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Abstract—We study the statistical characteristics of SURF
interest points and descriptors, with the aim of supporting the
design of distributed processing across sensor nodes in a resource
constrained visual sensor network. We consider a sensor network
with a single camera node and four schemes of delegating
processing tasks to the sensor nodes. We discuss the potential
and the challenges of the different schemes in light of the results
of the statistical analysis. Our results show that the distribution
of the number of interest points per image exhibits a heavy tail.
The interest point locations are almost uniformly distributed
along the axes of the images, but their X and Y coordinates
are slightly correlated. Most interest points are found in the
lowest octave layers, and the number of interest points decreases
exponentially with scale. Our analysis suggests that for a wireless
broadcast channel delegating subareas of images to processing
nodes would lead to a more even allocation than delegating by
octave layers. For directional wireless channels the efficiency can
be significantly improved by performing some of the feature
extraction tasks at the camera node.

Index Terms—SURF; visual sensor network; interest point
distribution

I. INTRODUCTION

In visual sensor networks (VSNs), images or video se-

quences captured by low cost cameras need to be processed

and transmitted to a central node or image database to per-

form visual analysis tasks, like image retrieval or video data

mining [1]. Visual analysis is often based on the detection and

extraction of visual features, that can characterize the image.

The detected set of features should allow high performance

visual analysis, for example, in the case of image retrieval high

precision and recall. Several feature extraction techniques have

been proposed in the last decades, providing scale and rotation

invariance [2], [3], [4], [5]. In this work we consider one of

the most popular ones, Speed-up Robust Features (SURF) [3].

In general, feature extraction techniques consider the pixel

data of an image, find a set of interest points and extract the

related feature descriptors. The feature descriptors are then

used to e.g., identify images in a database. To perform these

tasks in a sensor network environment is challenging, since

the tasks are both computationally demanding and require

the transmission of a large amount of information, the raw

pixel data or the generated feature descriptors. To decrease

the amount of data to be transmitted and thus the system

latency, [6] proposes a progressive transmission scheme, that

terminates the transmission of new descriptors if the image

is retrieved. In [7] a distributed solution is presented, where

descriptors of objects are stored at the nodes in the VSN, and

new queries are routed to these nodes for object matching.

In [8] the number of considered interest points and the

quantization level of the descriptors are jointly optimized to

maximize the accuracy of the recognition, subject to energy

and bandwidth constraints.

In this work we investigate how to best distribute the tasks

of interest point detection and descriptor extraction across the

nodes of the VSN such that the VSN resources are used

efficiently and the computational and transmission load are

balanced. We define four strategies for off-loading the camera

node and present a detailed statistical evaluation of the number,

location and scale of SURF interest points. Based on our

results we discuss the expected performance of the different

off-loading schemes. To the best of our knowledge this work

is the first to provide a statistical characterization of SURF

interest points based on a large image data set.

The rest of the paper is organized as follows. In Section II

we give a background on SURF, describe the VSN and the

four off-loading strategies. In Section III we provide a detailed

statistical analysis of the SURF interest points. Finally, in

Section IV we discuss the results and conclude our work.

II. BACKGROUND AND SYSTEM MODEL

We consider a VSN consisting of a camera node C, a set P

of processing nodes and a data storage node S. The processing

capability and energy resources of all nodes are limited as well

as the communication bandwidth. The transmission channel

from C to P may be broadcast, or may consist of directional

links. The goal of the VSN is to extract SURF descriptors in

the images captured at C and to transmit them to S. Fig. 1

illustrates the considered VSN scenario.

The computation of SURF descriptors involves performing

three main processing steps. Given an image i, the first step

involves the detection of interest points.

To provide scale invariance, SURF calculates blob response

maps at different scales, by convolving the integral image with

Gaussian box filters of increasing size. The standard deviation

σ of the Gaussian filter represents the scale. The scale space

is divided into octaves, and each octave is divided into octave

layers. Responses at the neighboring octave layers within

an octave are compared to find the interest points, and the
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Fig. 1: Considered visual sensor network scenario consisting of a
camera node, processing nodes and a data storage server node.

