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Abstract

We consider correlated equilibria in strategic games in an ad-
versarial environment, where an adversary can compromise
the public signal used by the players for choosing their strate-
gies, while players aim at detecting a potential attack as soon
as possible to avoid loss of utility. We model the interaction
between the adversary and the players as a zero-sum game
and we derive the maxmin strategies for both the defender
and the attacker using the framework of quickest change de-
tection. We define a class of adversarial strategies that achieve
the optimal trade-off between attack impact and attack de-
tectability and show that a generalized CUSUM scheme is
asymptotically optimal for the detection of the attacks. Our
numerical results on the Sioux-Falls benchmark traffic rout-
ing game show that the proposed detection scheme can effec-
tively limit the utility loss by a potential adversary.

1 Introduction
Correlated Equilibrium (CE) proposed by (Aumann 1987) is
a solution concept in game theory that extends Nash Equi-
libria (NE) to correlated strategies among players. Unlike
NE, where players choose their strategies independently, a
CE represents a distribution over the space of joint actions
of all players.

Compared to NE, CE offers a more efficient and practical
framework for analyzing the strategic behaviour of players.
Firstly, CE accommodates scenarios that result in a higher
utilitarian social welfare than what can be achieved in any
NE (Duffy and Feltovich 2010; Roughgarden and Tardos
2002). Additionally, CE are computationally more tractable.
As shown by (Chen and Deng 2006; Daskalakis, Gold-
berg, and Papadimitriou 2009), computing a NE is a PPAD-
complete problem even for two-player games. In contrast, a
CE can be computed in polynomial time by solving a linear
program (Papadimitriou and Roughgarden 2008). Moreover,
there are efficient online learning dynamics that converge
to the set of correlated equilibria (Cesa-Bianchi and Lugosi
2006; Anagnostides et al. 2022), or to the set of coarse corre-
lated equilibria (Daskalakis, Fishelson, and Golowich 2021;
Sessa et al. 2019), a related but weaker solution concept.

In a CE, coordination is facilitated by an external source
of information, also called a mediator, which helps play-
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ers align their strategies. The mediator samples from a
known joint distribution over the players’ actions and pri-
vately communicates each player’s component without re-
vealing the others’ components. If the recommendation sig-
nals come from a CE, then no player has an interest to devi-
ate from the mediator’s suggested action, provided that the
other players adhere to the recommendation. An example for
a mediator is a map server in traffic routing, which recom-
mends paths to the travelers (Ning and Du 2023). Another
example is recommendations issued by stock analysts for
the investors in financial markets (Leung 2007).

A fundamental assumption for the implementation of
a CE in a game is the trustworthiness of the mediator.
Nonetheless, the mediator could be compromised by an ad-
versary, with the intention to cause damage to one or more
players through manipulating the signal. For instance, rout-
ing software that recommends paths to users can be vulner-
able to cyber attacks. Under attack, the distribution of the
recommended action profiles would deviate from the orig-
inal CE. From a player’s perspective, this deviation must
be detected promptly, as the assumption of following rec-
ommendations is based on the distribution being known and
stable. A change can impact the utilities of the players, and
upon detection, players may decide to adjust their strategies
accordingly. In other words, timely attack detection is cru-
cial for ensuring situational awareness, enabling the imple-
mentation of further countermeasures after detection.

In this paper, we demonstrate the vulnerability of the me-
diator’s shared recommendation signal to adversarial attacks
and propose a detection scheme to counteract them. We fo-
cus on the repeated play of a a CE in a strategic-form game,
where an adversary manipulates the recommendation sig-
nals sent to the players by the mediator. Our key contribu-
tions are as follows:
• We model the interaction between the adversary and a

victim player affected by the attack as a zero-sum game;
the victim’s objective is to detect the attack promptly
while keeping the probability of false alarms low.

• We analyze the asymptotic maxmin strategies of the ad-
versary and the defender as the cost of false alarms ap-
proaches infinity. This analysis introduces a family of
distributions that enables the adversary to achieve the op-
timal trade-off between impact and detectability. For the
defender, the optimal detection strategy is derived using



the framework of quickest change detection, where the
goal is to identify an optimal stopping rule.

• We show the effectiveness of the proposed detection
scheme in limiting the impact of the considered attacks
in a tabular game as well as in a traffic routing game on
the Sioux-Falls network benchmark.

To our knowledge, the concept of adversarial attacks on
correlated equilibria is unexplored in the literature. Closest
to our work in the game theory literature are (Roth 2008;
Gadjov and Pavel 2023), which address resilience and the
”price of malice” in the presence of a Byzantine player
acting out of malice rather than self-interest. External at-
tacks on a game were considered in (Feng and Hu 2023),
in the form of compromised communication channels be-
tween agents in a graph. Additionally, our work connects
to (Lin et al. 2020; Kazari, Shereen, and Dán 2023), which
address attack and detection in multi-agent reinforcement
learning (MARL). We frame our problem as a special case
of a decentralized partially-observed Markov decision prob-
lem, where state transitions are not affected by actions and
where the mediator’s signal comprises players’ partial ob-
servations. Since no analytical framework exists for solving
the defender-attacker interaction in the general MARL case,
our approach could be seen as a first step in this direction.

The rest of the paper organized as follows: In Section 2,
we describe the preliminaries regarding CE and the frame-
work of quickest change detection. Section 3 presents the
problem formulation. In Section 4 we analyze the best re-
sponses of the adversary and the defender and propose a de-
tection scheme. In Section 5 we evaluate the performance
of the proposed detector. Section 6 concludes the paper.

