
Computation Offloading Scheduling for Periodic
Tasks in Mobile Edge Computing

Slad̄ana Jošilo and György Dán
Division of Network and Systems Engineering,

School of Electrical Engineering and Computer Science
KTH, Royal Institute of Technology, Stockholm, Sweden E-mail: {josilo, gyuri}@kth.se

Abstract—Motivated by various delay sensitive applica-
tions, we address the problem of coordinating the offloading
decisions of wireless devices that periodically generate compu-
tationally intensive tasks. We consider autonomous devices
that aim at minimizing their own cost by choosing when
to perform their tasks and whether or not to offload their
tasks to an edge cloud through one of the multiple wireless
links. We develop a game theoretical model of the problem,
prove the existence of pure strategy Nash equilibria and
propose a polynomial complexity algorithm for computing
an equilibrium. Furthermore, we characterize the structure
of the equilibria, and by providing an upper bound on the
price of anarchy of the game we establish an asymptotically
tight bound on the approximation ratio of the proposed
algorithm. Our simulation results show that the proposed
algorithm achieves significant performance gain compared
to uncoordinated computation offloading at a computational
complexity that is on average linear in the number of devices.

Index terms— computation offloading, edge computing,
game theory, decentralized resource management

I . I N T R O D U C T I O N

The emergence of affordable wireless sensors, such as
cameras, has given rise to a variety of Internet of Things
(IoT) applications, including surveillance [1], tracking [2]
and traffic monitoring [3]. These applications typically
involve the periodic collection of sensory data, which need
to be processed in a timely manner to ensure the stability of
potential feedback control loops. Processing often involves
some form of machine learning, e.g., visual analysis, which
may be too computationally intensive to be performed in
the sensors.

A promising solution to enable the timely processing
of computationally intensive IoT tasks is mobile edge
computing (MEC) [4]. Opposed to traditional remote
cloud infrastructures such as Amazon and Azure [5],
MEC provides computing resources close to the end
users, i.e., at the network edge, which makes it a better
candidate for meeting the requirements of delay sensitive
IoT applications.

By offloading the computation to nearby edge clouds [6],
devices may be able to significantly reduce their response
times and energy consumption and thus to extend the life-
time of their batteries. Nevertheless, without coordination
of their offloading decisions, devices in MEC systems might
experience poor performance due to contention for com-
munication and computing resources. Therefore, in order
to use MEC systems to their full potential the autonomous
devices need to coordinate their offloading decisions over
time and across communication and computing resources.

The work was partly funded by the Swedish Research Council through
project 621-2014-6.

There are several challenges facing the coordination of
offloading decisions of autonomous devices in MEC sys-
tems. First, edge clouds are not as computationally powerful
as remote clouds, and thus the response time and energy
consumption of devices may be affected by contention
for both communication and computing resources [7],
[8], [9]. Second, MEC systems are likely to combine
heterogeneous communication and computing resources,
and thus coordination of offloading decisions involves not
only deciding whether or not to offload the tasks, but also
which of the communication and computing resources to
use in the case of offloading. Third, IoT devices such as
vehicles, drones and manufacturing machines [10] may be
autonomous entities with different computing capabilities
and tasks, and thus with individual interests in terms of
response time and energy consumption requirements [11],
[12]. Finally, besides the allocation of communication and
computing resources, coordination for offloading periodic
tasks involves deciding when to process the collected
sensory data and it may also affect the optimal time for
sensing, so as to minimize the age of information [13],
[14]. All these challenges make the problem of coordinating
the offloading decisions of autonomous devices inherently
difficult.

In this paper we address this problem for a MEC system
in which the devices aim at minimizing their cost defined
as a linear combination of the task completion time and the
energy consumption. Each device can choose autonomously
the time slot for performing its periodic task and in the
chosen time slot it can decide whether to perform the task
locally or to offload it to an edge cloud through one of
multiple heterogeneous wireless links.

We make three important contributions to solve the
problem. First, based on a game theoretical treatment of
the problem, we propose a polynomial time decentralized
algorithm for coordinating the offloading decisions of the
devices, and prove the convergence of the algorithm to a
pure strategy Nash equilibrium. Second, we characterize the
structure of the computed equilibrium. Third, we establish
an asymptotically tight upper bound on the price of anarchy
of the game, and by doing so we show that a the proposed
algorithm has a bounded approximation ratio. We use
simulations to assess the performance of the proposed
algorithm in a variety of scenarios. Our results show that
the algorithm can efficiently coordinate the offloading
decisions of autonomous devices with periodic tasks at
low computational complexity.

The rest of the paper is organized as follows. In
Section II we present the system model and the problem

1

TABLE I
S U M M A RY O F K E Y N O TAT I O N S

Notation Description
N Set of N devices
A Set of A APs
T Set of T time sots
Di Mean size of the input data for device i
Li Mean task complexity for device i
F 0
i Computational capability of device i
vi Energy consumption of device i per CPU cycle
γTi Completion time weight for device i
γEi Energy consumption weight for device i
T 0
i Local execution time for device i
E0

i Local execution energy consumption for device i
C0

i Local computing cost for device i
Ri,a Uplink PHY rate of device i towards AP a
Pi,a Transmit power of device i towards AP a
F c Cloud computing capability
Di Set of feasible decisions for device i
di Decision of device i, di! ∈Di

d Strategy profile
O(t,a)(d) Set of n(t,a)(d) devices i ∈ N s.t. di = (t, a) in d
O(t,c)(d) Set of n(t,c)(d) devices offloading in time slot t in d
O(d) Set of all devices that offload their tasks in d
F c
i,t(d) Cloud computing capability assigned to device i in d

ωi,(t,a)(d) Uplink rate of device i, di = (t, a) in d
T tx
i,(t,a)

(d) Transmission time of device i, di = (t, a) in d
Etx

i,(t,a)
(d) Energy consumption of device i, di = (t, a) in d

T exe
i,(t,c)

(d) Cloud execution time for device i in time slot t in d

T off
i,(t,a)

(d) Total offloading time for device i, di = (t, a) in d
Cc

i,(t,a)
(d) Offloading cost of device i, di = (t, a) in d

Ci(d) Cost of device i in d

formulation. In Section IV we present the algorithm, prove
its convergence and characterize the structure of computed
equilibria. In Section V-B we provide a bound on the
approximation ratio and in Section VI we show numerical
results. In Section VII we discuss related work and in
Section VIII we conclude the paper.

I I . S Y S T E M M O D E L

We consider an edge computing system that consists
of N devices, A access points (APs) and an edge cloud.
We denote by N = {1, 2, ..., N} and A = {1, 2, ..., A}
the set of devices and the set of APs, respectively. For
ease of reference, the key notations used in the paper are
summarized in Table I.

We consider that device i generates a computationally
intensive task periodically every T time units, and we char-
acterize the task by the mean size Di of the input data and
by the mean number of CPU cycles Li required to perform
the computation. Similar to related works on mobile cloud
computing [15], [16], [17], we define the mean number
of CPU cycles as Li=DiE[X], where E[X] is the mean
number of CPU cycles required per data bit. We assume
that E[X] is known from previous measurements, which
is reasonable for periodically generated tasks; in fact X is
often modeled by a Gamma distribution [18], [19], [20], for
which unbiased estimators exist [21]. It is important to note
that our model is based on the average complexity and thus
it does not depend on the distribution. Furthermore, the
assumption of homogeneous task periodicities is reasonable

for modeling the surveillance of homogeneous physical
phenomena and in manufacturing systems as discussed
in [22]. We leave the case of heterogeneous periodicities
to be subject of future work.

We consider that time is slotted and we denote by T=
{1, 2, ..., T} the set of time slots. Every device can choose a
time slot t ∈ T for performing the whole task < Di, Li >
and in the chosen time slot t it can decide whether to
perform the task locally or to offload the computation to the
cloud server through an AP a ∈ A. Thus, device i ∈ N can
choose one element of the discrete set Di = T ×{A∪{i}},
where i corresponds to local computing. We denote by
di∈Di the decision of device i, and refer to it as its strategy.
We refer to the collection d=(di)i∈N as a strategy profile,
and we denote by D =×i∈NDi the set of all feasible
strategy profiles.

For a strategy profile d ∈ D we denote by O(t,a)(d) =
{i|di = (t, a)} the set of devices that offload using AP a
in time slot t, and we denote by n(t,a)(d) = |O(t,a)(d)|
the number of devices that use AP a in time slot t.
Furthermore, we define the set of all devices that offload
in time slot t as O(t,c)(d) = ∪a∈AO(t,a)(d), and the
total number of devices that offload in time slot t as
n(t,c)(d)=

∑
a∈A n(t,a)(d). Finally, we denote by O(d) =

∪t∈T O(t,c)(d) the set of all devices that offload in strategy
profile d. In what follows we introduce our model of sharing
communication and computing resources among devices
that offload their tasks.

A. Wireless resource sharing

We denote by Ri,a the achievable uplink rate of device
i towards AP (i.e., if device i was the only transmitter).
We consider that Ri,a depends on the the average channel
conditions, modulation and coding scheme and the transmit
power Pi,a. Thus, Ri,a depends both on the device i and
the AP a.

We denote by ωi,(t,a)(d) the allocated uplink rate of
device i at AP a in time slot t and we consider that
ωi,(t,a)(d) is a non-increasing function fa(n(t,a)(d)) of
the number n(t,a)(d) of devices that use the same AP a
in time slot t,

ωi,(t,a)(d) = Ri,a × fa(n(t,a)(d)). (1)

This model is a good approximation for throughput sharing
mechanisms in TDMA and OFDMA based MAC proto-
cols [23].

Based on the uplink rate ωi,(t,a)(d) we can express the
time needed for device i to transmit the input data of size
Di through AP a in time slot t as

T txi,(t,a)(d) = Di/ωi,(t,a)(d). (2)

We consider that every device i knows the transmit power
Pi,a that it would use to transmit the data through AP a,
where Pi,a may be determined using one of the power
control algorithms proposed in [24], [25]. The transmit
power Pi,a and the transmission time T txi,(t,a)(d) determine
the energy consumption of device i for transmitting the
input data of size Di through AP a in time slot t

Etxi,(t,a)(d) = Pi,aT
tx
i,(t,a)(d). (3)

2

t
Time	slot	1 Time	slot	2

n(1,C)(d)=2

Fc

APc APa

APb

6 3
1

F1
0

n(12,C)(d)=2

Fc

APc APa

APb

2

F4
0

5
F5

4

8

F7
0

7

0

Edge
coud

Access pointsAccess points

Edge
coud

Fig. 1. An example of a mobile cloud computing system that consists
of an edge cloud, A = 3 APs, T = 2 time slots and N = 8 devices.

B. Computing resource sharing

We denote by F c the computational capability of
the edge cloud, and we consider that the computational
capability F ci,t(d) that device i receives from the cloud in
time slot t is a non-increasing function fi(n(t,c)(d)) of the
total number n(t,c)(d) of devices that offload in time slot t

F ci,t(d) = F c × fi(n(t,c)(d)). (4)

This model could be used for edge computing systems in
which the computing resources are shared according to a
time fair resource allocation policy.

