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Abstract

We consider the problem of detecting adversarial
attacks against cooperative multi-agent reinforce-
ment learning. We propose a decentralized scheme
that allows agents to detect the abnormal behavior
of one compromised agent. Our approach is based
on a recurrent neural network (RNN) trained dur-
ing cooperative learning to predict the action distri-
bution of other agents based on local observations.
The predicted distribution is used for computing a
normality score for the agents, which allows the
detection of the misbehavior of other agents. To
explore the robustness of the proposed detection
scheme, we formulate the worst-case attack against
our scheme as a constrained reinforcement learning
problem. We propose to compute an attack policy
via optimizing the corresponding dual function us-
ing reinforcement learning. Extensive simulations
on various multi-agent benchmarks show the effec-
tiveness of the proposed detection scheme in de-
tecting state of the art attacks and in limiting the
impact of undetectable attacks.

1 Introduction
Multi-agent reinforcement learning (MARL) is emerging as
an important tool for solving various sequential decision
making problems in application areas like 5G networks, un-
manned aerial vehicle (UAV) swarms, autonomous driving,
power grid control, and Internet of things [Li et al., 2022;
Canese et al., 2021] . Inspired by how human beings learn
from trial and error, MARL utilizes the concept of rewards in
order to teach a team of agents to perform a certain sequential
task. The individual agents receive local observations and re-
wards from the environment, and use those to learn a policy
over their possible actions.

MARL problems can be cooperative, competitive, or a
mix between the two. In cooperative MARL, the agents
need to cooperate to achieve a common goal, thus typically
receiving a common reward, while in competitive MARL,
the agents are competing against each other. MARL has
been shown to perform better on multi-agent decision mak-

ing problems compared to centralized approaches, especially
when the problem is relatively complex [Canese et al., 2021].

Despite the potential of MARL for solving complex de-
cision making problems, a prerequisite for its adoption is
that it should withstand faults and adversarial manipulations.
For instance, an adversary that compromises a MARL agent
could manipulate the agent to take sub-optimal actions, possi-
bly affecting other agents and the team reward. Alternatively,
an adversary that compromises the communication link be-
tween the environment and the agent could modify the agent’s
observations, causing the agent to take sub-optimal actions
that reduce the team reward [Lin et al., 2020]. Adversarial
training, which relies on a known attack model for training
robustified ML models [Abusnaina et al., 2021], can mitigate
the impact of such adversarial manipulations to some extent,
but it does not provide situational awareness.

Thus, even if an MARL algorithm is robustified against
attacks, attack detection and identification are essential for
timely response, e.g., to be able to promptly evict victim
agents. Attack detection can also be used for improving
the robustness of MARL, e.g., by ensuring that non-victim
agents adjust their policy in a timely manner. Attack de-
tection schemes have thus far been designed for single-agent
RL, focusing on anomaly detection in the observations of an
agent [Sedlmeier et al., 2020; Zhang et al., 2021]. Anomaly
detection in the multi-agent setting has so far been addressed
in the control literature (e.g., [Shames et al., 2011] and [Ye
et al., 2019]), but these works assume a known dynamical
model of the environment and of the control policies of the
agents. Instead, in MARL, the policies are approximated
by neural networks and the environment is unknown, which
makes model-based detection of anomalous behavior infeasi-
ble. At the same time, it is unclear how to design model-free
approaches for anomaly detection that would scale to large
systems and enable decentralized operation.

In this paper, we propose a model-free approach for de-
tecting adversarial attacks against cooperative MARL. The
contributions of our paper are as follows:

1. We propose a decentralized detection scheme based on
training recurrent neural networks (RNNs) to predict the
distribution of actions of other agents conditional on lo-
cal observations, and use the trained predictors for com-
puting a normality score that quantifies the extent to
which agents behave as expected.



2. We propose a dynamic adversary that represents a worst-
case attack against our detection scheme and use it to
evaluate the robustness of our detector.