2 Background
2.1 Correlated Equilibrium
Consider a strategic game G = (N , {Ai}i∈N , {ui}i∈N )
where N is the set of the players, Ai is player i ∈ N ’s
action set, and ui(ai, a−i) is the utility of player i when she
plays ai and other players play a−i. A CE of the game is a
distribution π over A =×i∈N Ai such that for any player i
and any function σi : Ai → Ai we have∑

a∈A
π(a)ui(ai, a−i) ≥

∑
a∈A

π(a)ui(σi(ai), a−i). (1)

Coarse Correlated Equilibrium (CCE) is a closely related
concept, defined as a distribution π overA =×i∈N Ai such
that for any player i and any deviation ai

′ ∈ Ai we have∑
a∈A

π(a)ui(ai, a−i) ≥
∑
a∈A

π(a)ui(ai
′
, a−i). (2)

The actual realization of a CE in a game can be obtained
by introducing a mediator who picks a sample s ∈ A ac-
cording to π and recommends the corresponding si to player
i ∈ N . Accordingly, player i’s strategy can be represented
by a function σ that maps si to an action inAi. Then, (1) can
be interpreted as follows: assuming that all other players fol-
low the mediator’s recommendation, the strategy of ”follow-
ing the mediator’s recommendation”, i.e., σ(si) = si, is op-
timal for any player i. The difference between CE and CCE

is that if the recommendation is drawn from a CCE, then it
is a best response in expectation only before the player ob-
serves the recommendation signal. It can be shown that the
set of correlated equilibria of a strategic game with finite ac-
tion set is a non-empty, convex set (Maschler, Zamir, and
Solan 2020). Moreover, the set of correlated equilibria is a
subset of coarse correlated equilibria.

2.2 Stopping Variables and Quickest Change
Detection

Let X = {Xt, t = 1, 2, ...} be a stochastic process. A stop-
ping time T with respect to X is a random variable tak-
ing values in {1, 2, ...} such that the event {T = t} is a
function of (only) X1, X2, ..., Xt. Consider now a stochas-
tic process X where observations X1, X2, . . . , Xν−1 are in-
dependently generated from a distribution with pmf (or pdf)
f0, while Xν , Xν+1, . . . are independently generated from a
different distribution f1. Both f0 and f1 are known distribu-
tions defined on the same space, but the change point ν is
unknown. The objective of quickest change detection is to
find a stopping time T ≥ ν to detect the change as quickly
as possible after it occurs. It is common to impose a con-
straint on the mean time between false alarms (MTBFA),
i.e., E(∞)[T ] ≥ γ, where γ is a predefined threshold and
E(∞) denotes the expectation when ν =∞, i.e., when there
is no change.

There are various optimization formulations for quickest
detection; one widely used formulation is to minimize the
mean detection delay (Lorden 1971),

W (T ) = sup
ν≥1

ess supE(ν)[(T − ν + 1)+|X1, . . . , Xν−1],

where E(ν) denotes the expectation when the change occurs
at ν, and ess sup refers to the essential supremum with re-
spect to the conditional expectation. This formulation takes
into account the worst case in terms of pre-change sam-
ples. An alternative formulation (Pollak 1985; Lai 1998) is
to minimize supν≥1 ess supE(ν)[(T − ν) | T ≥ ν].

The CUSUM procedure (Page 1954) is a well-known
stopping time whose optimality has been shown in various
cases (Xie et al. 2021). CUSUM is based on the Sequential
Probability Ratio Test (SPRT). For a sequence of i.i.d. sam-
ples X1, X2, . . ., the SPRT defines a stopping time to decide
from which of two alternative distributions the samples Xi

are generated. Let f1 and f0 be the pmfs (pdfs) of the two
alternative hypotheses, SPRT then computes the log likeli-
hood ratio at time t,

Yt = log(
f1(X1) . . . f1(Xt)

f0(X1) . . . f0(X0)
)

=

t∑
k=1

log(
f1(Xk)

f0(Xk)
) =

t∑
k=1

l(Xk), (3)

and stops at the first t at which Yt goes above or below pre-
specified thresholds. CUSUM relies on the likelihood ratio
test and is defined as

TCUSUM(µ) = inf{t : Rt = max
1≤k≤t

t∑
j=k

l(Xj) ≥ µ}, (4)



where µ is a threshold such that E(∞)[Tc] = γ. (4) can be
interpreted as applying a set of SPRT tests assuming that the
change has occurred at time k = 1, 2, . . . , t and stop as soon
as any of the likelihood ratios goes above µ. Another useful
representation of Rt is by using the recursion

R0 = 0, Rt = (Rt−1 + l(Xt))
+. (5)

3 Problem Formulation
We consider a strategic game G = (N , {Ai}i∈N , {ui}i∈N ),
with N = {1, 2, . . . , N}. Let π denote a CE of G. We as-
sume that G is played repeatedly at time steps t = 1, 2, . . .,
and at each time step, a mediator picks a sample st =
(s1t , . . . , s

N
t ) ∼ π, and recommends sit to player i ∈ N .

Without loss of generality, we assume that ∀i ∈ N and
∀a ∈ A, the utility ui(a) ≥ 0 (all utilities in G can be in-
creased by an arbitrary constant without affecting the play-
ers’ preferences). Players play a CE and all players follow
the mediator’s recommendation, so ait = sit. We assume that
player i can only observe its own utility.

3.1 Attack and Defense Model
We consider a powerful adversary that manipulates the pub-
lic signal st sent to the players, with the objective to reduce
the utility that a particular victim player, say Player 1, ob-
tains in G. The adversary starts to manipulate the signal at
time ν, and uses a stationary distribution τ for the manipu-
lation, i.e., the distribution τ of adversarial manipulation at
time t ≥ ν is unchanged. Accordingly, st ∼ τ for t ≥ ν. At
the same time, the victim player aims to detect a potential
manipulation of the signal based on the sequence of utili-
ties U1, U2, U3, . . . it observes, using an appropriately cho-
sen stopping rule. From now on, we use the terms ”Player 1”
and ”the defender” interchangeably. The adversary should
thus remain undetectable as much as possible.

Note that with this attack and defense model, we can as-
sume that different action profiles result in distinct utili-
ties for the defender. This means that for any a1(1), a

1
(2) ∈

A1 and any a−1
(1), a

−1
(2) ∈ A

−1, we have u1(a1(1), a
−1
(1)) ̸=

u1(a1(2), a
−1
(2)), where we use the game theoretic notation

A−1 to denote the action set of all players but Player 1.
This assumption can be made because action profiles with
the same utility can be grouped and treated as a single out-
come. From the defender’s perspective, these action profiles
are indistinguishable, and from the adversary’s perspective,
there is no incentive to alter the distribution over them.