Observe that the time needed for performing device i’s
task in the cloud depends on the chosen time slot through
the number of offloaders, and can be expressed as

T exei,(t,c)(d) = Li/F
c
i,t(d). (5)

We consider that a single time slot is long enough for
performing each user’s task both in the case of local
computing and in the case of computation offloading.
This assumption is reasonable in the case of real time
applications, where the worst-case task completion time
must be less than a fraction of the periodicity.

We can use (2) and (5) to express the task completion
time in the case of offloading as the sum of the transmission
time and the execution time,

T offi,(t,a)(d) = T txi,(t,a)(d) + T exei,(t,c)(d). (6)

In (6) we made the common assumption that the time
needed to transmit the result of the computation from
the edge cloud to the device can be neglected [7], [26],
[27], [28], [29], [30], because for many applications (e.g.,
object recognition, tracking) the size of the output data is
significantly smaller than the size Di of the input data.

C. Local computing

Devices that perform local computing use their own
computing resources only. We denote by F 0

i the compu-
tational capability of device i, and we consider that the
computational capability F 0

i of device i is constant over
time, and hence the time needed for device i to perform
its task can be expressed as

T 0
i = Li/F

0
i . (7)

To model the corresponding energy consumption, we denote
by vi the energy consumption of device i per CPU cycle,
which can be obtained through the measurement method
proposed in [31]. We then express the expected energy
consumption of device i for a task that requires on average
Li CPU cycles as

E0
i = viLi. (8)

Ci
0 d

o

v

1 2 Aa

v

fi(n(1,c)(d))

fa(n(1,a)(d))

fi(n(T,c)(d))

v
fa(n(T,a)(d))

Ci
0

1 2 Aa...

1 t... ... T

Fig. 2. Network model of the MSCOG.

Fig. 1 shows an example of a mobile edge computing
system where devices can choose one out of two time slots
to perform the computation. A device can offload its task
to the cloud through one of three APs in its chosen time
slot, if it decides to offload, e.g., in time slot 1 devices 3
and 6 offload their tasks through AP b, and devices 1 and
7 perform the computation locally.

I I I . P R O B L E M F O R M U L AT I O N

In what follows we introduce the cost model of the
devices and we formulate the multi-slot computation
offloading problem.

A. Device Cost Model

To allow for flexibility in modeling the cost, we use
the completion time γTi and the energy consumption γEi
weights (0 ≤ γTi , γEi ≤ 1) to capture devices’ preferences
over the task completion time and the energy consumption,
respectively. The weights can also be used to account for
different units, which allows us to express the cost of device
i as a linear combination of its completion time and its
energy consumption, i.e.,

C0
i = γTi T

0
i + γEi E

0
i . (9)

Similarly we define the cost of device i in the case of
offloading through AP a in time slot t as

Cci,(t,a)(d)=γTi T
off
i,(t,a)(d)+γEi E

tx
i,(t,a)(d). (10)

By (9) and (10) the cost of device i in strategy profile d is

Ci(d)=
∑

di∈T ×{i}

1(t,i)(di)·C0
i+
∑

di∈T ×A

1(t,a)(di)·Cci,(t,a)(d), (11)

where 1(t,d)(di) is the indicator function, i.e., 1(t,d)(di) = 1
if di = (t, d) and 1(t,d)(di) = 0 otherwise.

Observe that in the above cost model, devices can adjust
their objectives to the specific application requirements and
to their current battery state by changing the values of the
parameters γTi and γEi .

B. Multi-slot computation offloading game

We consider that devices are autonomous entities that
follow their individual interests, and thus we consider that
the objective of each device is to minimize its own cost
(11), i.e., to find a strategy

d∗i ∈ arg mindi∈Di
Ci(di, d−i), (12)

where Ci(di, d−i) is the cost of device i if it chooses
strategy di given the strategies d−i of the other devices.
Given the autonomy of the devices, we model the problem
as a strategic game Γ =<N , (Di)i, (Ci)i>, in which the
set of players is the set of devices (we use these two terms

3

((1,a),(1,b),(1,a),(1,4),(1,5))
3−−−−−−−→

R3,b>R3,a
((1,a),(1,b),(1,b),(1,4),(1,5))

2−−−−−−−−−−−−→
2

D2
R2,b

+3
L2
Fc>C0

2

((1,a),(1,2),(1,b),(1,4),(1,5))
4−−−−−−−−−−−−→

C0
4>2

D4
R4,b

+3
L4
Fc

((1,a),(1,2),(1,b),(1,b),(1,5))
5−−−−−−−−−−−−→

C0
5>3

D5
R5,b

+4
L5
Fc

((1,a),(1,2),(1,b),(1,b),(1,b))

3−−−−−−−−−→
R3,a>

2
3
R3,b

((1,a),(1,2),(1,a),(1,b), (1,b))
2−−−−−−−−−−−→

C0
2>

D2
R2,c

+5
L2
Fc

((1,a),(1,c),(1,a),(1,b), (1,b))
5−−−−−−−−−−−−→

2
D5

R5,b
+5

L5
Fc>C0

5

((1,a),(1,c),(1,a),(1,b), (1,5))

4−−−−−−−−−−−→
D4

R4,b
+4

L4
Fc>C0

4

((1,a),(1,c),(1,a),(1,4), (1,5))
2−−−−−−−→

R2,b>R2,c

((1,a),(1,b),(1,a),(1,4), (1,5))

Fig. 3. A cyclic improvement path in a MSCOG with N = 5 devices,
A = 3 APs, one cloud and T = 1. Labeled arrows between strategy
profiles indicate better improvement steps. A label above the arrow
indicates a player that makes the improvement step, and a label below
the arrow indicates the condition under which the performed action is an
improvement step.

interchangeably). We refer to the game as the MSCOG.
The MSCOG is a player specific network congestion game,
as illustrated in Fig. 2.

Our objective is to study fundamental questions related
to the existence and computability of strategy profiles from
which no device would want to deviate, i.e., pure strategy
Nash equilibria, defined as follows [32].

Definition 1. A pure strategy Nash equilibrium (NE) is
a strategy profile d∗ in which all players play their best
replies to each others’ strategies, that is,

Ci(d
∗
i , d
∗
−i) ≤ Ci(di, d∗−i),∀di ∈ Di,∀i ∈ N .

Definition 2. Given a strategy profile d = (d′i, d−i), an
improvement step of device i is a strategy d′i such that
Ci(d

′
i, d−i) < Ci(di, d−i). A best improvement step is an

improvement step that is a best reply. A (best) improvement
path is a sequence of strategy profiles in which one device
at a time changes its strategy through performing a (best)
improvement step. We refer to the device that makes the
best improvement step as the deviator. Observe that, by
definition, no device can perform a (best) improvement
step in a NE. A game in which every (best) improvement
path is finite is said to have the finite (best) improvement
property.

I V. C O M P U T I N G E Q U I L I B R I A

We start with the analysis of the finiteness of improve-
ment paths. Clearly, if a game has the finite improvement
path property then it has a NE. As a first step, we show that
this is not the case for the MSCOG, that is, improvement
paths may be infinite, even in the case of a single time
slot, i.e., T = 1.

Lemma 1. The MSCOG does not have the finite improve-
ment property.

Proof. We prove the lemma through the following example.

Example 1. Consider a MSCOG with N = {1, 2, 3, 4, 5}
players, A = {a, b, c} APs, one edge cloud and T =
{1}. Communication and computing resources are shared
equally among the devices, i.e. ωi,(1,a)(d) =

Ri,a

n(1,a)(d) and

F ci,1(d) = F c

n(1,c)(d) , respectively. Furthermore, consider that

0

d

o

1 2 a... ...A

~

fi,(1,a)(n(1,a)(d))
~

Ci(N - n(1,c)(d))

Fig. 4. Network model of the MSCOG for T = 1.

devices aim at mininizing their completion times only, i.e.,
γTi = 1 and γEi = 0 for every i ∈ N .

Fig. 3 shows a cyclic improvement path starting from
the strategy profile ((1, a), (1, b), (1, a), (1, 4), (1, 5)), in
which devices 1 and 3 offload through AP a, device 2
offloads through AP b and devices 4 and 5 perform the
computation locally. The cycle shown in Fig. 3 consists of
9 improvement steps, each imposing a constraint on the
system parameters. Given these constraints, an instance
of the example can be formulated easily. Without loss
of generality, we use the following set of parameters to
illustrate the proof of the lemma: Di = 2 Mb for every
i ∈ {2, 3, 4, 5}, L2 = L3 = 3 Gcycles, L4 = 5 Gcycles,
L5 = 10 Gcycles, R2,b = 1

2 Mb/s, R2,c = 1
3 Mb/s, R3,a =

5 Mb/s, R3,b = 6 Mb/s, R4,b = 8 Mb/s, R5,b = 4 Mb/s,
F 0
2 = 3

8 GHz, F 0
4 = 16

5 GHz, F 0
5 = 50

21 GHz, F c =
15 GHz.

In what follows we show that although improvement
paths may be cyclic, the MSCOG possesses a NE and a
NE can be computed in polynomial time.

A. Single time slot (T = 1)

We start with considering the case T =1, i.e., a single
time slot.

Theorem 1. The MSCOG for T = 1 possesses a pure
strategy Nash equilibrium.

Proof. We prove the result by showing that the game is
best response equivalent to a player specific congestion
game Γ̃ on a parallel network, i.e., a singleton player
specific congestion game [33]. Observe that if for T = 1
we contract the edge (v, d) in the network shown in
Fig. 2, i.e., if we replace the edge (v, d) and its two end
vertices v and d by a single vertex, then we obtain a
parallel network shown in Fig. 4. Let us define the local
computation cost of player i in Γ̃ as C̃0

i(N−n(1,c)(d))=
C0
i−fi(1+n(1,c)(d))+c, and the cost of offloading through

AP a as f̃i,(1,a)(n(1,a)(d))=fi,(1,a)(n(1,a)(d))+c, where c
is a suitably chosen constant to make all costs non-negative.
Observe that due to the contraction of the edge (v, d) the
offloading cost is C̃ci,(1,a) =Cci,(1,a)−fi(n(1,c)(d)), and
thus the difference between the cost function of player
i in Γ̃ and that in Γ only depends on the strategies of
the other players. This in fact implies that Γ̃ and Γ are
best-response equivalent, and thus they have identical sets
of pure strategy Nash equilibria. Since Γ̃ is a singleton

4

player specific congestion game, it has a NE, and so does
Γ, which proves the result.

Furthermore, a Nash equilibrium of the MSCOG can be
found in polynomial time.

Corollary 1. Consider a MSCOG with T = 1 and N
players. Let d∗ be a Nash equilibrium of the game, and
consider that a new player is added to the game. Then
there is a sequence of best responses that leads to a NE.

Proof. The result follows from the best response equiva-
lence to Γ̃, and from the proof of Theorem 2 in [32].

Unfortunately, the contraction technique used in the proof
of Theorem 1 cannot be applied for T > 1, as the resulting
game would no longer be a congestion game.