3. We carry out extensive simulations of our proposed
scheme as well as the worst-case attack utilizing dif-
ferent multi-agent benchmarks, and show that our de-
tection scheme can accurately detect adversarial attacks
and limit their impact.

2 Related Work
Most works concerning adversarial attacks against single-
agent RL revolve around perturbation of states (or observa-
tions). In these works, adversarial example generation algo-
rithms such as FGSM [Goodfellow et al., 2014] and JSMA
[Papernot et al., 2016] are used to generate fake observations
for the agent. Consequently, the agent will take suboptimal
actions as a result of the compromised observation of the en-
vironment´s state. Among these papers, [Huang et al., 2017]
used FGSM to minimize the probability of taking the best ac-
tion by the victim. [Pattanaik et al., 2017] utilized the same
algorithm but to encourage selecting the worst action by the
agent. [Behzadan and Munir, 2017] exploits the transferabil-
ity of adversarial examples to implement an attack during the
training phase. [Russo and Proutiere, 2021] optimized the
attack policy with respect to the perturbation budget.

In the context of MARL, [Lin et al., 2020] applied the idea
of perturbation of observations to attack one of the agents in
c-MARL. As the first step of the attack, they trained an adver-
sarial policy to minimize the long-term team reward. Then, in
the second step, a JSMA-based algorithm was used to make
the compromised agent follow that adversarial policy. At-
tacking the actions of an agent is another scenario, which is
particularly important in the multi-agent setting. [Gleave et
al., 2019] showed that in the competitive MARL, an adver-
sary can fool an agent by controlling another agent’s actions.
[Guo et al., 2022] is another work in this area, which inves-
tigated the robustness of state-of-the-art c-MARL algorithms
against attacks on both observations and actions.

Anomaly Detection for sequential data is the focus of
works such as [Oh and Iyengar, 2019; Malhotra et al., 2016;
Wang et al., 2021]. However, as argued in [Müller et
al., 2022], anomaly detection in RL has gained less atten-
tion compared to domains like video, audio, and text. In
this context, [Zhang et al., 2021] proposed a framework
to detect anomalous state observations based on a Gaus-
sian approximation of the state representation space. Au-
thors in [Sedlmeier et al., 2020] proposed an entropy-based
anomaly detector for the detection of out-of-distribution ob-
servations, though not in an adversarial setting. None of these
works addressed anomaly detection in a multi-agent setting,
and applying these single-agent schemes to MARL would ei-
ther require centralized tracking of all agents or implement-
ing anomaly detection locally (each agent for itself). The first
case might not be feasible in decentralized multi-agent sys-
tems, as collecting data from all agents is very resource in-
tensive. The second case is also suboptimal too because it
does not account for adversaries who have complete control
over the actions of the victim agent. In our approach, how-

ever, anomaly detection is done by other agents interacting
with the environment. Accordingly, irrespective of whether
the misbehavior of the victim is the result of the perturba-
tion of its observations or its actions, it can be detected. Fur-
thermore, some existing works have proposed decentralized
defences against adversarial attacks for control systems. For
instance, [Shames et al., 2011] addressed decentralized fault
detection, and [Ye et al., 2019] proposed a fault-tolerant con-
trol scheme for various control systems. However, these ap-
proaches rely on a known model of the system and cannot
be applied to general MARL applications, where the environ-
ment is typically unknown.

3 System Model
3.1 c-MARL Model
We consider a decentralized POMDP with N
agents. Such a model can be represented by a tu-
ple M = (N ,S, {Ai}i∈N , R, P, {Oi}i∈N , γ), where
N = {1, 2, ..., N} is the set of agents, S is the state space,
and Ai and Oi are the set of actions and observations of agent
i, respectively. Furthermore, R, P , and γ denote the reward
function, the state transition probability, and the discount
factor, respectively. At each time step t, agent i receives an
observation oit ∈ Oi from the system and takes an action
ait ∈ Ai. According to the joint action at = {ait} taken by all
agents, the state of the system changes from st to st+1 based
on the (unknown) transition probability P (st+1|st,at), and
a shared reward Rt = R(st,at) is obtained by the agents.
The objective of the agents is to maximize the long-term
discounted average reward