3.2 Attacker-Defender Game
Observe that we can model the interaction between the at-
tacker and the defender as a two-person zero-sum game
GS . The defender chooses a stopping rule, which stops the
game based on the sequence of observations. The adver-
sary chooses a manipulation strategy τ and a start time ν.
The defender’s cost (or the adversary’s utility) is defined
based on the reduction in the total utility that Player 1 ob-
tains in G, as well as the cost of potential false alarms.
In the game, Player 1’s utilities U1, U2, U3, . . . are the ob-
servations of the defender. Hence, for any t ∈ {1, 2, . . .},

Ut ∈ U = {u1(a) : a ∈ A}. Note that Player 1 does not
change her strategy in G; she follows the recommended pub-
lic signal. Player 1 receives s1t , plays a1t = s1t , and observes
u1
t . Based on the sequence of her utilities and assuming that

all other players follow the public signal, Player 1 tries to
detect a potential attack on the public signal. The attacker-
defender game GS can thus be defined as follows.

Defender’s Strategy: Let T be the set of all stopping
times for the sequence U1, U2, . . .. The defender chooses a
T ∈ T as its strategy.

Adversary’s Strategy : The adversary chooses a (possi-
bly stochastic) start time ν via a specification P (ν = t|ν ≥
t, U1, . . . , Ut−1). A formal definition of V , the class of all
possible such start times, can be found in (Ritov 1990): Let
X1, X2, . . . be independent random variables with Xt ∼
Unif(0, 1). V is the class of all random variables ν such that
I{ν = 1} is a measurable function of X1, and for t > 1,
I{ν = t} is a measurable function of Xt, I{ν < t} and
U1, . . . , Ut−1.

The adversary also chooses a manipulation strategy τ ∈
∆|A|−1, where ∆k−1 denotes the (k−1)-dimensional prob-
ability simplex in Rk. Since we assumed that all players fol-
low the mediator recommendations and because Player 1’s
utilities in G for any two action profiles are different, there
is a one-to-one correspondence between A and U . Thus, we
can consider π and τ to be distributions on U as well.

Cost (Utility) Function : We consider that a false alarm
has cost C and we define the defender’s cost (the adversary’s
utility) as

c(T, ν, τ ) =I{T < ν}

[
C −

T∑
t=1

Ut

]

+I{T ≥ ν}

[
T∑

t=ν

Vt −
ν−1∑
t=1

Ut

]
, (6)

where Vt = uπ − Ut, and uπ is the expected per-step util-
ity in G under π, uπ =

∑
a∈A π(a)u1(a). Vt represents the

cost imposed by the attack at time t. This cost is the differ-
ence between the utility that Player 1 actually obtains and
the utility she would have expected to obtain had there been
no attack. The negative terms in (6) correspond to the utility
that Player 1 obtains before the change or before stopping.

Observe that with this formulation, it might be desirable
for the adversary to select a distribution τ that leads to an
infinitesimally small per-step cost Vt and an infinitely large
detection time, thereby maximizing the total cost. However,
in a more realistic scenario, where the time horizon is finite,
such a strategy is not feasible. As such, we consider that
there is a lower bound ϵ > 0 on the expected per-step cost
that the adversary wants to cause. The set of distributions the
attacker can choose τ from is then

Dϵ =

{
τ ∈ ∆|A|−1 : Eat∼τ

[
1

T − ν + 1

T∑
t=ν

Vt

]
≥ ϵ

}
.

(7)
Thus, the adversary’s strategy is a pair (ν, τ ) ∈ V ×Dϵ.



4 Best Response Characterization
In this section, we analyze the asymptotic behavior of the
maximin strategies of the players in GS as the false alarm
cost C → ∞. In this case the defender aims to keep the
probability of a false alarm low. More precisely, P (T <
∞|ν =∞)→ 0 as C →∞, as we show later.

We begin by defining the components that form our pro-
posed strategies for the players.
Definition 1. Let

τ θ(u) =
π(u) exp(−θu)∑

m∈U π(m) exp(−θm)
, u ∈ U (8)

Moreover, let θmin be such that EU∼τθmin
[(uπ − U)] = ϵ.

Then, for the parameter space Θ = [θmin,∞), we define the
family of distributions FΘ ≜ {τ θ : θ ∈ Θ}.

Definition 2. (Lorden 1971) Let lθ(U) = log(τθ(U)
π(U) ). The

generalized sequential probability ratio test of FΘ against
π with threshold µ for sequence U1, U2, . . . is defined as

T̄ (µ) = inf

{
t ≥ 1 : sup

θ∈Θ

(
t∑

k=1

lθ(Uk)

)
> µ

}
(9)

Definition 3. (Lorden 1971) Let T̄ (µ) be as defined in Def-
inition 2. We define the stopping time T ∗(µ) as

T ∗(µ) = min
k>1
{T̄k(µ) + k − 1}, (10)

where T̄k(µ) is T̄ (µ) applied to the sequence Uk, Uk+1, . . ..
Our main results are in terms of two minmax theorems

based on τ θmin as the adversary’s strategy and T ∗(µ) as the
defender’s strategy.

Loosely speaking, the general idea we pursue is as fol-
lows: If the adversary’s strategy was known to the defender,
then the CUSUM procedure, whose performance is directly
related to the KL-divergence of τ and π, would be the op-
timal choice. The distributions in FΘ establish the optimal
trade-off between the expected imposed cost and the men-
tioned KL-divergence from the adversary’s point of view,
motivating the definition of FΘ. Then, with a specific set of
parameterized distributions, like FΘ, the stopping time de-
fined in Definition 3 is asymptotically optimal. Finally, the
attacker can choose the strategy that maximizes its payoff
against the mentioned stopping rule. In the sequel, the claims
stated above are presented and proved formally. Section 4.3
includes our main results.