B. Multiple time slots (T ≥ 1)

In order to answer the question for T ≥ 1 we first show
that if a pure strategy NE exists for T ≥ 1 then its structure
cannot be arbitrary.

Theorem 2. Assume that d∗ is a NE of the MSCOG with
T ≥ 1. Then the following must hold
(i) mint′∈T n(t′,c)(d∗) ≤ n(t,c)(d∗) ≤ mint′∈T n(t′,c)(d∗)+1
for ∀t,t′∈T ,
(ii) if n(t,c)(d∗) = n(t′,c)(d∗) + 1 for some t′ ∈ T \ {t},
then n(t,a)(d∗) ≤ n(t′,a)(d∗) + 1 for every AP a ∈ A, and
(iii) if n(t,a)(d∗) = n(t′,a)(d∗) − k for k > 1 and t′ 6= t,
then n(t′,c)(d∗) ≤ n(t,c)(d∗) ≤ n(t′,c)(d∗) + 1.

Proof. Clearly, all statements hold for T =1. Assume that
T >1 and ∃t,t′ ∈ T such that n(t,c)(d∗)> n(t′,c)(d∗)+1.
Then ∃a∈A such that n(t,a)(d∗)≥n(t′,a)(d∗)+1. Therefore,
player i∈O(t,a)(d∗) could decrease her cost by changing
the strategy to offloading through AP a in time slot t′. This
contradicts d∗ being a NE and proves (i).

We continue by proving (ii). Assume that there is an
AP a such that n(t,a)(d∗) > n(t′,a)(d∗) + 1 holds. Since
n(t,c)(d∗)=n(t′,c)(d∗)+1, we have that player i∈O(t,a)(d∗)
could decrease her cost by changing the strategy from (t,a)
to (t′,a). This contradicts d∗ being a NE and proves (ii).

Finally, we prove (iii). First, assume that n(t,c)(d∗)<
n(t′,c)(d∗). Since n(t,a)(d∗)<n(t′,a)(d∗)−1, we have that
player i∈O(t′,a)(d∗) could decrease her cost by changing
the strategy from (t′,a) to (t,a). This contradicts d∗ being a
NE and proves that n(t,c)(d∗)≥n(t′,c)(d∗). Second, assume
that n(t,c)(d∗)> n(t′,c)(d∗)+1 holds. Since n(t,a)(d∗) <
n(t′,a)(d∗) − 1, there is at least one AP b 6= a such that
n(t,b)(d∗) ≥ n(t′,b)(d∗) + 1, and thus player i ∈ O(t,b)(d∗)
could decrease her cost by changing the strategy to (t′, b).
This contradicts d∗ being a NE and proves that n(t,c)(d∗) ≤
n(t′,c)(d∗) + 1 must hold.

We are now ready to formulate our main result concern-
ing the existence of an equilibrium in the general case.

Theorem 3. The MSCOG for T ≥ 1 possesses a pure
strategy Nash equilibrium.

We provide the proof in the rest of the section, based
on the MyopicBest (MB) algorithm shown in Fig. 5. The
MB algorithm adds players one at a time, and lets them
play their best replies given the other players’ strategies

Empty
systemt

Double poked
deviator?

No

Add a new
player

Execute the DPD
algorithm

No

Done

Yes

Self imposed
deviator?

Yes

Perform the SID
improvement step

Deviators?

Yes
All players in

No

the game?

Yes

No

Fig. 5. Flow chart of the MB algorithm.

in a particular order. Our proof is based on an induction
in the number N of players, and starts with the following
result.

Theorem 4. The MB algorithm terminates in a NE after
N steps for the MSCOG with N ≤ T players.

Proof. It is easy to see that if a strategy profile d∗(N) is
a NE for N ≤ T then by Theorem 2 there is at most one
player per time slot. The MB algorithm computes such
a strategy profile in N steps since each player upon it is
added into the game chooses an empty time slot to perform
its best reply and it has no incentive to deviate from the
chosen strategy in the following induction steps.

We continue by considering the case N >T . Let us
assume that for N−1≥T there is a NE d∗(N − 1) and
that upon induction step N a new player i enters the game
and plays her best reply d∗i with respect to d∗(N−1). After
that, players can make best improvement steps one at a
time starting from the strategy profile d = (d∗i ,d

∗(N−1)).
If d∗i = (t, i), then n(t,a)(d) = n(t,a)(d∗(N − 1)) holds
for every (t, a) ∈ T ×A, and thus d is a NE. Otherwise,
if d∗i = (t, a), for some a ∈ A, some players j ∈ O(t,a)(d)
may have an incentive to make an improvement step
because their communication and cloud computing costs
have increased, and some players j ∈ O(t,c)(d) \O(t,a)(d)
may have an incentive to make an improvement step
because their cloud computing cost has increased.

In order to define one of the possible best improvement
paths that can be generated starting form the strategy profile
d = (d∗i ,d

∗(N − 1)) we introduce the term deviator to
denote a player that changes its strategy profile.

Definition 3. Consider two successive strategy profiles d′

and d′′ in a best improvement path D that starts from
an initial strategy profile d. We say that the path D is a
poke-new-deviator best improvement path if the following
conditions hold:

1) If d′′ = (d′′i , d
′
−i), then either d′′i = (t, i) or

d′′i = (t, a) such that n(t,a)(d′) ≥ n(t,a)(d) (i.e., all
deviators are either changing from offloading to local
computing or from an offloading strategy to another

5

(d, t, A′) = DPD(d, d∗(N − 1), (t, a), A′)

1: /*Players that want to stop to offload*/
2: D′1={j|dj = (t, a), (t, j) = argmind∈Dj

Cj(d, d−j)}
3: /*Player that want to change offloading strategy*/
4: D′2={j|dj=(t, a), (t′, b)=argmind∈Dj

Cj(d, d−j) /∈ A′,

(t, a) 6= (t′, b)}
5: while |D′1 ∪D′2| > 0 do
6: /*Players that want to stop to offload have priority*/
7: if |D′1| > 0 then
8: Take i ∈ D′1
9: di = (t, i)

10: else
11: Take i ∈ D′2
12: Let di = argmind∈T ×ACi(d, d−i)
13: Let (t, a)← di
14: end if
15: Let d← (di, d−i)
16: Update A′, D′1, D

′
2

17: end while
18: return (d, t, A′)

Fig. 6. Pseudo code of the DPD algorithm.

offloading strategy for which the number of offloaders
is at least as in the initial strategy profile d).

2) If d′′ = (d′′i , d
′
−i), then the next best improvement

step can be performed only by a player j ∈ N \ {i}
such that d′′j = d′′i (i.e. every next deviator has to be
a player that wants to deviate from the strategy that
has been chosen by the previous deviator).

Among all players that want to deviate from strategy
profile d = (d∗i ,d

∗(N − 1)), the MB algorithm allows
players j ∈ O(t,a)(d) to perform best improvement steps,
using the DoublePokeDeviator (DPD) algorithm, which
creates poke-new-deviator best improvement paths. The
pseudo code of the DPD algorithm is shown in Fig. 6.
According to the definition of a poke-new-deviator best
improvement path, there are two types of players that can
make a best improvement step using the DPD algorithm.
The first type are players j ∈ O(t,a)(d) for which a best
reply is to stop to offload. The second type are players j ∈
O(t,a)(d) for which a best reply is an offloading strategy
(t′, b) ∈ T ×A\{(t, a)} for which the number of offloaders
in d is not smaller than the number of offloaders in the NE
d∗(N − 1). In each iteration, the DPD algorithm allows
either one player of the first type, or one player of the second
type to perform a best improvement step. In what follows
we prove that the poke-new-deviator best improvement
paths are finite and we provide an upper bound on the
convergence of the DPD algorithm.

Proposition 1. In a poke-new-deviator best improvement
path generated by the DPD algorithm each player deviates
at most once.

Proof. Let us denote by d′ a strategy profile after a player
j ∈ O(t,a)(d) performs its best improvement step. First,
observe that if player j’s best improvement step is to
stop to offload, then the resulting poke-new-deviator path
terminates since only players that play the same strategy
as the previous deviator are allowed to perform best
improvement steps.

Otherwise, if player j’s best improvement step is (t′, b)∈
T ×A\{(t, a)}, then n(t′,b)(d′) = n(t′,b)(d) + 1 holds, and

we can have one of the following: (1) there is no player
j′ ∈ O(t′,b)(d) that wants to deviate from (t′, b), (2) there
is a player j′ ∈ O(t′,b)(d) that wants to deviate from (t′, b).

If case (1) happens then the resulting poke-new-deviator
path terminates because none of the players playing the
same strategy as the previous deviator want to deviate.
Otherwise, if case (2) happens then a new best improvement
step can be triggered, which will bring the system to a
state where n(t′,b)(d′) = n(t′,b)(d) holds.

In what follows we show that none of the players that
has changed its offloading strategy in one of the previous
best improvement steps would have an incentive to deviate
again. Let us consider a player j′ that changed its strategy
from (t′, b) to another offloading strategy, and let us assume
that in one of the subsequent best improvement steps one
of the players changes its offloading strategy to (t′, b), and
thus it brings the system to a state where n(t′,b)(d′) =
n(t′,b)(d) + 1 holds. We observe that player j that has
changed its strategy from (t, a) to (t′, b) before player j′

deviated from (t′, b) would have no incentive to deviate
from its strategy (t′, b) after a new player starts offloading
through AP b in time slot t′. This is because (t′, b) was its
best response while player j′ was still offloading through
AP b in time slot t′, i.e, while n(t′,b)(d′) = n(t′,b)(d) + 1
was true. Therefore, a new best improvement step can
be triggered only if there is another player that wants to
change from (t′, b) to another offloading strategy. If this
happens, n(t′,b)(d′) = n(t′,b)(d) will hold again, and thus
the maximum number of players that offload through AP b
in time slot t′ will be at most n(t′,b)(d)+1 in all subsequent
best improvement steps. Consequently, player j would have
no incentive to leave AP b in time slot t′ in the subsequent
steps. Therefore, each player deviates at most once in a
poke-new-deviator best improvement path generated by the
DPD algorithm, which proves the proposition.

Corollary 2. The length of a poke-new-deviator best
improvement path generated by the DPD algorithm is at
most N − 1.

Proof. It follows from Proposition 1 that the DPD al-
gorithm can generate a longest poke-new-deviator best
improvement path upon induction step N if every player
j ∈ O(d∗(N − 1)) performs an improvement step, which
proves the result.

The DPD algorithm may be called multiple times during
the execution of the MB algorithm, but as we show next
for any fixed N , it is called a finite number of times.

Proposition 2. The DPD algorithm is executed a finite
number of times for any particular N .

Proof. Let us assume that the DPD algorithm has been
called at least once during the execution of the MB
algorithm, and let us denote by d′ the most recent strategy
profile computed by the DPD algorithm. Now, let us assume
that in the next best improvement step generated by the
MB algorithm a player i ∈ O(d′)∪L(d′) changes its
strategy to (t, a)∈T ×A. Starting from a strategy profile
d=((t, a), d′−i) players j∈O(t,a)(d) are allowed to perform
the next best improvement step using the DPD algorithm.