∑∞
t=1 γ

t−1Rt.
We assume that the agents have been trained using a

c-MARL algorithm that involves decentralized execution;
this can be done by the centralized-training decentralized-
execution paradigm (e.g., QMIX [Rashid et al., 2018] and
VDN [Sunehag et al., 2017] algorithms) or by independent
learning (e.g., IQL [Tampuu et al., 2017]). As a result,
agent i follows an independent policy πi. If we denote
by Γi ≜ (Oi × Ai)∗ the set of all possible observation-
action histories of agent i, the policy πi maps the history
τ it ≜ (oi1, a

i
1, ..., o

i
t) ∈ Γi to the action ait ∈ Ai.

3.2 Threat Model
We consider an adversary that can manipulate the actions of
one agent, whom we refer to as the victim agent, denoted by
index v ∈ N . Although we assume that there is only one
compromised agent, our proposed scheme can be applied to
the case of multiple victims too. At each time step t, the
adversary receives the observation oadvt and according to its
policy πadv selects an action aadvt ∈ Av to be taken by the
victim instead of avt . In general, oadvt is not necessarily the
same as the observation of the victim (ovt ); it may contain
more (or less) information. Note that besides the attacks aim-
ing directly at the actions (such as in [Gleave et al., 2019] and
[Guo et al., 2022]), this model can account for misbehavior
caused by a perturbation of the victim’s observations (such
as in [Lin et al., 2020]) too. The reason for this is that from
the other agents’ point of view, which is the main focus of



Figure 1: Illustration of the system model, considering agent 1 as
the victim.

this paper, the anomalous behavior of the victim is percep-
tible only through its actions. Recent work has shown that
this attack model can cause up to 100% performance loss to
the system [Guo et al., 2022], therefore the detection of such
attacks is of crucial importance.

3.3 Problem Formulation
Our focus is on detecting the abnormal behavior of a (victim)
agent using the sequence of observations of another agent.
Formally, corresponding to agent i as the observer and agent
j (j ̸= i) as the possible victim, we want to find a function
M ij : (Oi × Aj)∗ → {0, 1}, i.e., one that takes the history
oi1, a

j
1, o

i
2, a

j
2, ..., o

i
t, a

j
t at time t as input, and the correspond-

ing output M ij equals 0 if the sequence is normal and equals
1 if it is abnormal.

4 Decentralized Anomaly Detection
In what follows, we propose a decentralized scheme for the
detection and identification of an attack against an agent. The
detector we propose is comprised of two parts: 1) a predictor
that predicts the distribution of agent j’s actions at time step
t based on oi1, o

i
2, ..., o

i
t, and 2) an algorithm for computing

a normality score based on the actions aj1, a
j
2, ..., a

j
t taken by

agent j and the outputs of the predictor. Next, we describe
these two parts in details.

Prediction of action distribution: Each agent i maintains
a predictor ϕij that takes τ it as input and produces a distri-
bution (PMF) over the possible actions of agent j ̸= i. That
is ϕij(τ it ) = pij

t , where pij
t = {pijt (aj |τ it )}, and pijt (a

j |τ it )
is the probability of taking action aj by agent j from agent
i’s point of view. In practice, the implementation of the func-
tion ϕij can be regarded as a sequence classification problem,
where τ it is the input and possible actions of the victim are the
classes (labels). We propose to use recurrent neural networks
to predict these labels. By using a softmax layer as the output
activation, the PMF pij

t is obtained. Figure 2b shows our real-
ization of these predictors using a gated recurrent unit (GRU)
structure. Note that training these predictors should be done
after training the agents using c-MARL so that the policies πi

can be considered unchanged.

(a)

(b)

Figure 2: (a) Decentralized detection scheme, considering agent 1
as the possible victim. (b) Realization of ϕij .