4.1 The Defender’s Strategy
First we start by restating Lorden’s asymptotic optimal-
ity results on T ∗(µ). Consider a sequence U1, U2, . . .
where U1, U2, . . . , Uν−1 are i.i.d samples from F0 and
Uν , Uν+1, . . . are i.i.d. samples from a parameterized dis-
tribution Fθ with an unknown parameter θ ∈ Θ. Proposi-
tion 1 shows how to construct an optimal change detection
scheme from one-sided tests, which clarifies the relation be-
tween Definition 2 and Definition 3, and explains the mo-
tivation behind defining T ∗ in Definition 3. Proposition 2
presents sufficient conditions for one-sided tests to satisfy

the requirements of Proposition 1. Note that here the op-
timality criteria are in Lorden’s sense, i.e., minimizing the
mean detection delay

Wθ(T ) = sup
ν≥1

ess sup E(ν)
θ [(T − ν + 1)+|U1, ..., Uν−1],

where E(ν)
θ denotes the expectation when the change of dis-

tribution to Fθ happens at time ν. In the sequel, Eθ is equiv-
alent to E(0)

θ .
Proposition 1. (Theorem 1 in (Lorden 1971)) Assume that
there exists a class of one-sided tests {T̄α} such that for all
0 < α < 1,

P (T̄α <∞|ν =∞) ≤ α (11)
Moreover, assume that for all θ ∈ Θ, as α→ 0 we have

Eθ[T̄
α] ∼ | logα|

DKL(fθ||f0)
, DKL(fθ||f0) <∞ (12)

For γ ≥ 1, let α = γ−1 and define T γ = mink>1{T̄α
k +k−

1}, where T̄α
k is T̄α applied to Uk, Uk+1, . . .. Then T γ is a

stopping variable with E(∞)[T ] ≥ γ that minimizes Wθ(T )
for all θ ∈ Θ as γ →∞, and we have

Eθ[T
γ ] ∼ log γ

DKL(fθ||f0)
as γ →∞. (13)

Proposition 2. Suppose Fθ’s are members of an exponential
family of distributions such that

dFθ(x) = exp(θx− b(θ))dF0(x), θ ∈ Θ ∪ 0 (14)

where Θ = [θmin,∞) is an interval in R+, and b(0) = 0.
Furthermore, let us define

µα = log(3(DKL(fθmin
||f0)+1)2)− log(α| logα|). (15)

Then T̄ (µα) (defined by Definition 2 with lθ(U) =

log( fθ(U)
f0(U) ) satisfies (11) and (12).

Proposition 3. If the adversary’s strategy τ belongs to FΘ,
then T ∗(µα) defined in Definition 3 is asymptotically opti-
mal with respect to Wθ(T ) as α→ 0.

Proof. Observe that by considering x = −u, f0 ≡ π,
and by defining b(θ) ≜ log(

∑
m∈U π(m) exp(−θm)), the

members of FΘ, defined in Definition 1, can be represented
as in (14). Thus, Proposition 2 and consequently Proposition
1 can be applied to T̄ and T ∗, respectively.

As (13) suggests, the asymptotic performance of T ∗ is in-
versely proportional to the KL-divergence of the pre-change
and post-change distributions. Next, we identify the optimal
trade-off between the cost and the KL-divergence of the ad-
versary’s strategy, which leads to Definition 1.

4.2 Adversarial Strategy
For a given δ > 0, let us consider the problem faced by the
adversary,

min
τ

Eτ [U ]

s.t. τ ∈ ∆|A|−1, DKL(τ ||π) ≤ δ. (16)

In the next proposition, we show that the solution of this
problem is a distribution in FΘ.



Proposition 4. Let amin ≜ mina u
1(a). If δ <

− logπ(amin), then, the minimizer of (16) is τ θ∗ , where
θ∗ ∈ (0,∞) is such that DKL(τ θ∗ ||π) = δ. Moreover, if
δ ≥ − logπ(amin), then (16) attains its infimum at τθ as
θ →∞.

Remark 1. There is a one-to-one correspondence between θ,
d(θ) ≜ DKL(τ θ||π) and also uθ ≜ Eτθ

[U ]. In other words,
as θ varies from 0 to∞, d(θ) increases monotonically from
0 to − logπ(amin), and uθ decreases monotonically from
uπ to umin, where umin = u1(amin). Consequently, if ϵ ∈
(0, uπ − umin), then FΘ as defined in Definition 1 is well-
defined, and for all θ ∈ Θ, uπ − uθ ≥ ϵ.

4.3 Main Results
We present our main results in the next two theorems, the
proofs are presented in the Appendix. For C > 1, let µ(C)
be such that

C = uπE(∞)[T ∗(µ(C))] + ϵEθmin
[T ∗(µ(C))], (17)

where θmin is as defined in Definition 1.

Theorem 1. There is a ν∗(C) ∈ V , such that

sup
τ∈Dϵ

sup
ν∈V

inf
T∈T

E[c(T, ν, τ )]

∼ E[c(T ∗(µ(C)), ν∗(C), τ θmin
)] as C →∞.

(18)

Theorem 2. With µ(C) defined in (17), we have

inf
T∈T

sup
ν∈V

sup
τ∈FΘ

E[c(T, ν, τ )]

∼ E[c(T ∗(µ(C)), ν1, τ θmin
)] as C →∞,

(19)

where ν1 is defined as P (ν1 = 1) = 1.

Theorem 1 implies that, without having any prior knowl-
edge of the defender strategy, the highest possible cost
that the adversary can guarantee is achieved by choosing
τ θmin as the manipulation strategy. Additionally, if the ad-
versary chooses this strategy the best response of the de-
fender is T ∗(µ(C)). Furthermore, Theorem 2 characterizes
the maxmin strategy from the defender’s perspective. In
Theorem 2, the supremum over τ is taken only within Fθ,
meaning that if the attack is constrained to Fθ then choos-
ing T ∗(µ(C)) leads to the lowest cost that the defender
can guarantee, asymptotically. However, if the adversary is
aware that T ∗(µ(C)) is the chosen strategy, such guarantee
cannot be made, and the adversary might be able to impose
a higher cost by selecting some τ ∈ Dϵ \ Fθ.
Remark 2. For 0 < α < 1, define µα as in (15) and
γ = α−1. Then T ∗(µ(C)) defined by (17) as C → ∞ is
equivalent to T ∗(µα) for α→ 0 (see the proof of Theorem 1
in the Appendix). Moreover, we have P (T ∗(µα) < ∞|ν =

∞)→ 0, E(∞)[T ∗(µα)] ∼ γ and Eθ[T
∗(µα)] ∼ log γ

d(θ) .

