigation budget B2 is high. This is due to the fact that
adding an analyst with a high investigation error probability
may mislead attack detection. Comparing Figures 11 and 12,
we observe that having an inexperienced analyst (ω2 = 0.3)
with a budget of B2 = 4 reduces the mean time to detection
approximately as much as adding a single experienced analyst
with ω = 0.1, which highlights the importance of the skills of
the security analysts employed.

We next evaluate the case of having two security analysts
with total investigation error probability ωs = ω1 + ω2.
Fig. 13 shows the mean time to detection as a function of the
investigation error probability ω1 of the first security analyst,
for ωs ∈ {0.4, 0.5}. Interestingly, the figure shows that the
mean time to detection increases with the investigation error

probability of the most skilled analyst min(ω1, ω2).We can also
observe that the mean time to detection of our proposed policies
is the same for ω1 = 0 regardless of ωs, further highlighting
the importance of the most skilled security analyst ω1. The
figure also shows that Max ratio exhibits a higher mean time to
detection compared to Max KL, again confirming the superior
performance of Max KL.

VI. CONCLUSION

We considered the problem of timely attack detection using
dynamic alert prioritization, formulated as an active learning
problem for sequential detection in a hidden Markov model.
Besides considering active learning and quickest detection in
a single framework, a key novelty of the proposed model is
the adjustment of the observation probabilities in response
to alert investigations. We introduced two alert prioritization
policies that aim to minimize the time detection under a false
detection time target. Our numerical results indicate that the
proposed policies significantly reduce detection delay com-
pared to baseline policies, effectively ignoring false alerts. The
proposed framework has several interesting extensions. First,
one could consider multiple attack graphs, each corresponding
to a different attack scenario, in which case analysts have to
be allocated to alerts from different attack graphs. Second,
one could take into account the time needed for investigating
different types of alerts and its impact on the investigation
error probability. Third, one could consider a strategic attacker
that tries to deceive the alert prioritization schemes, leading
to a game theoretic model. Last but not least, our framework
could be extended to include automated response actions, e.g.,
for temporarily isolating suspicious hosts, which would require
joint consideration of the cost of response actions and time to
detection.
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