Fig. 2: Circular interest areas in a sample image for detection
threshold Θ = 4900.

scale of an interest point is determined through interpolation

with the neighboring layers. The detection threshold value Θ
determines the required contrast to the neighboring areas to

detect a blob response. The parameters of the interest point

detection process are the number of octaves and octave layers

and the threshold value, and these parameters need to be

selected based on the requirements of the visual task [3].

The number Ki of interest points in image i is unknown until

interest point detection is done for all octave parameters of

interest.

Every detected interest point k in image i is characterized

by its location (x,y)i,k and its scale σi,k. These two parameters

identify a circular interest area Ai,k of diameter
√

2 · 20σi,k

within the image. Fig 2 shows the circular interest areas

in a sample image. The second step involves orientation

identification, when a rectangular interest area Ri,k of side

length 20σi,k is selected within the circular interest area Ai,k

for every interest point. The last step is the extraction of the

SURF descriptor Di,k based on Ri,k for every interest point k

in image i. Every descriptor has the same size, unless coding

with variable accuracy is used. To accelerate the extraction

process and to extend the lifetime of the VSN, some or all

processing steps have to be delegated from C to P .

The delegation of the interest point detection can be done

in three ways. C can delegate to a node P ∈ P an area Zi, j

of image i to be processed, which we call area-split. The

areas need to overlap in order to be able to detect all interest

points, which might require redundant data transmission if

the wireless links are directional. The width of the overlap

is determined by the size of the largest interest area, and is

therefore
√

2 ·10 times the expected largest scale. With area-

split the number of interest points detected by node P depends

on the spatial distribution of the interest points.

Alternatively, C can delegate to a node P ∈ P the SURF

octave parameters (effectively the scales) to be used for interest

point detection, which we call scale-split. In this case all nodes

need to receive the entire image, and the number of interest

points detected by P depends on the distribution of the interest

points across scales. Finally, the delegation of interest point

detection can be based on both area and scale.

The delegation of orientation identification requires the

pixel data for Ai,k to be transmitted, and the delegation of

descriptor extraction requires the pixel data for Ri,k to be

transmitted. The interest areas for different interest points

might overlap, and this overlap can potentially be used to

decrease the amount of data transmitted between the nodes

for the delegation of the tasks.

The delegation of the processing steps affects the use of

the computational and communication resources of the VSN

nodes: the data transmission from C to P , the computational

load of C and the nodes in P , and the data to be transmitted

from P to S. These three are strongly coupled, and therefore

the delegation needs to be optimized. We consider the fol-

lowing alternatives of delegating processing steps in order to

off-load the camera node C:

• No Detection / No Extraction (ND/NE): The camera node

performs neither detection nor extraction. Thus, the entire

image needs to be sent to the processing nodes, and area-,

scale- or hybrid split can be used. In the case of scale-

split the delegation has to be based on the parameters

of the detection algorithm, that is the octaves and octave

layers, and each of the processing nodes should detect

interest points with distinct input parameters to avoid re-

dundant detection. Redundant processing can be avoided

by delegating different octaves to the processing nodes.

• Partial Detection / Partial Extraction (PD/PE): The cam-

era node detects some of the interest points and extracts

the related descriptors. Through detecting and extracting

interest points at high octaves, that is, large scales, the

redundancy of data transmission under area-split can be

decreased.

• Complete Detection / No Extraction (CD/NE): The cam-

era node detects all interest points and delegates the

descriptor extraction to the processing nodes. Given the

location and scale of all interest points, the camera node

needs only transmit the pixel data for each interest area

Ai,k. If the camera node calculates orientation as well,

only the pixel data of Ri,k is needed, which can decrease

the number of pixels to be transmitted by up to one third.