Compared to solving (17), Remark 2 provides an easier
method for implementing T ∗ based on α (or γ) as input
value that determines the threshold µ according to (15).

Player 2
A2 B2 C2

A1 0,0 6,1 9,3
Player 1 B1 1,6 5,5 4,2

C1 3,9 2,4 7,7

Table 1: Payoffs in the Extended Game of Chicken.

4.4 Implementation of the Detection Mechanism
For a practical implementation of T ∗(µ), we adapt the pro-
cedure proposed by (Lorden 1971). Note that T̄ (µ) in (9)
can be considered as stopping at the first time for which

sup
θ∈Θ
{−θSt − tb(θ)} > µ, (20)

where St = U1+· · ·+Ut. Equivalently, (20) can be rewritten
as

St < − inf
θ∈Θ

{
µ

θ
+ t

b(θ)

θ

}
. (21)

It can be shown that the infimum in (21) is attained at
θmin for t ≥ µ

d(θmin)
, and at θ(t) satisfying d(θ(t)) = µ

t for
t < µ

d(θmin)
. Then for a recursive implementation of T ∗(µ) in

(10) we define a set of M = ⌊ µ
d(θmin)

⌋ thresholds as

z(k) = − µ

θ(k)
− k

b(θ(k))

θ(k)
, k = 1, 2, . . . ,M (22)

Moreover, we define Q(k) = Ut + · · · + Ut−k+1, k =
1, . . . ,min{M, t}. Then, T ∗(µ) is equivalent to the follow-
ing procedure: at each step, perform a CUSUM test against
θmin with threshold µ by computing Rt (see (4)). Addition-
ally, we compute Q(k) and we stop if Q(k) < z(k). Note that
Q(k) can be updated recursively as

Q(k)′ =

{
Ut +Q(k−1) , t− t1 ≥ k

0 , t− t1 < k
(23)

where Q(k)′ denotes the updated value of Q(k) after observ-
ing Ut, and t1 is the last time that Rt1 = 0 . Whenever
Rt = 1, all previous observations can be neglected and a
new cycle be started by resetting t1 and setting Q(k) = 0.

5 Numerical Results
In this section we evaluate the proposed detection scheme
against several adversarial strategies in two games.1

5.1 Toy Example
We start with considering an extension of the Game of
Chicken game (Duffy and Feltovich 2010), with three pure
strategies. The utilities are shown in Table 1. It is straight-
forward to verify that the following distribution is a corre-
lated equilibrium of the game: π(A1B2) = π(B1A2) =
π(B1B2) = 1

36 , π(A1C2) = π(C1A2) = 1
3 , π(C1C2) =

1
4 , π(A1A2) = π(C1B2) = π(B1C2) = 0. The corre-
sponding expected pay-off for both players is uπ = 6.08,

1Code available at https://github.com/kiarashkaz/Detection-of-
Adversarial-Attacks-against-CE



(a) Mean detection delay (b) Attack impact

Figure 1: Mean detection delay and attack impact with ϵ = 0.5 in the Extended Game of Chicken with uπ = 6.08. Confidence
intervals are based on 5 runs.

(a) Mean detection delay (b) Attack impact

Figure 2: Mean detection delay and attack impact with ϵ = 0.1 in the Routing Game with uπ = 4.77. Confidence intervals are
based on 5 runs.

which results in a higher utilitarian social welfare than any
pure Nash equilibrium.

We consider four attack strategies. τ θmin is the maxmin
strategy of the adversary with θmin = 0.07. τ θ1 and τ θ2 are
two other adversarial strategies with θmin < θ1 = 0.09 <
θ2 = 0.1. As a baseline we use an attack where τ is chosen
randomly from the probability space Dϵ (over elements with
a non-zero probability of selection by the mediator). We re-
fer to the different attacks as scenarios, hence we have five
scenarios including the no attack scenario. As performance
metrics we use the MTBFA E(∞)[T ∗], and the mean detec-
tion delay. Additionally, we define the attack impact as the
difference between the total utility obtained by the victim
player during the period the attack is active before its detec-
tion and the expected total utility that the agent would have
obtained if there had been no attack during that period.

For the evaluation, we consider a minimum per step attack
impact of ϵ = 0.5 and episodes with a maximum length of
105 time steps. Each episode ends when either a detection

happens by the defender or the maximum number of time
steps is reached. For each scenario we run 1000 episodes. In
each episode of each scenario, the public signal is generated
according to the corresponding adversarial strategy after the
attack starts or π if there is no attack.

Figure 1a shows the mean detection delay vs. MTBFA
for the considered attacks, obtained by varying the detector
threshold µα. The figure shows that the time-to-detect in-
creases as a with the logarithm of the mean time between
false alerts, in accordance with Remark 2. Importantly, the
figure shows that the detector is robust to the attacker’s
choice of θ; a higher value of θ allows the victim player
to detect the attack sooner. Figure 1b shows the attack im-
pact during the attack as a function of the average MTBFA.
The figure shows that the detection scheme effectively limits
the impact the adversarial impact. For example, at an aver-
age MTBFA of 5 × 104 the total utility the player obtains
if there is no limit on the number of time steps is around
3 × 105, while the attack impact with the minmax strategy



Algorithm 1: Detection Strategy

Input: ϵ, α
Initialization:
Find θmin such that uθmin = uπ − ϵ
Compute µα as in (15)
Find θ(k) such that d(θ(k)) = µα

k , k = 1, . . . ,M

Compute z(k) as in (22), k = 1, . . . ,M
Set R = 0, Q(k) = 0, k = 1, . . . ,M
Repeated Play Procedure:
while not STOP do

Receive st, play at = st, and observe Ut

Compute lt = log(τθ(Ut)
π(Ut)

) with θ = θmin

Update R with R← (R+ lt)
+

if R > µα then
STOP

else if R > 0 then
Update Q(k) as in (23), k = 1, . . . ,M
if Q(k) < z(k) for any k then

STOP
end if

else
Reset R = 0, Q(k) = 0, k = 1, . . . ,M

end if
end while

is less than 250. Furthermore, the figure indicates that τ θmin

is the most effective attack strategy. Also, it can be observed
that even with a random attack distribution that does not lie
within FΘ, the detection remains effective.