Computing normality score: Given the predictions pij
t ,

the second step is to find a sequential test to determine the
normality of a given sequence of agent j’s actions. The test
takes the sequence pij

1 , a
j
1,p

ij
2 , a

j
2, ...,p

ij
t , a

j
t and outputs the

(ab)normality of this sequence. Observe that well-known
sequential tests, such as Pearson’s chi-square test (see e.g.,
[Lehmann et al., 2005]) cannot be applied as the normality
test here as the target distribution pij

t depends on the state,
and thus it changes over time.

Thus, we propose to compute a normality score for the ob-
served sequence of actions and compare it to a predefined
threshold. The normality score we propose is given by

cijt =


1
t

∑t
l=1 log(

pij
l (aj

l )

maxaj pij
l (aj)

), 1 ≤ t < w

1
w

∑t
l=t−w+1 log(

pij
l (aj

l )

maxaj pij
l (aj)

), t ≥ w

(1)
where w is the window size. The rationale behind this nor-
mality score is the following. At every time step, the score
takes into account the predicted probability of the action
taken by agent j, normalized by maxaj pil(a

j), i.e., the pre-
dicted probability of taking the most probable action. The
normalization in (1) makes sure to take the confidence of
the predictions into account, and the reason for using the log
function is to facilitate the computations.

At each time step, agent i computes cijt and compares it
to a predefined threshold βij . Agent i considers agent j as
compromised (i.e., M ij = 1) if

cijt < βij (2)

for some time step t. Overall, each agent needs to maintain
||N ||−1 predictors, i.e., the number of predictors is quadratic
in the number of agents.



5 Dynamic Adversary
In order to evaluate the effectiveness of the proposed detec-
tion scheme in a worst case scenario, we now consider a dy-
namic adversary that knows the detection scheme and aims
to bypass it while attacking the system. Intuitively, if the de-
tector performs well against an adversary with perfect knowl-
edge of the detector then it can perform well against attackers
with less knowledge. In what follows, we first formulate the
problem faced by the dynamic adversary, and then we show
how to compute an adversarial policy as a solution to this
problem.

5.1 Dynamic Attacker Problem Formulation
Consider an attacker that has access to piv

t and knows βiv

for every agent i. The attacker seeks to minimize the long-
term team reward, while being expectedly undetectable, in
the following sense.
Definition 1. An attack policy πadv is expectedly unde-
tectable if there is no agent i ̸= v such that E

[
civt (πadv)

]
<

βiv for any time step t > 0.

We define radvt ≜ −Rt as the adversarial reward, so minimiz-
ing the long-term team reward is equivalent to maximizing
the long-term adversarial reward. Accordingly, if we define
V (πadv) ≜ E

[∑∞
t=1 γ

t−1radvt )
]

then the adversary’s objec-
tive is to find a policy π∗adv that solves

max
πadv

V (πadv)

s.t. E
[
civt

]
≥ βiv, t=1,2,..., ∀i∈N\{v}. (P )

The problem (P ) has a non-Markovian structure and is in-
tractable to solve. Therefore, we propose a Markovian ap-
proximation of (P ), which we call (P ′).

Let zit ≜ log(
pi
t(a

v
t )

maxav pi
t(a

v)
)1. We define the extended

state s̄t ∈ S̄ ≜ S × Γ1 × Γ2 × ... × ΓN as s̄t =
(st, τ

1
t , ..., τ

N
t ). Then, we can rewrite radv(st, a

v
t ) as

radv(s̄t, a
v
t ) and zi(τ it , a

v
t ) as zi(s̄t, avt ) (note that we had to

extend the state because we could not write zit as zi(st, avt )).
Now, let us define (P ′) as a constrained RL problem

max
πadv

E

[ ∞∑
t=1

γt−1radv(s̄t, π
adv(s̄t))

]

s.t. Ci(πadv) ≥ βiv

1− γ
, ∀i∈N\{v}, (P ′)

where Ci(πadv) ≜ E
[∑∞

t=1 γ
t−1zi(s̄t, π

adv(s̄t))
]
. In the

following proposition we show that the solution to (P ′) is an
upper bound to the solution to (P ).
Proposition 1. Let π∗adv and π̄∗adv be policies such that
V (π∗adv) and V (π̄∗adv) are the solutions to (P ) and (P ′),
respectively. Then V (π̄∗adv) ≥ V (π∗adv).