6

d∗ = MB(N , T ,A, F c, F 0
i)

1: Let N ← 1
2: for N = 1 . . . |N | do
3: Let A′ ← ∅ /*APs with decreased number of offloaders*/
4: Let i← N
5: d∗i = argmind∈Di

Ci(d, d∗(N − 1))
6: Let d← (d∗i , d∗(N − 1))
7: if d∗i = (t, a) s.t. a ∈ A then
8: /*Players j ∈ O(t,a)(d) play best replies*/
9: (d′, t′, A′) = DPD(d, d∗(N − 1), (t, a), A′)

10: if∃j∈O(t′,c)(d′),∃dj∈Djs.t.Cj(dj ,d
′
−j)<Cj(d

′
j ,d
′
−j)then

11: /*Players j ∈ O(t,c)(d′) play best replies*/
12: dj = argmind∈Dj

Cj(d, d
′
−j)

13: Let d← (dj , d
′
−j), update A′

14: if ∃i∈Odi(d),di 6=argmind∈Di
Ci(d, d−i) /∈A′ then

15: Let (t, a)← dj , go to 9
16: else
17: Let d′ ← d
18: end if
19: end if
20: if A′ 6= ∅ then
21: /*Players j ∈ O(d′) ∪ L(d′) play best replies*/
22: (d, (t, a), A′) = SID(d′, A′)
23: if ∃i∈O(t,a)(d), di 6=argmin

d∈Di

Ci(d, d−i) /∈A′ then

24: go to 9
25: else if ∃i∈O(d)∪L(d),di6=argmin

d∈Di

Ci(d, d−i)∈A′ then

26: Let d′ ← d, go to 22
27: end if
28: end if
29: end if
30: Let d∗(N)← d′
31: end for
32: return d∗(N)

Fig. 7. Pseudo code of the MB algorithm.

Observe that players j′ ∈ O(t,a)(d′) that in the pre-
vious best improvement steps changed their strategy to
(t, a) using the DPD algorithm and triggered one of the
players to leave the same strategy (t, a) would have no
incentive to perform a best improvement step using the
DPD algorithm. This is because the previous deviators
j′ ∈ O(t,a)(d′) brought n(t,a)(d′) to its maximum, that
is to n(t,a)(d∗(N − 1)) + 1, which decreased again to
n(t,a)(d∗(N−1)) after the next deviator left strategy (t, a).
Since the number of previous deviators j′ ∈ O(t,a)(d′) that
have no incentive to perform a new best improvement step
using the DPD algorithm increases with every new best
improvement path generated by the DPD algorithm, players
will stop performing best improvement steps using the DPD
algorithm eventually, which proves the proposition.

So far we have proved that the DPD algorithm generates
a finite number of poke-new-deviator best improvement
paths, each of them with a length of at most N − 1. In the
following we use this result for proving the convergence
of the MB algorithm. The pseudo code of the algorithm is
shown in Fig. 7.

Proof of Theorem 3. We continue with considering all
conditions under which the DPD algorithm may have
terminated. First, let us assume that the last deviator’s
best improvement step is a strategy within time slot t′.
The proof of Proposition 2 shows that the DPD algorithm
terminates if one of the following happens: (i) starting
from a strategy profile d = (d∗i ,d

∗(N − 1)) all players

(d, (t, a), A′) = SID(d, A′)
1: /*Players that offload and can decrease their offloading cost*/
2: D1={j∈O(d)|(t,a)=argmind∈Dj

Cj(d,d−j)∈A′, dj 6=(t, a)}
3: /*Players that compute locally and want to start to offload*/
4: D2={j∈L(d)|(t,a)=argmind∈Dj

Cj(d, d−j) ∈ A′}
5: if |D1 ∪D2| 6= ∅ then
6: /*Players that offload have priority*/
7: if D1 6= ∅ then
8: Take i ∈ D1

9: else if D2 6= ∅ then
10: Take i ∈ D2

11: end if
12: d′i = argmind∈Di

Ci(d, d−i)
13: Let d← (d′i, d−i)
14: Let (t, a)← d′i
15: Update A′

16: end if
17: return (d, (t, a), A′)

Fig. 8. Pseudo code of the SID algorithm.

performed their best improvement steps, (ii) some players
did not deviate and the last deviator’s strategy was (t′, 0),
i.e., the last deviator changed to local computing in time
slot t′, (iii) some players did not deviate and there was
no player that wanted to change from the last deviator’s
strategy (t′, b) ∈ T ×A.

Let us first consider case (i), and the last deviator
that performed its best improvement step. If its best
improvement step was to stop to offload, n(t,a)(d′) =
n(t,a)(d∗(N − 1)) holds for every (t, a) ∈ T × A.
Otherwise, if a best improvement step of the last deviator
was to change its offloading strategy to (t′, b), we have that
n(t,a)(d′) ≥ n(t,a)(d∗(N − 1)) for every (t, a)∈ T × A,
where the strict inequality holds only for (t′, b), and
n(t′,b)(d′) = n(t′,b)(d∗(N − 1)) + 1. Since there is no
offloading strategy for which the number of offloaders is
less than the number of offloaders in the NE d∗(N − 1),
there is no player j∈O(d′) that can decrease its offloading
cost. Furthermore, there is no player that wants to change
its strategy from local computing to offloading, and thus a
strategy profile computed by the DPD algorithm is a NE.

If case (ii) or case (iii) happen the MB algorithm allows
players that offload in the same time slot as the last
deviator to perform any type of best improvement steps.
Furthermore, if case (ii) happens and there are no APs
with decreased number of offloaders compared with the
NE d∗(N−1), i.e., n(t,a)(d′) = n(t,a)(d∗(N−1)) holds for
every (t, a) ∈ T ×A, then the strategy profile d′ computed
by the DPD algorithm is a NE. Observe that n(t,a)(d′) =
n(t,a)(d∗(N−1)) holds for every (t, a) ∈ T ×A if strategy
profile d′ is obtained by the DPD algorithm starting from
strategy profile d = (d∗i ,d

∗(N − 1)).
Otherwise, if case (ii) happens such that there is a strategy

(t, a) ∈ T ×A for which n(t,a)(d′) < n(t,a)(d∗(N − 1))
holds, then players j ∈ O(t′,c)(d′) that offload in the same
time slot as the last deviator may want to change their
offloading strategy to (t, a). Let us assume that there is a
player j ∈ O(t′,c)(d′) that wants to change its offloading
strategy to (t, a) and let us denote by d a resulting strategy
profile. Since n(t,a)(d) = n(t,a)(d′) + 1 and n(t,c)(d) =
n(t,c)(d′)+1 hold, some players j ∈ O(t,a)(d) may want to
perform a best improvement step using the DPD algorithm,
which can happen only a finite number of times accoring

7

to Proposition 2.
We continue the analysis by considering case (iii). Ob-

serve that if there is a strategy (t, a) for which n(t,a)(d′) <
n(t,a)(d∗(N − 1)) players j ∈ O(t′,c)(d′) that offload in
the same time slot as the last deviator may want to change
their offloading strategy to (t, a). Furthermore, players
j ∈ O(t′,c)(d′)\O(t′,b)(d′) may want to stop to offload or to
change to any offloading strategy (t, a) ∈ T ×A\{(t′, b)}
since their cloud computing cost increased. Let us assume
that there is a player j ∈ O(t′,c)(d′) that wants to change
its offloading strategy to (t, a) ∈ T × A \ {(t′, b)} and
let us denote by d the resulting strategy profile. Since
n(t,a)(d) = n(t,a)(d′) + 1 and n(t,c)(d) = n(t,c)(d′) + 1
hold, some players j ∈ O(t,a)(d) may want to perform a
best improvement step using the DPD algorithm, which
can happen only a finite number of times according to
Proposition 2.

If case (ii) or case (iii) happens and there is no player
j ∈ O(t′,c)(d′) that wants to deviate, the MB algorithm
allows players from the other time slots t ∈ T \ {t′} to
perform best improvement steps using SelfImposedDeviator
(SID) algorithm shown in Fig. 8. Observe that players from
time slots t ∈ T \{t′} are not poked to deviate by the other
players, and only reason why they would have an incentive
to deviate is that n(t,a)(d′) < n(t,a)(d∗(N − 1)) holds
for some strategies (t, a) ∈ T × A. The SID algorithm
first allows one of the players j ∈ O(d′) \O(t′,c)(d′) that
already offloads to perform a best improvement step, and
if there is no such player the SID algorithm allows one of
the players j ∈ L(d′) that performs computation locally to
start to offload. Let us assume that there is a strategy (t, a)
for which n(t,a)(d′) < n(t,a)(d∗(N − 1)) holds and that
there is a player j ∈ O(d′) \O(t′,c)(d′)∪L(d′) that wants
to deviate to strategy (t, a). We denote by d the resulting
strategy profile, after player j performs its best improvement
step. Since n(t,a)(d) = n(t,a)(d′) + 1 and n(t,c)(d) =
n(t,c)(d′) + 1 hold, some players j ∈ O(t,a)(d) may
want to perform a best improvement step using the DPD
algorithm, which can happen only a finite number of times
according to Proposition 2. Finally, let us consider case
(iii) such that there is a player j ∈ O(t′,c)(d′) \O(t′,b)(d′)
that wants to stop to offload because its cloud computing
cost increased. Let us denote by d a strategy profile after
player j changes its strategy from (t′, a) 6= (t′, b) to local
computing. We have that n(t′,a)(d) = n(t′,a)(d′)− 1, and
if n(t′,a)(d′) = n(t′,a)(d∗(N − 1)) we have that players
j′ ∈ O(d) \ O(t′,a)(d) may have an incentive to change
their offloading strategy to (t′, a) if doing so decreases their
offloading cost. We have seen that a best improvement step
of this type can trigger the DPD algorithm a finite number
of times according to Proposition 2. Now, let us assume that
a player j′ ∈ O(t,b)(d), where (t, b) ∈ T × A \ {(t′, a)},
changes its offloading strategy from (t, b) to (t′, a), and
that by doing so it does not trigger the DPD algorithm.
The resulting strategy profile d = ((t′, a), d−j′) is such
that n(t,b)(d) = n(t,b)(d′) − 1 holds, and if n(t,b)(d′) =
n(t,b)(d∗(N − 1)) some players may have an incentive
to change their offloading strategy to (t, b) if doing so
decreases their offloading cost.

We continue by considering the case where all subse-
quent best improvement steps are such that deviators change

to a strategy for which the number of offloaders is less
than the number of offloaders in the NE d∗(N −1) and by
doing so they do not trigger the DPD algorithm. Therefore,
the resulting best improvement path is such that the cost of
each deviator decreases with every new best improvement
step it makes. Assume now that after k ≥ 2 improvement
steps player j′ wants to return back to strategy (t, b). By
the definition of the resulting best improvement path, the
cost of player j′ in the (k+ 1)-th improvement step is not
only less than the cost in the k-th best improvement step,
but also less than its cost in the first best improvement step.
Therefore, player j′ will not return to a strategy it deviated
from, and thus it will deviate at most T × A − 1 times.
Consequently, when there are no players that can trigger
the DPD algorithm, players that change their startegy from
local computing to offloading using the SID algorithm, can
only decrease their offloading cost in the subsequent best
improvement steps, and thus they would have no incentive
to stop to offload. Since the number of players is finite,
the players will stop changing from local computing to
offloading eventually, which proves the theorem.