A note on the selection of ϵ and α: In a practical sce-
nario, the selection of ϵ and α is based on the player’s toler-
ance for incurred costs and the acceptable false alarm rate.
This choice is also closely tied to the time horizon over
which the repeated game is intended to be played. For ex-
ample, suppose that in a real scenario, the Extended Game
of Chicken is to be played 500 times, and the desired false
alarm rate is 1

5×104 , which corresponds to a MTBFA of
5 × 104. According to Figure 1, ϵ = 0.5 is a good choice
for a victim player who can tolerate an adversarial attack
impact of 250, i.e., around 8% of the total expected utility
6.08 × 500 (observe that in the figure, mean detection time
and the highest attack impact at an MTBFA of 5 × 104 are
around 500, 250, respectively). In this case, if the adversary
selects θ > θmin the total imposed cost would be lower. Also,
selecting a θ < θmin by the adversary would result in an at-
tack with a higher expected detection time. However, since
the total length of repeated play is fixed at 500, even if the
attack is not detected, the total imposed cost would still be
less than 250 because the per-step cost is less than 0.5. In
the Appendix, we provide additional results showing the nu-
merical values of the attack impact as ϵ varies.

5.2 Routing Game
Second, we consider a traffic routing game based on the
model described in (Sessa et al. 2020) using the Sioux Falls
traffic network (LeBlanc, Morlok, and Pierskalla 1975).

There are N = 528 players, each aiming to transfer spe-
cific units of goods between two nodes in the network. The
network comprises 24 nodes and 76 edges. Each player has
|Ai| = 5 pure strategies, representing the 5 shortest paths
between its source and destination. The travel time on each
edge is determined by its capacity and the total volume of
goods passing through it. Each player seeks to minimize
the total time required to transport its goods, we thus use
the negative of the total time as the utility of a player. For
more details on the traffic and travel time models we refer
to (Sessa et al. 2020).

A CE in this game is a distribution over A = 5528 out-
comes, hence infeasible to compute. We thus used the no-
regret learning algorithm GP-MW (Sessa et al. 2019) for
computing an approximate CCE π. We selected one of the
agents as the victim and quantized its utility in 1000 bins,
i.e., action profiles leading to utilities within the same quan-
tization level were considered the same. Moreover, due to
the large scale of utility values, we divided all the utilities
by 1000. For the evaluation we ran episodes with a length of
104 time steps, and used ϵ = 0.1. For each scenario we ran
1000 episodes. The considered adversarial strategies corre-
spond to θmin = 0.18, θ1 = 0.48, θ2 = 0.88, and a distribu-
tion chosen randomly from probability space Dϵ.

Figure 2 shows the mean detection delay (2a) and the at-
tack impact (2b) of the attack as a function of the MTBFA.
Note that due to the limited range of the horizontal axis (1
order of magnitude less than in Figure 1), the logarithmic
growth of the curves is not apparent. Nonetheless, the results
demonstrate that despite the complexity of the game and al-
though the public signal is an approximate CCE, the pro-
posed adversarial attacks on the public signal are effective.
Similarly, the proposed detection method proves effective in
promptly identifying the attacks and in mitigating their im-
pact. This observation highlights the scalability of the pro-
posed method for real-world applications.

6 Conclusion
We considered the detection of adversarial attacks on the
signals of a mediator in correlated equilibria of non-
cooperative games. We proposed a detector based on a gen-
eralized CUSUM stopping rule designed for a specific set
of adversarial distributions FΘ. We showed that any attack
following a distribution in FΘ results in the maximum pos-
sible impact, with the constrained KL-distance to the CE,
which is the primary factor determining the detection de-
lay of the generalized CUSUM scheme. We proved that the
proposed detection scheme is the maxmin strategy of the
defender given that the attack distribution belongs to FΘ.
Additionally, we showed that the strategy that guarantees
the highest possible impact for the adversary is also lies
within FΘ. Through numerical evaluations, we showed that
the proposed method effectively mitigates the impact of vari-
ous attacks, with a detection delay that increases logarithmi-
cally with the mean time between false alarms. Our results
demonstrated that the detection mechanism is robust against
various attacker strategies, including random attacks that fall
outside FΘ, and remains effective even in a complex routing
game with a large number of action profiles.
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Appendix

A Proof of Theorems and Propositions
A.1 Proof of Proposition 2
As stated in (Lorden 1971), if µα is chosen such that T̄ (µα)
satisfies (11) and µα ∼ | logα|, then it satisfies (12) as well.
Theorem 1 in (Lorden 1973) proves that choosing µα as
mentioned in Proposition 2 satisfies (11). Moreover, we can
write

µα ∼ − log(α)− log(| log(α)|)
∼ − log(α) = | log(α)|, as α → 0 (24)

A.2 Proof of Proposition 4
In this proof we treat τ , u, and π as their representing vec-
tors. In the following, x[k] denotes the k-th element of vec-
tor x. (16) can be rewritten as

min
τ

u⊤τ

s.t. ||τ ||1 = 1,

τ ≥ 0,

DKL(τ ,π) = (τ⊤ log τ − τ⊤ logπ) ≤ δ (25)

If δ = ∞, then there is no condition on the KL-divergence
and the solution is τ ∗ = eamin

, where e represents the unit
vector. Otherwise we would have DKL(τ

∗||π) < ∞, which
implies that τ ∗[k] = 0 iff π[k] = 0. Let π̃ be the vec-
tor representing the non-zero elements of π. Also, τ̃ and ũ
represent the same indices of τ and u, respectively. Then,
problem (25) can be expressed with π, τ , and u replaced by
π̃, τ̃ , and ũ.