Proof. Let F and F ′ be the feasible regions in (P ) and (P ′),
respectively. Since the objective function is the same in both

1zt is related to both agents i and v, but for the ease of notation,
we omit the superscript v.

problems, it is sufficient to show that F ⊆ F ′. Suppose that
π is an arbitrary policy in F . We show that π ∈ F ′. For that
purpose, we need to prove that Ci(π) ≥ βiv

1−γ .

Let Si
T (π) ≜ E[ 1T

∑T
t=1 z

i
t] . Any T ∈ N can be written

as T = nw +m, where m,n ∈ N ∪ {0} and m < w. Thus,
we can write

Si
T (π) =

1

T
E

 m∑
t=1

zit +

w+m∑
t=1+m

zit + ...+

nw+m∑
t=1+(n−1)w+m

zit


=

1

T
E[mcivm + wcivw+m + ...+ wcivnw+m] (3)

Since π ∈ F , we know that E[civt ] ≥ βiv for any t ≥ 1.
Therefore, we can conclude that

Si
T (π) ≥

1

T
(m+ nw)βiv = βiv (4)

Now, we can use the following lemma to conclude the proof.
Lemma [Theorem 13.29 in [Maschler et al., 2020]]: Let

{xt}∞t=1 be a bounded sequence of real numbers and ST be
the average of the first T elements of it: ST = 1

T

∑T
t=1 xt.

Also, let αT (γ) denote (1 − γ)2γT−1T . Then, for any γ ∈
[0, 1) we have

∑∞
T=1 αT (γ) = 1, and also

(1− γ)

∞∑
t=1

γt−1xt =

∞∑
T=1

αT (γ)ST .

By applying the above lemma with zt as xt and Si
t(π) as St,

and taking the expectation we get

(1− γ)Ci(π) =

∞∑
T=1

αT (γ)ST (π) ≥ βiv
∞∑

T=1

αT (γ) = βiv.

(5)
We thus have Ci(π) ≥ βiv

1−γ , which completes the proof.

A conclusion from Proposition 1 would be that if the de-
fender finds a solution V (π̄∗adv) to (P ′), then it can be sure
that there can not be any other expectedly undetectable attack
with an impact higher than V (π̄∗adv). Next, we will discuss
how V (π̄∗adv) can be found.

5.2 Finding the Adversarial Policy
Although (P ′) is a non-convex optimization problem, it can
be shown that if radv and zi are bounded and Slater’s condi-
tion holds, it has zero duality gap [Paternain et al., 2019]. We
assume that there is an ϵ > 0 such that pivt (av) ≥ ϵ for any
action av ∈ Av . Consequently, zit will be bounded. More-
over, Slater’s condition states that the feasible region has an
interior point. In practice, choosing proper values as thresh-
olds (βiv) causes the no-attack case (where πadv = πv) to be
an interior point of the feasible region of (P ′), in which case
Slater’s condition holds. As a result, we can find the policy
via optimizing the dual problem. The Lagrangian of (P ′) can
be defined as

L(πadv,λ) = V (πadv) +
∑
i̸=v

λi(C
i(πadv)− βiv

1− γ
), (6)



where λ is the vector of Lagrange multipliers. Accordingly,
the dual function is defined as

d(λ) = max
πadv

L(πadv,λ), (7)

and the objective would be to find minλ∈RN−1
+

d(λ). Note
that for a given λ, computing the dual function corresponds
to

max
πadv

L(πadv,λ) = max
πadv

E

 ∞∑
t=0

γt[radvt +
∑
i ̸=v

λiz
i
t]

 , (8)

which can be considered as finding the optimal policy in
an RL problem with the reward defined as rλ = radvt +∑

i ̸=v λiz
i
t.