Even though the convergence proof of the MB algorithm
is fairly involved, the algorithm itself is computationally
efficient, as we show next.

Theorem 5. When a new player i enters the game in
an equilibrium d∗(N − 1), the MB algorithm computes a
new equilibrium d∗(N) after at most N × T ×A− 2 best
improvement steps.

Proof. In the worst case scenario the DPD algorithm
generates an N − 2 steps long best improvement path,
and a player that offloads in the same time slot as the last
deviator, but not through the same AP changes to local
computing, because its cloud computing cost increased.
Observe that the worst case scenario can happen only
if |O(d∗(N − 1))| = N − 1 holds. Furthermore, N − 2
players will have an opportunity to deviate using the DPD
algorithm and a player that offloads in the same time slot as
the last deviator will have an opportunity to stop to offload
only if n(t,a)(d∗(N − 1)) = n(t′,b)(d∗(N − 1)) holds for
every (t, a), (t′, b) ∈ T ×A. Furthermore, in the worst case
scenario, the best improvement path generated by the DPD
algorithm is followed by an N × (T × A− 1) long best
improvement path, in which deviators change to a strategy
for which the number of offloaders is less than the number
of offloaders in the NE d∗(N − 1) and by doing so they
do not trigger the DPD algorithm. Therefore, a NE can
be computed in at most N − 2 +N × (T × A− 1) best
improvement steps.

By adding players one at a time, it follows that the MB
algorithm has quadratic worst case complexity.

Theorem 6. The MB algorithm computes a NE allocation
in O(N2 × T ×A) time.

C. Implementation considerations

Motivated by potential use cases that rely on the auton-
omy of devices [10], we consider that the MB algorithm
can be implemented in a decentralized manner, by letting
devices perform the best improvement steps one at a time.

8

NE?
yes

no

APb

APa

congestion

d7(t)
*

update the next device about th
e

congestio
n on the resource

s

implement the NE

step 1:

step 2:

APc

7

6

5

4
3

2

1

edge cloud

d7(t)
*

Fig. 9. Example of the interaction between the centralized entity and
devices 1 and 7 in a decentralized implementation of the MB algorithm.

For computing a best response, besides its local parameters
(e.g. Di, Li, F 0

i), each device i requires information about
achievable uplink rates, available cloud resources, and the
number of users sharing the APs and the cloud. In practice
these information can be provided by a centralized entity
that is the part of the infrastructure, e.g., the cloud, and
that stores information about the mobile cloud computing
system. The advantages of such a decentralized implemen-
tation compared to a centralized one are threefold. First,
it supports the autonomy of the devices in MEC systems
by allowing them to make their own offloading decisions
based on the information provided by the centralized entity.
Second, it can relieve the cloud from complex centralized
management. Third, devices do not need to reveal their
parameters, but only their most recent decisions.

Fig. 9 illustrates the interaction between the centralized
entity located in the cloud and the devices during the
process of computing a NE in a decentralized way using the
MB algorithm. The centralized entity sends the information
about the system (i.e. the information about the resources
and the congestion on the resources in each time slot) to the
devices that are allowed to update their best responses in a
certain order. Given the most recent information provided
by the centralized entity, each device upon its turn computes
a set of best responses and sends its best offloading decision
back to the centralized entity. After receiving the offloading
decision of the device, the centralized entity sends the
updated information about the congestion on the resources
to the next device that is supposed to update its offloading
decision. Observe that at some point in time, according
to Theorem 3 and Theorem 6, the offloading decisions of
all devices will be the same as the ones that they reported
in the previous iteration and the reached state will be a
NE of the MSCOG. Once such a state is reached, the
centralized entity can implement the computed NE by
allocating the communication and cloud resources to the
devices according to their equilibrium offloading decisions.

V. N E S T R U C T U R E A N D P R I C E O F A N A R C H Y

In what follows we characterize the structure of a NE
computed by the MB algorithm and provide a bound on
the price of anarchy of the game.

A. Equilibrium characterization

Recall that by Theorem 2, if a NE exists for T ≥ 1 then
the number of players is balanced across the time slots.

Our next result characterizes a NE computed by the MB
algorithm from the perspective of the number of offloaders
per AP.

Lemma 2. Consider a NE d∗(N−1) computed by the MB
algorithm upon an induction step for some T < N ≤ |N |.
Assume that a new player i enters the game and given
the NE d∗(N − 1) plays its best reply d∗i (N) = (t′, a). If
n(t′,a)(d∗(N − 1)) > n(t,a)(d∗(N − 1)) for the same AP
a and a time slot t ∈ T \ {t′}, then the following holds
(i) n(t,c)(d∗(N − 1)) = n(t′,c)(d∗(N − 1)) + 1,
(ii) A > 2,
(iii) n(t,a)(d∗(N −1) ≥ n(t′,a)(d∗(N −1))− (A−2), and
(iv) if n(t′,a)(d∗(N − 1)) − n(t,a)(d∗(N − 1)) = ka for
1 ≤ ka ≤ A − 2 holds for every AP a ∈ B ⊂ A, B 6= ∅,
then

∑
a∈B ka ≤ A− 2 must hold.

Proof. We start with proving (i). The only reason why
player i would choose to offload through AP a in time slot
t′, which is more congested than AP a in time slot t is that
the cloud in time slot t is more congested than the cloud
in time slot t′, that is, n(t,c)(d∗(N − 1))=n(t′,c)(d∗(N −
1)) + 1 must hold, which proves (i).

We continue by proving (ii). It is easy to see that if
A = {a}, then player i’s best reply has to be a strategy
(t′, a) for which n(t′,a)(d∗(N − 1)) ≤ n(t,a)(d∗(N − 1))
holds. Now, let us assume that A = {a, b}. It follows
from n(t′,a)(d∗(N − 1)) > n(t,a)(d∗(N − 1)) and (i) that
n(t,b)(d∗(N−1)) > n(t′,b)(d∗(N−1))+1, and thus player
j ∈ O(t,b)(d∗(N − 1)) could decrease its cost by changing
the strategy to (t′, b). This contradicts d∗(N − 1) being a
NE, and proves (ii).

Next, we prove (iii). Assume that n(t,a)(d∗(N − 1)) <
n(t′,a)(d∗(N − 1)) − (A − 2) holds, which is equiva-
lent to n(t,c)(d∗(N − 1)) −

∑
b6=a n(t,b)(d∗(N − 1)) <

n(t′,c)(d∗(N − 1))−
∑
b 6=a n(t′,b)(d∗(N − 1))− (A− 2).

It follows from (i) that n(t,c)(d∗(N−1)) = n(t′,c)(d∗(N−
1)) + 1, and thus we have that

∑
b 6=a n(t,b)(d∗(N − 1)) >∑

b6=a n(t′,b)(d∗(N − 1)) +A− 1 holds. Therefore, there
is at least one AP b 6= a such that n(t,b)(d∗(N − 1)) >
n(t′,b)(d∗(N − 1)), and thus player j ∈ O(t,b)(d∗(N − 1))
could decrease its cost by changing the strategy to (t′, b).
This contradicts d∗(N − 1) being a NE, and proves (iii).

Finally, we prove (iv). Assume that
∑
a∈B ka >

A − 2, which implies that
∑
a∈B

(
n(t′,a)(d∗(N − 1)) −

n(t,a)(d∗(N − 1))
)
> A − 2 holds. It follows from

(i) that n(t,c)(d∗(N − 1)) = n(t′,c)(d∗(N − 1)) + 1,
and thus we have that

∑
b∈A\B n(t,b)(d∗(N − 1)) >∑

b∈A\B n(t′,b)(d∗(N−1))+A−1 holds. Therefore, there
is at least one AP b ∈ A\B such that n(t,b)(d∗(N −1)) >
n(t′,b)(d∗(N − 1)), and thus player i ∈ O(t,b)(d∗(N − 1))
could decrease its cost by changing the strategy to (t′, b).
This contradicts d∗(N−1) being a NE, and proves (iv).

Observe that Theorem 2 provides an upper bound on the
number of offloaders per AP for every NE, while Lemma 2
provides a lower bound on the number of offloaders per
AP for a NE computed by the MB algorithm. Therefore, if
n(t,c)(d∗) = n(t′,c)(d∗) + 1, then by Theorem 2 we have
that n(t,a)(d∗) ≤ n(t′,a)(d∗)+1 and by Lemma 2 we have
that n(t,a)(d∗) ≥ n(t′,a)(d∗)− (A− 1).

9

B. Price of Anarchy Bound

We have so far shown that a NE of the MSCOG can
be computed in polynomial time and we characterized
the structure of the computed NE. We now address the
important question how far the system performance would
be from optimal in a NE. We do so by quantifying the
worst case difference between the system performance in a
NE and the optimal performance using the price of anarchy
(PoA). The PoA of the game is defined as the ratio of the
worst case NE cost and the minimal cost, and it can be
expressed as

PoA =
maxd∗

∑
i∈N Ci(d∗)

mind∈D
∑
i∈N Ci(d)

. (13)

We first provide a bound of the PoA for N ≤ T , in fact
we show that a NE is optimal in this case.

Theorem 7. A NE of the MSCOG forN ≤ T is the socially
optimal strategy profile, i.e., PoA = 1 for N ≤ T .

Proof. We start with deriving a lower bound for an optimal
solution d of the MSCOG. The minimum offloading cost
C̄i,a that player i can achieve in d is the cost when it
offloads alone in a time slot t ∈ T , i.e., nt(d) = 1,
through an AP a that provides maximum achievable
uplink rate, i.e., a = arg maxb∈ARi,b. Consequently,
we have that in the case of offloading Ci(d) ≥ C̄i,a
holds. Otherwise, in the case of local computing, i.e., if
di = (t, i), we have that Ci(d) = C0

i . Hence, we have
that Ci(d) ≥ min {C0

i , C̄
c
i,1, . . . , C̄ci,A} holds, and thus

a lower bound on the optimal solution cost is given by∑
i∈N min {C0

i , C̄
c
i,1, . . . , C̄ci,A}, i.e.,

∑
i∈N Ci(d) ≥∑

i∈N min {C0
i , C̄

c
i,1, . . . , C̄ci,A} and the equality holds

for N ≤ T .
We continue with characterizing the cost in a NE d∗ for

N ≤ T . From Theorem 4 it follows that for N ≤ T there is
at most one player per time slot, and thus in a NE d∗ each
player i ∈ N plays its best reply d∗i , where Ci(d∗i , d

∗
−i) =

min {C0
i , C̄

c
i,1, . . . , C̄ci,A}. Therefore, PoA = 1 for N ≤

T , which proves the theorem.