At the same time the vector of interest point locations

and scales needs to be transmitted. The balancing of

the computation among processing nodes can be done

based on the known location and scale parameters and

becomes trivial if a broadcast link is considered. In the

case of directed links, the communication cost needs to
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Fig. 3: (a) Average number of detected interest points and average interest point density vs. detection threshold. (b) Rank statistics of the
number of interest points for detection thresholds Θ = 100, 500, 900 and 2100, and best-fit generalized Zipf distribution. (c) Rank statistics
of the interest point density for detection thresholds Θ = 100, 500, and 900.

be balanced as well. In this case the problem is related

to graph clustering and is known to be NP-complete.

• Complete Detection / Partial Extraction (CD/PE): The

camera node detects all interest points and extracts some

of the descriptors. The set of interest points for which

descriptors are extracted at the source should be chosen

to minimize the remaining image pixels to be transmitted

to P . In this paper we consider a simple heuristic, which

consists of processing interest points with largest scales

at the source. This heuristic would be optimal if interest

areas would not overlap.

Which of these options can achieve the best performance

depends on the computational and transmission resources and

on the locations and scales of the interest points, which is

unknown a priori. In the next section we evaluate statistical

properties of the interest points, considering their number,

location and scale-size distribution, and evaluate the expected

computational and transmission gains of the above delegation

schemes.

III. STATISTICAL CHARACTERIZATION

We processed the 30607 images of the Caltech-256 object

category data set [9] using the SURF implementation of

OpenCV [10]. The images in this dataset are of variable

size, ranging from 5 ·103 to 12 ·106 pixels. For interest point

detection we used the default SURF parameters, 4 octaves

and 2 octave layers within each octave, and we considered

various detection threshold values, from 100 to 2900. The

default threshold value was Θ = 500, unless otherwise noted.

A. Number of interest points

The number Ki of interest points in an image affects both

the load of the processing nodes and the amount data to be

transmitted to the server node S. Therefore we start with the

evaluation of the distribution of the number of interest points

over all images.

Figure 3a shows the mean number of detected interest points

K̄ as a function of the detection threshold Θ. The number of

interest points decreases sharply for low threshold values and

by increasing the detection threshold value significantly the

number of interest points decreases by an order of magnitude,

although potentially at the price of decreased recall and

precision. At the same time, the rate of decrease diminishes as

the threshold Θ increases. We see a similar trend in the results

for the average interest point density, which is the average of

the number of detected interest points normalized by the image

size, (i.e., Ki/||i||). Therefore, we can conclude, that increasing

an already high threshold value will not significantly decrease

the computational and transmission costs in the VSN.

In Figure 3b we show the rank statistic of the number of

detected interest points at four different detection threshold

values for all images. The rank statistic is obtained by showing

the number of interest points Ki in decreasing order for all

images. Thus, the leftmost value corresponds to maxi Ki and

the rightmost value to mini Ki The number of interest points

varies by up to two orders of magnitude between images,

from a couple of tens to a couple of thousands. Nevertheless,

the shape of the curves does not change significantly when

increasing the detection threshold Θ.

In order to better understand the distribution of the number

of interest points we fitted the generalized Zipf law to the

data [11]. According to the generalized Zipf law the frequency

of an object with rank r is given by

fGZip f ( f1,λ,µ,θ)(r) =
f1

[

1− λ
µ
+ λ

µ
e

1
θ µr

]θ
. (1)

The generalized Zipf law exhibits an initial plateau, a power-

law trunk and an exponential cut-off, and was used to model

proportional voting processes and content popularity in the

Internet [11], [12]. Figure 3b shows that the fitting is rather

accurate, and suggests that there might be a power-law scaling

in the number of interest points per image.

The number of interest points in an image can, of course, de-

pend on the image size, and thus the large difference between

the number interest points per image could be partly due to the

differing sizes of the images in the data set. Figure 3c shows

the rank statistics of the interest point density (i.e., Ki/||i||) for

three detection threshold values for all images. The variability
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Fig. 4: Characteristics of the location distribution of interest points for various detection threshold values.

of the interest point density is lower than that of the number

of interest points, but it is still up to one order of magnitude.