Following the dual descent approach in [Paternain et al.,
2019], if we parameterize the policy π as πθ, the Lagrangian
can be represented by

L(θ,λ) = V (θ) +
∑
i ̸=v

λi(C
i(θ)− βiv

1− γ
). (9)

Then, the optimal policy can be found by the following itera-
tive algorithm:

1. In each iteration, we update the parameters θ such that

θ(k+1) ≈ argmax
θ

L(θ,λ(k)). (10)

This is done by training an RL algorithm with the reward
defined by rλ(k) .

2. Updating λ(k) by using a gradient descent step

λ
(k+1)
i = [λ

(k)
i −η(Ci(θ(k+1))− βiv

1− γ
)]+ , ∀i∈N\{v},

(11)
where η is a step size parameter.

As shown in [Paternain et al., 2019], if the RL algorithm
used for solving (10) can find a ”good” solution (according
to Assumption 1 in [Paternain et al., 2019]) then for given
threshold values the iterative execution of (10) and (11) will
converge to an optimal solution. Note that the value of λi

computed using the above procedure trades off between the
detectability of the dynamic attack by agent i and the impact
of the attack.

6 Numerical Results2

In this section, we evaluate our detection scheme against
state-of-the-art adversarial attacks, as well as the dynamic at-
tack proposed in Section 5.

6.1 Evaluation Methodology
We use three test environments for evaluating the pro-
posed detector: StarCraft II Multi-Agent Challenge (SMAC)
[Samvelyan et al., 2019], Multi Particle Environment (MPE)

2Code available at https://github.com/kiarashkaz/anomaly-
detection-in-cMARL

Attack SMAC-2s3z SMAC-MMM MPE-Tag LBF
ACT 1 1 0.980 0.979
OBS 0.999 0.999 0.960 0.873

Table 1: AUC score of the proposed scheme against ACT and OBS
attacks in all environments.

[Mordatch and Abbeel, 2017], and Level-Based Foraging
(LBF) [Papoudakis et al., 2021]. In SMAC, a team consists
of a number of agents and has the objective of defeating an
opponent team, which is governed by the StarCraft built-in
AI algorithm. Our selected scenarios in this environment are
”2s3z” and ”MMM”. In ”2s3z” both teams consist of 5 units
(agents), 2 Stalkers and 3 Zealots, and in ”MMM” both teams
consist of 10 agents, seven Marines, two Marauders, and one
Medivac Dropship unit. Among the MPE scenarios, we se-
lected ”Simple Tag” (also, known as predator-prey), where
a group of 3 agents has to hunt a prey. In LBF, agents co-
operate to collect food items distributed in a rectangular grid
environment. In our selected scenario, there are 5 agents and
4 food items in an 8-by-8 grid.In each scenario, we choose
one of the team’s agents as the victim and the detection is
performed by the other agents. The procedure for conducting
the experiments is as follows.

1. Training the c-MARL algorithm: We used QMIX as
the underlying c-MARL algorithm for the SMAC and
MPE environments, and MAA2C [Papoudakis et al.,
2021] for LBF. Using the implementation provided by
the PyMARL [Samvelyan et al., 2019] and EPyMARL
[Papoudakis et al., 2021] Python frameworks, we trained
the agents.

2. Training the detector: We used an RNN with the struc-
ture shown in Figure 2b as the predictor (one predic-
tor per agent). The hidden state dimension of the GRU
layer was 64 for SMAC-2s3z and 128 for the other sce-
narios. We trained the predictors for 20,000 episodes
during which agents applied the policies learned in Step
1.