In what follows we give an upper bound on the PoA of
the MSCOG for N > T . We start with the definition of the
set R = T ×{A∪{c}∪N} of all resources in the system,
and the set O(t,i)(d) = {i|di = (t, i)} of players that use
local computing resource i in time slot t. Observe that
either O(t,i)(d) = ∅ or O(t,i)(d) = {i}, i.e., n(t,i)(d) =
|O(t,i)(d)| ∈ {0, 1}, since players do not share their local
computing resources. Furthermore,

∑
t∈T n(t,i)(d) ≤ 1

must hold since every player i ∈ N can choose only one
time slot t ∈ T to perform its task. Next, we introduce the
notion of player specific constants

wi,(t,a) ,
Di

Ri,a
, wi,(t,c) ,

Li
F c

, wi,(t,i) ,
Li
F 0
i

.

For a strategy profile d we define the total weight
w(t,a)(d) associated with AP a in time slot t as
w(t,a)(d) ,

∑
j∈O(t,a)(d) wj,(t,a), the total weight w(t,c)(d)

associated with cloud c in time slot t as w(t,c)(d) ,∑
j∈O(t,c)(d) wj,(t,c) and the total weight w(t,i)(d) as-

sociated with local computing resource i in time slot
t as w(t,i)(d) ,

∑
j∈O(t,i)(d) wj,(t,i). Note that either

w(t,i)(d) = wi,(t,i) = C0
i or w(t,i)(d) = 0 must hold since

j /∈ O(t,i)(d) for j 6= i. Next, using the above notation we
can express the system cost C(d) as

C(d) =
∑
r∈R

∑
i∈Or(d)

nr(d)wi,r =
∑
r∈R

nr(d)wr(d). (14)

Finally, given an optimal strategy profile d, we can express
the PoA of the MSCOG as

PoA =
maxd∗∈D

∑
r∈R nr(d∗)wr(d∗)∑

r∈R nr(d)wr(d)
. (15)

Theorem 8. Consider the MSCOG with N > T . Then
PoA ≤ N + 1.

Proof. Let us denote by Rdi ⊂ R the set of resources that
player i uses in strategy profile d. Then, from the definition
of a NE d∗ we have the following∑
r∈Rd∗

i

nr(d∗)wi,r ≤
∑

r∈Rd∗
i
∩Rdi

nr(d∗)wi,r + (16)∑
r∈Rd∗

i
\Rdi

(
nr(d∗) + 1

)
wi,r ≤

∑
r∈Rdi

(
nr(d∗) + 1

)
wi,r.

By summing inequality (16) over all players i ∈ N we
obtain∑
i∈N

∑
r∈Rd∗

i

nr(d∗)wi,r≤
∑
i∈N

∑
r∈Rdi

(
nr(d∗) + 1

)
wi,r, (17)

and by reordering summations in (17) we obtain∑
r∈R

∑
i∈Or(d∗)

nr(d∗)wi,r≤
∑
r∈R

∑
i∈Or(d)

(
nr(d∗)wi,r + wi,r

)
. (18)

By using the definition of the total weight wr(d) associated
with resource r ∈ R in strategy profile d, we can rewrite
(18) as∑
r∈R

nr(d∗)wr(d∗)≤
∑
r∈R

nr(d∗)wr(d) +
∑
r∈R

wr(d). (19)

Next, observe that nr(d) ≤ N must hold for any feasible
strategy profile d and for every resource r ∈ R, and
that |Or(d)| ≥ 1 implies nr(d) ≥ 1. Therefore, we
have that

∑
r∈R nr(d∗)wr(d) ≤ N

∑
r∈R nr(d)wr(d)

and
∑
r∈R wr(d) ≤

∑
r∈R nr(d)wr(d). By using these

observations in (19) we obtain the following inequality∑
r∈R

nr(d∗)wr(d∗)≤(N + 1)
∑
r∈R

nr(d)wr(d). (20)

Finally, since
∑
r∈R nr(d)wr(d) > 0 must hold, we can

divide the right and the left side of inequality (20) by∑
r∈R nr(d)wr(d) to obtain∑

r∈R nr(d∗)wr(d∗)∑
r∈R nr(d)wr(d)

≤ N + 1. (21)

Since (21) holds for any NE of the MSCOG, it also holds
for the worst case NE, and thus from (15) we have that

PoA ≤ N + 1. (22)

which proves the theorem.

In what follows we investigate the tightness of the above
bound on the PoA of the MSCOG.

Proposition 3. There is an infinite family of instances of

10

the MSCOG for which PoA = N − ε, where

ε =
(N − 1)

∑
i∈N\{k} C

0
i

1
NC

0
k +

∑
i∈N\{k} C

0
i

. (23)

Proof. Consider a MSCOG with T = {t}, N =
{1, 2, ..., N}, A = {a} and cloud c. Furthermore, let us
consider a strategy profile d∗ in which d∗i = (t, a) for
every player i ∈ N . Given the minimum offloading cost
C̄i,a = γTi (Di

Ri,a
+ Li

F c) + γEi Pi,a
Di

Ri,a
that player i can

achieve when it offloads alone, we can express the cost
Ci(d∗) of player i and the system cost C(d∗) in strategy
profile d∗ as Ci(d∗) = NC̄i,a and C(d∗) = N

∑
i∈N C̄i,a,

respectively. Next, let us assume that Ci(d∗) = NC̄i,a =
C0
i holds for every player i ∈ N . It is easy to see that d∗

is a NE of the MSCOG since there is no player i ∈ N
that can decrease its cost by changing the strategy to local
computing. Furthermore, it is easy to see that d∗ is the
worst case NE since all players achieve the same cost as
they achieve in the case of local computing.

Now, let us assume that there is a player k ∈ N such that
C0
k − (N − 1)C̄k,a ≥

∑
i∈N\{k}(C

0
i − C̄i,a) and 2C̄k,a ≥∑

i∈N\{k}(C
0
i − C̄i,a) hold. From the first inequality it

follows that the smallest cost saving that player k can
achieve through offloading is larger than the largest cost
saving that all other players can achieve together and thus
in an optimal solution d we have that k ∈ O(d) must hold.
Furthermore, from the second inequality it follows that the
smallest increase in the offloading cost of player k is higher
that the largest cost saving that all other players can achieve
together, and thus in an optimal solution O(d) = {k} must
hold. Therefore, the minimum system cost C(d) is achieved
if player k is the only one offloading its computation, i.e.,
C(d) = C̄k,a +

∑
i∈N\{k} C

0
i .

Next, let us find a constant ε for which C(d∗) = (N −
ε)C(d) is satisfied, i.e,

N
∑

i∈N
C̄i,a = (N − ε)(C̄k,a +

∑
i∈N\{k}

C0
i). (24)

From (24) we obtain the following

ε =
N
∑
i∈N\{k}(C

0
i − C̄i,a)

C̄k,a +
∑
i∈N\{k} C

0
i

. (25)

Since according to our first assumption C̄i,a = 1
NC

0
i for

every i ∈ N , we can express ε as a function of local
computing costs, i.e.,

ε =
(N − 1)

∑
i∈N\{k} C

0
i

1
NC

0
k +

∑
i∈N\{k} C

0
i

, (26)

which proves the proposition.

Since it is possible to construct an infinite number
of instances of the MSCOG with PoA = N − ε and
limN→∞

N+1
N−ε = 1, we can formulate the following result.

Corollary 3. The upper bound N + 1 on the PoA of the
MSCOG is asymptotically tight.

Proof. To show the tightness of the bound, let consider a
MSCOG with T = {1},N = {1, 2, 3},A = {a} and cloud
c where players aim at minimizing the completion time of
their tasks only, i.e., γTi = 1 and γEi = 0 for every i ∈ N .
Furthermore, let us consider the system with the following

set of parameters: F c = 5 GHz, L1 = 300 Gcycles, L2 =
3 Gcycles, L3 = 6 Gcycles, D1 = 80 Mb, D2 = 2 Mb,
D3 = 4 Mb, R1,a = 2 Mb/s, R2,a = R3,a = 5 Mb/s,
F 0
i = 1 GHz, for i ∈ N . Hence, we have C0

1 = 300,
C0

2 = 3, C0
3 = 6, C̄1,a = 100, C̄2,a = 1, C̄3,a = 2,

ε = 18
109 .

It is easy to verify that d∗=
(
(1, a), (1, a), (1, a)

)
is a

NE in which Ci(d∗)=3C̄i,a=C0
i and C(d∗) = 309 hold.

Furthermore, it is easy to see that d =
(
(1, a), (1, 2), (1, 3)

)
is an optimal solution in which C(d) = 109 holds. Hence,
we have C(d∗)

C(d)
=N−ε= 309

109 ≈ 2.84.

V I . N U M E R I C A L R E S U LT S

In the following we show simulation results to evaluate
the cost performance and the computational efficiency
of the MB algorithm. Similar to [34], [35] we consider
that the devices are placed uniformly at random over a
square area of 1km× 1km, while the APs are placed at
random on a regular grid with A2 points defined over
the area. We consider that the channel gain of device i to
AP a is proportional to d−αi,a , where di,a is the distance
between device i and AP a, and α is the path loss exponent,
which we set to 4 according to the path loss model in
urban and suburban areas [36]. For simplicity we assign
a bandwidth of Ba = 5 MHz to every AP a, and the data
transmit power of Pi,a is drawn from a continuous uniform
distribution on [0.05, 0.18] W according to measurements
reported in [37]. Given the noise power Pn we calculate
the PHY rate Ri,a as Ri,a = Ba log2(1 + Pi,ad

−α
i,a /Pn).

We consider that the uplink rate of a device connected
to an AP a scales directly proportional with the number
of devices offloading through AP a. According to the
specification reported in [38], the clock rate achievable for
NVIDIA Tegra 2 is up to 1 GHz, and thus we consider that
the computational capability F 0

i of device i is uniformly
distributed on [0.5, 1] GHz. Based on the approximate
relative computational parameters for devices and clouds
reported in [39], we consider that the computation capability
of the cloud is F c = 100 GHz and we assume that the
computational capability that a device receives from the
cloud scales inversely proportional with the number of
devices that offload. The input data size Di and the number
Li of CPU cycles required to perform the computation are
uniformly distributed on [0.42, 2] Mb and [0.1, 0.8] Gcycles,
respectively. The consumed energy per CPU cycle vi is set
to 10−11(F 0

i)2 according to measurements reported in [31].
The weights attributed to energy consumption γEi and the
response time γTi are drawn from a continuous uniform
distribution on [0, 1].

We use four algorithms as a basis for comparison for
the proposed MB algorithm. In the first algorithm devices
choose a time slot at random, and implement an equilibrium
allocation within their chosen time slots. We refer to
this algorithm as the RandomSlot (RS) algorithm. The
second algorithm considers that all devices perform local
execution. The third algorithm is a worst case scenario
where all devices choose the same time slot and implement
an equilibrium allocation within that time slot. Observe
that this corresponds to T = 1. In the fourth algorithm,
the offloading decisions of the devices are made according
to a socially optimal strategy profile d∗. We define the

11

1 10 20 30 40 50 60 70 80 90 100

N

1

10

15

20
P
er
fo
rm

a
n
ce

g
a
in

MB

RS

T = 1

T = 5

T = 10

T = 20

Fig. 10. Performance gain vs. the number of devices (N).