Consequently, one can expect a high variability in the number

of interest points detected in an image. This in turn makes

it necessary to adapt a potential off-loading scheme and the

choice of SURF parameters depending on the image content.

B. Spatial distribution of interest points

The spatial distribution of the interest points in an image

plays an important role in the efficiency of area-split. To

investigate the spatial distribution of interest points, let us

define x̃i,k as the normalized X-coordinate of interest point

k in image i, i.e., xi,k normalized with the width of image i.

Furthermore, we define ni,x̃ to be the number of interest points

with normalized X-coordinate less than or equal to x̃ in image

i, i.e., ni,x̃ = |{k|x̃i,k ≤ x̃}|, and let Fi(x̃) =
ni,x̃

Ki
.

Figure 4a shows the average, and the 5 and 95 percentiles

of Fi(x̃) for threshold levels Θ = 100, 500 and 900. The

distribution is close to uniform apart from the border regions,

independently from the detection threshold. Furthermore, the

5 and 95 percentiles are very close to the mean value, which

means that the spatial distribution of the interest points is close

to uniform in the individual images too. Also, the distribution

is fairly insensitive to the threshold value. We found identical

results for the distribution of the normalized Y-coordinates.

We performed a two-sample K-S test to investigate whether

the distribution of the normalized X-coordinates is the same as

that of the normalized X-coordinates. The results in Fig. 4b

show that the fraction of images for which this hypothesis

cannot be rejected at a significance level of 0.05 is generally

high, but decreases almost linearly with the threshold Θ, thus

as the number of interest points decreases. This phenomenon

could potentially be explained by a correlation between the

coordinates when there are few interest points.

To investigate the correlation between the X and Y-

coordinates, Figure 4c shows the probability mass function of

the correlation coefficients ρi
X ,Y of the X and Y-coordinates of

the interest points over all images i, for three threshold values.

The figure also shows the best fit Laplace distributions, with

their location and scale parameters. The Laplace distribution

provides the best fit for Θ = 900, but this is also the threshold

value for which the correlations are highest, which supports

that correlation could be the reason for images not passing the

two-sample K-S test. The value of the location parameter of

the Laplace distributions, around 10−3 for all three threshold

values, shows that the average correlation coefficient ρX ,Y

over all images is close to zero. Furthermore, the good fit

of the Laplace distribution implies that the distribution of

the absolute value of the correlation coefficents is close to

exponential, i.e., large correlations are rare. The prevalence

of small correlation values could be a sign of that the X and

Y-coordinates of the interest points tend to be independent.

To verify this hypothesis (H0) we performed Pearson’s χ2

test for independence between the X and Y-coordinates for

every image. We divided the X and Y-axis into 6 intervals

each, and used the resulting 36 rectangles and the marginal

distributions along the X and Y-axis for the χ2 test. The

distribution of the χ2 values for various detection thresholds

are shown in Figure 5 together with the critical χ2 values for

a significance level of 0.05 and 0.01. The results show that

between 20 to 30 percent of the images pass the test at a

significance level of 0.05, i.e., the coordinates of the interest

points might be independent.

Based on the spatial distribution of the interest points we can

conclude that if area-split is used for the ND/NE and for the

PD/PE schemes then the average load on the processing nodes

can be made close to uniform even without a priori knowledge

of interest point locations. The low correlation between the

coordinates and the χ2 test results suggest that area-split can

be optimized by optimizing independently the horizontal and

the vertical cuts based on the distribution shown in Figure 4a.

Thus, area-split can be a good solution in the case of broadcast

transmission from C to P .

C. Scale size distribution

We now turn to scale-split and investigate the distribution

of the number of interest points according to the octave layers

they were detected at and across the scales after interpolation.

1) Interest points per octave: If scale-split is applied in the

ND/NE or the PD/PE schemes then the delegation needs to
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Fig. 6: Distribution of interest points per octave layer.

be based on the octaves and octave layers, to avoid redundant

processing and detection. Therefore, we first evaluate the

distribution of the number of interest points among the octaves

and octave layers. As we consider the default parameters of

4 octaves and 2 central octave layers within each octave, the

interest point detection is performed in 8 rounds, with different

filter sizes.