It is straightforward to verify that the optimization prob-
lem is convex and the Slater’s condition holds. Accordingly,
we use KKT theorem to derive optimality conditions. The
Lagrangian can be written as:

L = ũ⊤τ̃+η
(
(τ̃⊤ log τ̃ − τ̃⊤ log π̃)− δ

)
+ λ(||τ̃ ||1 − 1)− β̃

⊤
τ̃ (26)

where η, β̃[k] ≥ 0, and the complementary slackness im-
plies that β̃

∗
[k]τ̃ ∗[k] = 0 and η∗(DKL(τ̃

∗||π̃) − δ) = 0.
We know that τ̃ ∗[k] ̸= 0 for any k, so β̃

∗
[k] = 0. Setting

the gradient of L to zero leads to

∇τ̃L = ũ+ η(log τ̃ − log π̃) + η1+ λ1 = 0 (27)

If DKL(τ̃
∗||π̃) < δ, then η∗ needs to be zero, leading to

ũ+ λ1 = 0, which is impossible. Thus, DKL(τ̃
∗||π̃) = δ.

Solving (27) for τ̃ , we get τ̃ ∗[k] = π̃[k] exp(− ũ[k]
η∗ −

λ∗

η∗ − 1). The value of λ∗ can be found according to the con-
dition ||τ̃ ||1 = 1:

λ∗ = η∗ log

(
e−1

∑
k

π̃[k] exp(− ũ[k]

η∗
)

)
(28)

Finally, by substituting (28) into the expression of τ̃ ∗, we
obtain

τ̃ ∗[k] =
π̃[k] exp(− ũ[k]

η∗ )∑
k′ π̃[k′] exp(− ũ[k′]

η∗ )
(29)

By defining θ∗ ≜ 1
η∗ , (29) takes the form of τ θ as in Defini-

tion 1. θ∗ should be such that DKL(τ
∗,π) = δ. For the rest

of the proof we require the following lemma:

Lemma 1. For any θ, d(θ) = DKL(τ θ,π) can be ex-
pressed as:

d(θ) = θb′(θ)− b(θ)

Proof. we can write:

θb′(θ)− b(θ) =
−
∑

u∈U θuπ(u) exp(−θu)∑
u∈U π(u) exp(−θu)

− b(θ)

= −
∑
u∈U

τ θ(u)θu−
∑
u∈U

τ θ(u)b(θ)

=
∑
u∈U

τ θ(u)(−θu− b(θ))

=
∑
u∈U

τ θ(u) log
τ θ(u)

π(u)
= d(θ) (30)

Note that as θ → ∞, we have
∑

u∈U π(u) exp(−θu) ∼
π(umin) exp(−θumin). Accordingly, as θ → ∞:

θb′(θ) =
−
∑

u∈U θuπ(u) exp(−θu)∑
u∈U π(u) exp(−θu)

∼ −θumin (31)

b(θ) ∼ log(π(umin)e
−θumin) (32)



Thus, we have:

lim
θ→∞

d(θ) = − logπ(umin) (33)

Therefore, if δ < − logπ(umin), then there exists a θ∗

such that d(θ∗) = δ, and τ θ∗ is the unique solution to (16).
Otherwise, the optimization problem has no solution, and
the objective function reaches an infimum at θ = ∞.

A.3 Proof of Theorem 1
We can write

E[c(T, ν, τ )] = P (T < ν)

(
C − E

[
T∑

t=1

Ut

∣∣∣∣T < ν

])

+P (T ≥ ν)

(
E

[
T∑

t=ν

Vt

∣∣∣∣T ≥ ν

]

− E

[
ν−1∑
t=1

Ut

∣∣∣∣T ≥ ν

])
(34)

Since T is a stopping time, according to the Wald’s identity
(Wald 1946), we have

E

[
T∑

t=1

Ut

∣∣∣∣T < ν

]
= E[Ut

∣∣T < ν] · E[T
∣∣T < ν]

= uπE(∞)[T ] (35)

E

[
T∑

t=ν

Vt

∣∣∣∣T ≥ ν

]
= E[Vt

∣∣T ≥ ν] · E(ν)
τ [T − ν + 1

∣∣T ≥ ν]

= (uπ − uτ )E(ν)
τ [T − ν + 1

∣∣T ≥ ν]
(36)

According to (35) and (36), applying Theorem 1 in (Ritov
1990) for a fixed τ implies that

sup
ν∈V

inf
T∈T

E[c(T, ν, τ )] = E[c(TCUSUM
τ (µ1(C)), ν∗(C), τ )]

(37)
where µ1(C) is such that

C − uπE(∞)[TCUSUM
τ (µ1(C))]

= (uπ − uτ )Eτ [T
CUSUM
τ (µ1(C))] ≜ K(C, τ ), (38)

and ν∗ is defined as

P (ν∗ = t|ν ≥ t, U1, . . . , Ut−1) = p(C)(1−Qτ
t−1)

+. (39)

In (39), Qτ
t = exp(Rτ

t + lτt ) (see (5)), and p(C) is some
probability.

K(C, τ ) is the expected post-attack cost that the adver-
sary can guarantee. Then, choosing τ that maximizes this
cost, leads to the highest cost the adversary can guarantee.
Let γ1 = E(∞)[TCUSUM

τ (µ1(C))] .Note that as C → ∞,
µ1(C) and also E(∞)(TCUSUM

τ (µ1(C))) go to ∞. As a re-
sult,

Eτ [T
CUSUM
τ (µ1(C))] ∼ log γ1

DKL(τ ||π)
, as C → ∞ (40)

Thus, according to (38), as C → ∞ we have

uπγ1 + (uπ − uτ )
log γ1

DKL(τ ||π)
∼ C, (41)

which implies that K(C, τ ) ∼ (uπ − uτ )
logC

DKL(τ ||π) as
C → ∞. Hence, optimal τ for the adversary, is the one
that maximizes g(τ ) = (uπ−uτ )

DKL(τ ||π) .

Lemma 2. The function g(θ) = uπ−uθ

d(θ) is monotonically
decreasing in θ.