1 10 20 30 40 50 60 70 80 90 100

N

0.5

0.6

0.7

0.8

0.9

1

R
a
ti
o
o
f
p
la
y
er
s
th
a
t
o
ffl
o
a
d

MB

RS

T = 1

T = 5

T = 10

T = 20

Fig. 11. Ratio of offloaders vs. the number of devices (N).

1 3 5 7 9 11 13 15

A

1

5

10

15

20

P
er
fo
rm

a
n
ce

g
a
in MB

RS

T = 1

T = 5

T = 10

T = 20

Fig. 12. Performance gain vs. the number of APs (A).

1 2 3 4 5 6 7

N

1

1.5

2

2.5

3

C
o
s
t
r
a
t
io

MB

RS

T = 1

T = 2

T = 3

PoA

PoS

Fig. 13. Cost ratio vs. the number of devices (N).

performance gain of an algorithm as the ratio between
the system cost reached when all devices perform local
execution and the system cost reached by the algorithm and
we define the cost-approximation ratio of an algorithm as
the ratio between the system cost reached by the algorithm
and the system cost reached when all devices choose
offloading decisions according to the socially optimal
strategy profile. Unfortunately, computing the socially
optimal strategy profile was computationally feasible only
for small problem instances due to the combinatorial nature
of the corresponding system cost minimization problem,
which is a 0-1 non-linear program. The results shown
are the averages of 100 simulations, together with 95%
confidence intervals.

A. Performance gain vs. number of devices

We start with evaluating the performance gain as a
function of the numberN of devices forA = 4 APs. Fig. 10
shows the performance gain of the MB algorithm, the RS
algorithm and the deterministic worst case T = 1. The
results show that the performance gain decreases with the
number of devices for all algorithms. This is due to that the
APs and the cloud get congested as the number of devices
increases. The performance gain of the MB algorithm is
up to 50% higher than that of the RS algorithm for T > 1;
the gap between the two algorithms is largest when the
ratio N/T is approximately equal to 4. The reason is that
as T increases the average number of offloaders per time
slot remains balanced in the case of the MB algorithm.
On the contrary, in the case of the RS algorithm some
time slots may be more congested than others, since the
players choose their time slot at random. However, the
average imbalance in the number of offloaders per time
slot decreases as the number of devices increases, thus
the results are similar for large values of N . At the same

time, the performance gain of the MB algorithm compared
to that of the deterministic worst case T = 1 is almost
proportional to the number T of time slots, and shows that
coordination is essential for preventing severe performance
degradation. It is also interesting to note that for T = 1
the performance gain decreases with N at a much higher
rate than for T > 1, which is due to the fast decrease of
the number of offloaders, as we show next.

Fig. 11 shows the ratio of players that offload for the
same set of parameters as in Fig. 10. The results show that
in the worst case, for T = 1, the ratio of players that offload
decreases almost linearly with N , which explains the fast
decrease of the performance gain observed in Fig. 10. On
the contrary, for larger values of T the ratio of players
that offload appears less sensitive to N . We observe that
the ratio of players that offload is in general higher in
equilibrium than in the strategy profile computed by the
RS algorithm, which explains the superior performance of
MB observed in Fig. 10.

B. Performance gain vs number of APs

In order to evaluate the performance gain as a function
of the number A of APs, we consider a system that consists
of N = 50 devices. Fig. 12 shows the performance gain of
the MB algorithm, the RS algorithm and the deterministic
worst case T = 1. We observe that the performance gain
achieved by the algorithms increases monotonically with
the number of APs for all values of T with a decreasing
marginal gain. The reason is that once T ×A ≥ N every
device can offload its task through its favorite AP without
sharing it, and hence the largest part of the offloading cost
comes from the computing cost in the cloud. However, a
small change in the performance gain is still present even
for very large values of A because the density of the APs
over a region becomes larger as A increases, and hence

12

1 100 200 300 400 500 600 700 800

N

200

400

600

800

1000

1200

N
u
m
b
e
r
o
f
It
e
r
a
t
io
n
s

MB

RS

T = 1

T = 5

T = 10

T = 20

Fig. 14. Number of iterations vs. the number of devices (N).

1 100 200 300 400 500 600 700 800

0

10

20

30

40

50

60

70

80

Fig. 15. Strategy profile computing time vs. the number of devices (N).

the channel gain, which depends on the distance between
the device and the APs becomes larger on average. The
results also show that MB always outperforms RS, and its
performance gain compared to that of RS increases with
T . Most importantly, the number of APs required for a
certain performance gain is almost 50% lower using the
MB algorithm compared to the RS algorithm for higher
values of T , i.e., significant savings can be achieved in
terms of infrastructural investments.

C. Cost-approximation ratio vs. number of devices

Fig. 13 shows the average cost-approximation ratio for
the MB and the RS algorithms, and the computed price of
anarchy (PoA) and the price of stability (PoS) as a function
of the number N of devices. The results are shown for three
values of the number T of time slots (i.e. T ∈ {1, 2, 3}) for
a system with A = 4 APs. We show the results only up to
7 devices, because the computation of the socially optimal
strategy profile was infeasible for larger problem instances.
The results show that the MB and the RS algorithms have
the same cost-approximation ratio for all values of N when
T = 1, which is because the two algorithms are equivalent
in this case, and thus they compute the same equilibrium
strategy profiles. On the contrary, for T > 1 and for N > 1,
a strategy profile computed by the RS algorithm is not an
equilibrium, and the cost-approximation ratio of the RS
algorithm is higher than that of the MB algorithm. We can
also observe that the gap between the algorithms increases
with T , which is because the imbalance in the average
congestion per time slot increases with T in the case of
the RS algorithm due to the random time slot selection.
The results also show that for T = 1 the computed PoA
increases linearly with N with a slope lower than 1 and that
for T > 1 the computed PoA remains close to 2. Therefore,
the results indicate that the worst case scenario for which
the PoA of the game is asymptomatically close to N (c.f.
Theorem 8 and Proposition 3 from Section V-B) is not
likely to happen. Finally, we observe that the computed
PoS is equal to 1 in all cases, which suggests that the MB
algorithm is able to compute a socially optimal equilibrium
of offloading decisions.

D. Computational Complexity

In order to assess the computational efficiency of the
algorithms we consider the number of iterations, defined
as the number of induction steps plus the total number of
update steps over all induction steps needed to compute
a strategy profile. Fig. 14 and Fig. 15 show the average

number of iterations and the corresponding average strategy
profile computation time for the MB and the RS algorithms,
respectively. The results are shown as a function of the
number N of devices in a system with A = 4 APs for
four different values of the number T of time slots (i.e.,
T ∈ {1, 5, 10, 20}). The results show that the number
of iterations scales approximately linearly with N for
both algorithms, and indicates that the worst case scenario
considered in Theorem 6 is unlikely to happen. The first
interesting feature of Fig. 14 is that the number of iterations
is slightly less in the case of the MB algorithm than in the
case of the RS algorithm for all values of T , except for
T = 1 for which the two algorithms are equivalent. These
results coincide with the results in Fig. 15 that show that
the MB algorithm is at least as good as the RS algorithm
(i.e. the two algorithms consume the same amount of time
for computing a strategy profile when T = 1 and the MB
algorithm performs better than the RS algorithm for T > 1).
The reason is that in the case of the MB algorithm the
number of offloaders per time slot is more balanced, and
hence the devices have less incentive to deviate when a
new device enters the system, and their updates are always
at least as good as in the case of RS algorithm, since the
MB algorithm allows devices to change between time slots.
On the contrary, in the case of the RS algorithm some of
the time slots may be very congested, and the devices that
offload within these time slots have a higher incentive to
deviate when a new device enters the system. The second
interesting feature of Fig. 14 is that the number of iterations
is smaller for larger values of T for smaller values of N ,
but for larger values of N the results are reversed. The
reason is that for smaller values of N the time slots are
less congested on average as T increases, and hence the
devices do not want to update their strategies so often. On
the contrary, as N increases the benefit of large values
of T becomes smaller, because the congestion per time
slots increases, and hence devices may want to update their
strategies more often.

Finally, Fig. 15 shows the wall clock computing time
of the MB and RS algorithms as a function of the number
of devices N . The results show that the MB algorithm is
faster than the RS algorithm in all cases, and the computing
times are slightly super-linear due to the increasing time
to compute a best response. Overall, we conclude that the
proposed MB algorithm can compute efficient equilibrium
allocations for periodic task offloading at low computational
complexity.

13

V I I . R E L AT E D W O R K

The scheduling of periodic tasks received significant
attention for real-time systems [40], [41], but without
considering communications. Similarly, the scheduling of
communication resources has been considered without
considering computation [42]. Most works that considered
both communication and computation focused on a single
device case [43], [31], [8], [44], [45], and thus they do
not consider the sharing of communication and computing
resources.

Related to our work are recent works on energy efficient
computation offloading for multiple mobile users [46], [47],
[48]. [46] proposed a genetic algorithm for maximizing
the throughput in a partitioning problem for mobile data
stream applications, while [47] considered a two-tiered
cloud infrastructure with user mobility in a location-
time workflow framework and proposed a heuristic for
minimizing the cost of users. [48] considered minimizing
mobile users’ energy consumption by joint allocation of
wireless and cloud resources, and proposed an iterative
algorithm.

A few recent works provided a game theoretic treatment
of the mobile computation offloading problem for a
single time slot [49], [50], [51], [7], [52], [53], [54], [55].
Compared to [49], we characterize the structure of the
computed equilibrium, prove the bound on the price of
anarchy and show an example of a better reply cycle. [50]
considered a two-stage game, where first each mobile user
chooses the parts of its task to offload with the objective to
minimize the energy consumption and the task completion
time, and then the cloud allocates computational resources
to the offloaded parts with the objective to maximize
its profit. [51] considered a three-tier cloud architecture
with stochastic task arrivals, and provided a distributed
algorithm for the computing a mixed strategy equilibrium.
[53] considered tasks that arrive simultaneously and a
single wireless link, and showed the existence of equilibria
when all mobile users have the same delay budget. [7]
showed that assuming a single wireless link and link rates
determined by the Shannon capacity of an interference
channel, the resulting game is a potential game. [52]
extended the model to multiple wireless links and showed
that the game is still a potential game under the assumption
that a mobile user experiences the same channel gain for
all links. [55] considered multiple wireless links, equal
bandwidth sharing and a non-elastic cloud, and provided a
polynomial time algorithm for computing equilibria. Our
work differs significantly from these works, as we consider
the problem of scheduling periodic tasks over time and
across heterogeneous communication resources and to the
best of our knowledge, this is the first work that bridges
the gap between early works on scheduling [41] and recent
works on the resource allocation in computation offloading
systems [7], [55].

From a game theoretical perspective the importance of
our contribution is the analysis of a player-specific network
congestion game for which the existence of equilibria is
not known in general [33], thus the proposed algorithm
and our proof of existence advance the state of the art in
the study of equilibria in network congestion games.