Figure 6a shows the mean value of the share of interest

points detected at the different octave layers for various

detection threshold values. We denote the octave layers by

the (octave, central octave layer) parameter pair. The figure

confirms that the majority of interest points are detected in

the first octaves [3]. Nevertheless, we see a general trend that

the percentage of interest points detected at higher octaves

increases as the threshold Θ is increased. Extreme cases were

reported for a limited set of images for very high threshold

values in [13].

Figure 6b shows the probability mass function of the interest

point distribution across the octave layers, averaged for all

images, and the 5 and 95 percentile bar, for the default

Θ = 500. The distribution is very skewed; processing interest

points at the 2 or 4 highest octave layers, that is, layers

(4,1),(4,2) and (3,1),(3,2),(4,1),(4,2) respectively, would result

in 0.3% and 7% of the total processing. The skewed distri-

bution would make the delegation of processing based on the

octave layers very unbalanced, and therefore scale-split based

on octave layers would have to be combined with area-split,

rotating octave assignment, or a subsequent re-assignment

of descriptor extraction to achieve similar processing and

transmission loads at P . Considering the ND/NE and PD/PE

schemes, the allocation of octaves and layers to processing

nodes would have to be done a priori, possibly based on the

average values shown in Figure 6b. Unfortunately, the 5 to 95

percentile ranges are rather wide: the actual computation load

for a particular image may differ by more that 50% from the

average for more than 10% of the images.

2) Interest points per scale: In the following we evaluate

the distribution of the scales of the interest points. Figure 7a

shows the averaged PMF of the scale size distributions of all

images for three threshold levels on a logarithmic scale. The 8

distinct peaks reflect the 8 octave layers. We can see that the

PMF curves loosely follow the exponential distribution, which

means that the vast majority of interest points has a relatively

small scale. We also observe that the effect of the threshold

value on the distribution is very small.

We next look at the ratio of interest points falling below a

given scale for all considered images. Let ni,σ be the number

of interest points with scale less than or equal to σ in image

i, i.e., ni,σ = |{k|σi,k ≤ σ}|, and let Fi(σ) =
ni,σ

Ki
. Figure 7b

shows the average, and the 5 and 95 percentiles of Fi(σ) for

threshold level Θ = 500. The figure confirms that the majority

of the interest points are detected at low scales, but the scale

size distribution may differ significantly from image to image.

Similar results with different threshold values show that the

difference from the average increases slightly as the detection

threshold Θ is increased. These results again confirm that the

variability of the load of the processing nodes under scale-split

could be significant.

Comparing the statistics of the interest point coordinates

and that of the scales we can conclude that for ND/NE

and for PD/NE area-split would lead to a more balanced

load distribution in the processing nodes than scale-split, and

therefore area-split would be preferable if there is a broadcast

channel connecting C and P . In the case of CD/NE and CD/PE

the scale-size distribution is known at C and it could be used

for balanced delegation of descriptor extraction among the

nodes in P .

D. Transmission redundancy

So far we considered a broadcast link between C and P . Let

us now evaluate the potential redundancy of area-split under

ND/NE and PD/PE if the links are directional. We quantify

the redundancy by the ratio of the sum of the areas to be

transmitted and the actual size of the image, normalized by

the number of areas nZ , i.e., (∑ j ||Zi, j ||/||i||)/nZ. For example,

a redundancy value of 1 means that the entire image has to
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be transmitted nZ times.

Figure 8 shows the CDF of the redundancy when the images

are divided into 2×1, 2×2, 3×2 and 3×3 equal sized areas.

Results are shown for ND/NE and for PD/PE-n for n = 1,2,

when n highest octaves are processed at C. That is, under

PD/PE-1 octave layers (4,1) and (4,2) are processed at C,

while under PD/PE-2 octave layers (3,1), (3,2),(4,1) and (4,2)

are processed at C. For ND/NE the maximum scale that needs

to be detected under the default 4 octaves and 2 octave layers

is σ= 27.6, for PD/PE-n it is σ= 14.26 and 7.06 for n= 1 and

n = 2, respectively. The results show that under ND/NE there

is a very high probability, between 0.7 to 0.9, that the entire

image needs to be transmitted for every individual area Zi, j.