3. Training the attack: Once the predictors for detection
were trained, we trained the dynamic attacks based on
(10). We trained multiple attacks (corresponding to dif-
ferent vectors λ). For each attack we used a single-
agent DRQN algorithm [Hausknecht and Stone, 2015]
for 20,000 episodes to obtain the adversary. In the se-
quel, we characterize each attack by λavg , the average
of the entries of the λ vector.

4. Evaluation: We applied the learned attacks to the vic-
tim, and used the detection scheme at the non-victim
agents. For each attack, we evaluated 400 episodes. In
our evaluations, once a detection happens by any of the
non-victim agents, we consider the attack as detected at
that time step.

In addition to our proposed dynamic attack (DYN), we
tested the proposed detection scheme against the following
attack schemes from the literature:
Observation Attack (OBS): The two-step attack proposed



(a) SMAC-MMM (b) MPE-Tag

Figure 3: ROC curve of the proposed detector with w = ∞ for the action, observation and dynamic attacks in scenarios SMAC-MMM and
MPE-Tag.

(a) SMAC-MMM (b) MPE-Tag

Figure 4: Time to detect vs. false positive rate for the action, observation and dynamic attacks in scenarios SMAC-MMM and MPE-Tag for
w = ∞.

by [Lin et al., 2020] is used to perturb the victim’s obser-
vations. We used JSMA for cpmputing the perturbations as
described in [Lin et al., 2020].
Action Attack (ACT): This attack (studied in [Guo et al.,
2022]) manipulates the victim’s actions to minimize the team
reward. ACT is a special case of DYN with λ = 0.

To further explore the factors affecting detectability, for
each attack, we consider a variant, where the corresponding
attack starts from a time step chosen uniform at random dur-
ing the first half of the episode, instead of starting in the first
time step of the episode.

6.2 Detection Performance
As the detectability depends on the selected thresholds βij ,
we use the receiver operating characteristic (ROC) curve to
evaluate the performance of the proposed detector. The ROC
curve shows the true positive rate as a function of the false
positive rate, and is obtained by using different detection
thresholds βiv . We define the true positive rate as the frac-
tion of attacked episodes that are detected, and the false posi-
tive rate as the fraction of unattacked episodes that are incor-
rectly classified as attacked. The detection performance can
be quantified by the area under the ROC curve (AUC). The
higher the AUC, the more accurate the detector.

Table 1 shows the AUC score of our proposed detector
(with w = ∞) against ACT and OBS attacks. This table
confirms that the proposed scheme is very efficient in detect-
ing non-dynamic state-of-the-art attacks. Figure 3 shows the
ROC curve of the proposed detection scheme for various at-
tacks for scenarios SMAC-MMM and MPE-Tag (due to space
limit, we do not include the ROC curve for other scenarios).
The figure shows that randomizing the start time of the attack
does not have a significant effect on detection in MPE-Tag
while this effect is considerable in SMAC-MMM. The rea-
son for such a difference is that in MPE-Tag, the distribution
of the actions at the first few time steps is almost uniform,
leading to normality scores around 0 irrespective of whether
there is an attack. Thus, starting the attack after a few time
steps would result in a similar normality score as starting it
at the beginning of the episode. Figure 3 also shows that the
detection for the dynamic attack depends on the the value of
λavg; a higher value of λavg makes the attack less likely to be
detected, as increasing λi makes the adversary more cautious.

6.3 Time to Detection
An important performance metric of a detector is the average
time required for detection. We define the time to detect as
the average number of time steps between the start of an at-



Figure 5: Time to detect as a function of the window size for a false
positive rate of 0.01, obtained in the SMAC-MMM environment.