Proof. We show that g′(θ) < 0. Note that we can write

uθ =
∑
u∈U

τ θ(u)u =

∑
u∈U uπ(u) exp(−θu)∑
u∈U π(u) exp(−θu)

= −b′(θ)

(42)
Therefore, by using Lemma 1, we have

g′(θ) =
−uπθb

′′(θ)

d2(θ)
−
(

−b′(θ)

θb′(θ)− b(θ)

)′

=
−b′′(θ)(θuπ + b(θ))

d2(θ)
. (43)

b(θ) is strictly convex, and b′′(θ) > 0 (Lorden 1971). Thus,
it is sufficient to show that θuπ + b(θ) > 0, which is equiva-
lent to log(eθuπ

∑
u∈U π(u)e−θu) > 0. Therefore, it is suf-

ficient to show that∑
u∈U

π(u)eθ(uπ−u) > 1 (44)

Now, note that Jensen’s inequality implies that

eθEU∼π [uπ−U ] ≤ EU∼π[e
θ(uπ−U)]. (45)

We have EU∼π[uπ − U ] = 0. Thus, EU∼π[e
θ(uπ−U)] ≥ 1.

Since θ > 0 and different values of u ∈ U are nonidentical,
the equality does not hold, and we have EU∼π[e

θ(uπ−U)] >
1, which is essentially equivalent to (44).

Proposition 5. The maximizer of g(τ ) is τ θmin .

Proof. Observe that according to Remark 1 for every τ ∈
Dϵ, there exists a θ ∈ Θ such that uτ = uθ. For this
θ, Proposition 4 implies that DKL(τ ||π) ≥ DKL(τ θ||π)
(otherwise, τ would have been the solution to (16)). Conse-
quently, we have g(τ ) ≤ g(τ θ). As a result, the maximizer
of g(τ ) lies within FΘ.

Lemma 2 implies that θmin is the maximizer of g(τ θ)
within Fθ, and thus within Dϵ.

Now suppose that the adversary chooses (τ θmin , ν
∗). As

stated before, a Cusum stopping time with threshold µ1(C)
(defined specifically with respect to θmin) is optimal. We
claim that choosing T ∗(µ(C)) leads to the same cost for the
defender asymptotically. For γ > 1, let µ∗

γ be defined as in
(15) with α = 1/γ. According to Proposition 1 as γ → ∞,
we have E(∞)[T ∗(µ∗

γ)] ∼ γ and Eθ[T
∗(µ∗

γ)] ∼
log γ
d(θ) . Con-

sider the function C(γ) ≜ uπγ + ϵ
d(θmin)

logγ. C(γ) is a
one-to-one monotonically increasing function of γ. Thus, as



γ varies monotonically from 1 to ∞, C(γ) varies monoton-
ically from uπ to ∞. Therefore, comparing C(γ) and (17)
implies that, T ∗(µ(C)) as C → ∞ should be the same as
T ∗(µ∗

γ) as γ → ∞. As a result, we have

Eθ[T
∗(µ(C))] ∼ logE(∞)[T ∗(µ(C))]

d(θmin)
, as C → ∞ (46)

On the other hand, applying (41) for θmin, we get: C ∼
uπγ1 + ϵ log γ1

d(θmin)
as C → ∞. Hence, according to (17) and

(46), we must have E(∞)[T ∗(µ(C))] ∼ γ1. In other words,
as C → ∞:

E(∞)[T ∗(µ(C))] ∼ E(∞)[TCUSUM
θ (µ1(C))],

Eθ[T
∗(µ(C))] ∼ Eθ[T

CUSUM
θ (µ1(C))] (47)

Since the total cost is determined uniquely by E(∞)[T ] and
Eθ[T ], T ∗(µ(C)) represents a defender’s best response.

A.4 Proof of Theorem 2
Suppose that τ θ ∈ FΘ is fixed as the distribution chosen
by the adversary. Let the T1 be the optimal strategy for the
defender, and that γ = E(∞)[T1]. Theorem 1 in (Lai 1998)
implies that

sup
ν

E(ν)
θ [T1 − ν + 1|T1 ≥ ν] ≥ log γ

d(θ)
, as γ → ∞. (48)

On the other hand, for T ∗(µγ) defined as in Section A.3,
as γ → ∞ we have E(∞)[T ∗(µγ)] ∼ γ, and

sup
ν

E(ν)
θ [T ∗(µγ)− ν + 1|T ∗(µγ) ≥ ν]

= Eθ[T
∗(µγ)] ∼

log γ

d(θ)
(49)

As mentioned in Section A.3, the total cost for the de-
fender is a function of E(∞)[T ] and E(ν)

θ [T − ν +1|T ≥ ν].
Hence, (48) and (49) imply that T ∗(µγ) is asymptotically
the best response of the defender, as otherwise, the adver-
sary can choose a ν that impose a higher cost. Moreover, as
stated in Section A.3, T ∗(µγ) as γ → ∞ is equivalent to
T ∗(µ(C)) as C → ∞. Thus T ∗(µ(C)) is asymptotically a
best response.

With T ∗(µ(C)) selected by the defender, Lemma 2 di-
rectly implies that the adversary can impose the highest pos-
sible cost by choosing θmin. Moreover, ν = 1 corresponds to
the worst-case detection delay for the defender (see (49)).

B Additional Numerical Results
B.1 Tolerable Attack Impact
As mentioned in Section 5.1, in a practical scenario, the se-
lection of ϵ and α is based on the player’s tolerance for in-
curred costs and the acceptable false alarm rate. This de-
cision is influenced by the maximum cost the adversary can
impose within a known time horizon. We define the tolerable
cost for the defender as the impact of an attack with θmin,
i.e., which represents the highest impact the adversary can

Figure 1: Tolerable attack impact as a function of ϵ for two
fixed values of MTBFA in the Extended game of Chicken.

achieve given the detector. Figure 1 shows the tolerable at-
tack impact for two values of MTBFA as ϵ varies. As can be
observed, a higher required MTBFA (or in other words, less
probability of false alarms) necessitates accepting a slightly
higher attack impact.
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