For example, for the 3× 2 area split the probability that the

entire image needs to be transmitted six times is almost 0.8.

With PD/PE-n the redundancy can be significantly reduced

compared to ND/NE; the average reduction is almost 60% for

the 3×3 scenario. Consequently, ND/NE with area-split is not

a favorable scheme if the C to P links are directional and the

transmission bandwidth or energy are scarce resources. In that

case PD/PE has to be used, and needs to be adapted to the

image size ||i||.
Reconciling these results with those for the distribution

of interest points among octaves in Figure 6b shows that,

although processing the 2 (PD/PE-1) or 4 (PD/PE-2) highest

octave layers would lead to 0.3% and 7% of the processing

to be done at the camera node, respectively, doing so would

decrease the average transmission redundancy by 20%-60%,

depending on the area-split configuration. That is, partial

detection and extraction at the camera node could be very

beneficial to area-split if the links are directional.

E. Empty area distribution

Let us finally consider the CD/NE and the CD/PE schemes,

that is, when the camera node C performs the detection of all

interest points. As in this case the location and the scale of

the interest points are known, only the interest areas around

the interest points, that is, the discs with radius
√

2 ·10σ need

to be transmitted to the nodes in P for feature extraction. We

refer to the area of an image not covered by any interest area
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Fig. 9: Empty area ratio under CD/NE and CD/PE.

as empty area. As the ratio of the empty area increases, the

transmission cost is decreased.

1) Empty area distribution under CD/NE: Figure 9a shows

the ratio of the empty area defined as the area of the image not

covered by any interest area, i.e., 1− ||⋃k Ai,k||/||i|| for 500

images for various threshold values. The ratio of the empty

area turns out to be very small for all cases. It increases slightly

with increased detection threshold because less interest points

are detected. For the default Θ = 500, the average achievable

gain of not transmitting empty areas from the camera node to

the processing nodes is slightly below 10%. At the same time,



ca. 30% of the images do not have empty area at all. Thus,

CD/NE might not significantly reduce the amount of data to

be transmitted from the camera node to the processing nodes.

2) Empty area distribution under CD/PE: With partial

feature extraction performed at the camera node, that is, under

CD/PE, the empty area can be increased since the interest

areas that correspond to interest points processed at the camera

node C do not need to be transmitted, only the extracted

descriptors. In principle the set of interest points extracted

at the camera node could be chosen such as to maximize the

empty area, but doing so requires combinatorial optimization

due to the overlaps between interest areas. We therefore

applied a heuristic to choose the interest points to be extracted

at C: a fraction of the interest points, starting from the highest

scale, are processed locally at C. Figure 9b compares the CDF

of the ratio of the empty area under CD/NE and CD/PE when

5% to 30% of feature descriptors are extracted locally at C.

As we see, extracting 10% of the descriptors at C already

doubles the empty area on average, and the probability that

an image does not have empty area at all gets close to zero.

Consequently, if the transmission resources in the VSN are

limited, it may be beneficial to combine local interest point

detection with partial feature extraction.

IV. CONCLUSION

We provided a statistical characterization of SURF interest

points based on a public image database with the aim of

getting insights into the potential performance of different

processing offloading schemes in a visual sensor network.

Our results show that area-split can be an efficient solution

if the camera to processing node communication is broadcast.

In the case of directional links area-split would involve high

redundancy, but the redundancy could be decreased through

partial detection and extraction at the camera node. Scale-

split without complete detection at the camera node would

lead to highly non-uniform load among the processing nodes,

unless dynamic load balancing is implemented. The complete

detection of interest points, togehter with partial descriptor

extraction, could be used to decrease the total amount of data

to be transmitted to the processing nodes, by avoiding the

transmission of pixels not covered by interest areas.
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