tack and its detection (or the end of the episode if it is not
detected). Figure 4 shows the time to detect as a function
of the false positive rate in the SMAC-MMM and MPE-Tag
environments for w = ∞. We can observe that in the SMAC-
MMM environment, the ACT, OBS, and DYN(λavg = 0.015)
attacks can be detected in less than 10 time steps on average
with a false-positive rate close to 0. The corresponding time
to detection for the randomized-start version of these attacks
is below or around 20 time steps, which is very good con-
sidering that the maximum episode length in this scenarios
is 150. In the MPE-Tag environment, detection (of the non-
dynamic attacks) takes longer (relative to the episode length
of 25), on average. This can be explained by the distribution
of actions, especially in the first time steps. In the SMAC en-
vironment, there are more than 10 possible actions, and the
detector assigns a very low probability to some of them. A
non-dynamic attack, which likely chooses one of those can
thus be easily detected. However, in MPE-Tag there are only
5 actions and in the first time steps (where everything is some-
what random) they are almost equally likely to be taken from
the detector’s perspective. Thus, even for non-dynamic at-
tacks, more time steps are needed before detection happens.

Figure 5 shows the detection time as a function of the win-
dow size for a false positive rate of 0.01 in the SMAC-MMM
environment (we do not include all scenarios and attacks for
brevity). The figure shows that the window size should be
long enough to facilitate quick detection with a reasonably
low false positive rate. If the window size is short, a low de-
tection threshold has to be chosen for having a small false
positive rate (e.g., 0.01), and this low threshold would re-
sult in a high time to detect. Figure 5 also shows that ran-
domizing the start time can increase or decrease the detec-
tion time depending on the attack. For ACT, the normality
score drops significantly as soon as the attack starts, but the
drop is more difficult to detect due to averaging if the attack
starts during the episode, leading to a higher detection time.
For DYN(λ = 0.025), on the other hand, the normality score
does not drop significantly when the attack starts, and since
the normality score is highest at the beginning of the episode,
the detection time in the case of randomized start is lower .

Figure 6: Attack impact vs. detectability for the DAA attack, ob-
tained by using different values of λ for a fixed false positive rate.

6.4 Impact-Detectability Trade-Off
Recall that attacks obtained using a high value of λ are diffi-
cult to detect. However, these attacks typically have a lower
impact on the performance of the multi-agent system. In
other words, there should be a trade-off between attack im-
pact and attack detectability. Figure 6 illustrates this trade-
off by showing the team ”scaled reward” as a function of the
detection rate for DYN attacks in all environments, obtained
using different values of λ. The scaled reward is computed
using the win rate of the allied team in the SMAC environ-
ments and the total episodic reward in MPE-Tag and LBF as
the measure of success. We scaled this measure of success
such that 1 corresponds to the no-attack case and 0 corre-
sponds to the attack with the highest impact (i.e., ACT).

The figure shows that,in general, an adversary can become
stealthy by following a policy close to the original policy of
the victim, but doing so increases the team’s chances to ac-
complish its task. Such a trade-off can be observed in all
environments except for LBF, where it was possible to train
an attack with the same impact as the ACT attack while the
detection rate was around 0.2. This observation points out
the limitations of the proposed detector. Such limitations can
be due to two reasons. First, if the observations of differ-
ent agents do not have enough correlation with each other,
it cannot be expected that they are able to detect anomalies
in each other’s behavior. Second, if the original task of the
multi-agent system requires the agents to cooperate in a very
specific way then it is possible to impose a significant loss
to the system by a small change in the victim’s policy. Such
small anomalies might be difficult to detect by the detector.

7 Conclusion
In this paper, we proposed a decentralized approach to de-
tect the anomalous behavior of agents in c-MARL. Our pro-
posed scheme utilizes the observations that agents obtain
from the environment to predict the action distribution of
other agents. We proposed a low-complexity anomaly score
computed based on the predictions compared to the actual
actions taken by agents. We also proposed a method for com-
puting a worst case attack against our detector, which allows
to explore its robustness. We evaluated the detector against
our proposed worst case attack as well as state-of-the-art at-



tacks from the literature. Our numerical results show that if
the window size is large enough then the proposed detector is
able to detect attacks effectively. We observed that only rela-
tively ineffective attacks could remain undetected, except for
in environments in which the agents’ observations have little
correlation or when a specific way of coordination is required
for the accomplishment of the c-MARL task.
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