V I I I . C O N C L U S I O N

We provided a game theoretical analysis of computation
offloading in a mobile edge computing system where
devices generate tasks periodically. We proved the existence
of pure strategy Nash equilibria, characterized their structure
and based on our constructive proof we proposed a decen-
tralized algorithm for computing an equilibrium allocation
of offloading decisions. We proved that the proposed
algorithm has a bounded approximation ratio and quadratic
worst case complexity. Our numerical results show that the
performance in an equilibrium computed by the proposed
algorithm is significantly better than in a strategy profile in
which offloading decisions are not coordinated over time.
An interesting open question is whether our results can be
extended to devices with heterogeneous periodicities, we
leave this question subject of future work.

R E F E R E N C E S

[1] I. Stoianov, L. Nachman, S. Madden, and T. Tokmouline, “Pipeneta
wireless sensor network for pipeline monitoring,” in Proc. of IPSN,
2007, pp. 264–273.

[2] L. Xiao and Z. Wang, “Internet of things: A new application for
intelligent traffic monitoring system,” Journal of networks, vol. 6,
no. 6, p. 887, 2011.

[3] M. Ayazoglu, B. Li, C. Dicle, M. Sznaier, and O. I. Camps,
“Dynamic subspace-based coordinated multicamera tracking,” in
2011 International Conference on Computer Vision. IEEE, 2011,
pp. 2462–2469.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing: A key technology towards 5G,” Sep. 2015.

[5] S. R. Group et al., “The leading cloud providers continue to run
away with the market,” Tech. rep, Tech. Rep., 2017.

[6] A. Reznik, R. Arora, M. Cannon, L. Cominardi, W. Featherstone,
R. Frazao, F. Giust, S. Kekki, A. Li, D. Sabella et al., “Developing
software for multi-access edge computing,” ETSI, White Paper,
no. 20, 2017.

[7] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” Proc. of IEEE PDS, pp. 974–983, 2015.

[8] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? The bandwidth and energy costs of mobile cloud computing,”
in Proc. of IEEE INFOCOM, April 2013, pp. 1285–1293.

[9] S. Jošilo and G. Dán, “Selfish decentralized computation offloading
for mobile cloud computing in dense wireless networks,” IEEE
Transactions on Mobile Computing, vol. 18, no. 1, pp. 207–220,
2018.

[10] “IoT ONE: Use Cases,” https://www.iotone.com/usecases.
[11] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the

fog: Towards a comprehensive definition of fog computing,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 5, pp.
27–32, 2014.

[12] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 5, pp. 37–42, 2015.

[13] Q. He, G. Dán, and V. Fodor, “Minimizing age of correlated
information for wireless camera networks,” in INFOCOM WKSHPS,
2018, pp. 547–552.

[14] I. Kadota, A. Sinha, and E. Modiano, “Optimizing age of infor-
mation in wireless networks with throughput constraints,” in IEEE
INFOCOM, 2018, pp. 1844–1852.

[15] Z. Sheng, C. Mahapatra, V. C. Leung, M. Chen, and P. K. Sahu,
“Energy efficient cooperative computing in mobile wireless sensor
networks,” vol. 6, no. 1, pp. 114–126, 2018.

[16] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu,
“Energy-optimal mobile cloud computing under stochastic wireless
channel,” IEEE Transactions on Wireless Communications, vol. 12,
no. 9, pp. 4569–4581, 2013.

[17] C. You, K. Huang, and H. Chae, “Energy efficient mobile cloud
computing powered by wireless energy transfer,” IEEE Journal on
Selected Areas in Communications, vol. 34, no. 5, pp. 1757–1771,
2016.

[18] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling
algorithms with pace,” in ACM SIGMETRICS Perf. Eval. Rev.,
vol. 29, no. 1, 2001, pp. 50–61.

14

[19] ——, “Pace: A new approach to dynamic voltage scaling,” IEEE
Transactions on Computers, no. 7, pp. 856–869, 2004.

[20] W. Yuan and K. Nahrstedt, “Energy-efficient CPU scheduling for
multimedia applications,” ACM Trans. on Computer Systems (TOCS),
vol. 24, no. 3, pp. 292–331, 2006.

[21] A.-B. Shaibu and H. A. Muttlak, “Estimating the parameters of
the normal, exponential and gamma distributions using median and
extreme ranked set samples,” Statistica, vol. 64, no. 1, pp. 75–98,
2004.

[22] T. Hoßfeld, F. Metzger, and P. E. Heegaard, “Traffic modeling for
aggregated periodic iot data,” in Proc. of IEEE ICIN (Workshop),
2018, pp. 1–8.

[23] T. Joshi, A. Mukherjee, Y. Yoo, and D. P. Agrawal, “Airtime
fairness for ieee 802.11 multirate networks,” IEEE Trans. on Mobile
Computing, vol. 7, no. 4, pp. 513–527, 2008.

[24] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Efficient
power control via pricing in wireless data networks,” IEEE Trans.
on Communications, vol. 50, no. 2, pp. 291–303, 2002.

[25] M. Xiao, N. B. Shroff, and E. K. Chong, “A utility-based power-
control scheme in wireless cellular systems,” IEEE/ACM Trans. on
Networking, vol. 11, no. 2, pp. 210–221, 2003.

[26] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” IEEE Trans. on Wireless Communications,
vol. 11, no. 6, pp. 1991–1995, Jun. 2012.

[27] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” IEEE Computer Mag., vol. 43,
no. 4, pp. 51–56, Apr. 2010.

[28] S. Jošilo and G. Dán, “Joint allocation of computing and wireless
resources to autonomous devices in mobile edge computing,” in
Proc. of ACM MECOMM, 2018, pp. 13–18.

[29] ——, “Wireless and computing resource allocation for selfish
computation offloading in edge computing,” in Proc. of IEEE
INFOCOM, 2019, pp. 2467–2475.

[30] S. Jošilo and G. Dán, “Joint management of wireless and computing
resources for computation offloading in mobile edge clouds,” IEEE
Transactions on Cloud Computing, pp. 1–1, 2019.

[31] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,”
in Proc. of IEEE INFOCOM, March 2012, pp. 2716–2720.

[32] I. Milchtaich, “Congestion games with player-specific payoff func-
tions,” Games and Economic Behavior, vol. 13, no. 1, pp. 111 –
124, 1996.

[33] ——, “The equilibrium existence problem in finite network conges-
tion games,” in Proc. of WINE, 2006, pp. 87–98.

[34] E. Balevi and R. D. Gitlin, “Optimizing the number of fog nodes for
cloud-fog-thing networks,” IEEE Access, vol. 6, pp. 11 173–11 183,
2018.

[35] S. Sigg, P. Jakimovski, and M. Beigl, “Calculation of functions on
the rf-channel for iot,” in 2012 3rd IEEE International Conference
on the Internet of Things. IEEE, 2012, pp. 107–113.

[36] A. Aragon-Zavala, Antennas and propagation for wireless commu-
nication systems. John Wiley & Sons, 2008.

[37] E. Casilari, J. M. Cano-García, and G. Campos-Garrido, “Modeling
of current consumption in 802.15. 4/zigbee sensor motes,” Sensors,
vol. 10, no. 6, pp. 5443–5468, 2010.

[38] J. L. Hennessy and D. A. Patterson, Computer architecture: a
quantitative approach. Elsevier, 2011.

[39] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzel-
man, “Cloud-vision: Real-time face recognition using a mobile-
cloudlet-cloud acceleration architecture,” in ISCC, 2012, pp. 59–66.

[40] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Trans. on
Computers, vol. 39, pp. 1175–1185, Sep. 1990.

[41] L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real
time scheduling theory: A historical perspective,” Real-Time Syst.,
vol. 28, no. 2-3, pp. 101–155, Nov. 2004.

[42] I. H. Hou, “Packet scheduling for real-time surveillance in multihop
wireless sensor networks with lossy channels,” IEEE Trans. on
Wireless Comm., vol. 14, no. 2, pp. 1071–1079, Feb 2015.

[43] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer
with code offload,” in Proc. of ACM MobiSys, 2010, pp. 49–62.

[44] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of
computation offloading for mobile systems,” Mob. Netw. Appl.,
vol. 18, no. 1, pp. 129–140, Feb 2013.

[45] E. Hyytiä, T. Spyropoulos, and J. Ott, “Offload (only) the right jobs:
Robust offloading using the Markov decision processes,” in Proc.
of IEEE WoWMoM, Jun. 2015, pp. 1–9.

[46] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework
for partitioning and execution of data stream applications in mobile
cloud computing,” SIGMETRICS Perform. Eval. Rev., vol. 40, no. 4,
pp. 23–32, Apr. 2013.

[47] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos,
“MuSIC: Mobility-aware optimal service allocation in mobile cloud
computing,” in Proc. of IEEE CLOUD, Jun. 2013, pp. 75–82.

[48] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization
of radio and computational resources for multicell mobile-edge
computing,” IEEE T-SIPN, vol. 1, no. 2, pp. 89–103, Jun. 2015.

[49] S. Jošilo and G. Dán, “Decentralized scheduling for offloading
of periodic tasks in mobile edge computing,” in Proc of IFIP
NETWORKING, 2018.

[50] Y. Wang, X. Lin, and M. Pedram, “A nested two stage game-based
optimization framework in mobile cloud computing system,” in
Proc. of IEEE SOSE, Mar. 2013, pp. 494–502.

[51] V. Cardellini et al., “A game-theoretic approach to computation
offloading in mobile cloud computing,” Mathematical Programming,
pp. 1–29, 2015.

[52] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. on
Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[53] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy efficient
offloading for competing users on a shared communication channel,”
in Proc. of IEEE ICC, Jun. 2015, pp. 3192–3197.

[54] X. Ma, C. Lin, X. Xiang, and C. Chen, “Game-theoretic analysis of
computation offloading for cloudlet-based mobile cloud computing,”
in Proc. of ACM MSWiM, 2015, pp. 271–278.

[55] S. Jošilo and G. Dán, “A game theoretic analysis of selfish mobile
computation offloading,” in Proc. of IEEE INFOCOM, May 2017.

Slad̄ana Jošilo is a Ph.D. student at
the Department of Network and Systems
Engineering in KTH, Royal Institute
of Technology. She received her M.Sc.
degree in electrical engineering from the
University of Novi Sad, Serbia in 2012.
She worked as a research engineer at
the Department of Power, Electronics
and Communication Engineering, Uni-

versity of Novi Sad in 2013-2014. Her research interests
are design and analysis of decentralized algorithms for
exploiting resources available at the network edge using
game theoretical tools.

György Dán (M’07, SM’17) is
Professor of Teletraffic Systems at KTH
Royal Institute of Technology, Stock-
holm, Sweden. He received the M.Sc.
in computer engineering from the Bu-
dapest University of Technology and
Economics, Hungary in 1999, the M.Sc.
in business administration from the Corv-
inus University of Budapest, Hungary in

2003, and the Ph.D. in Telecommunications from KTH
in 2006. He worked as a consultant in the field of access
networks, streaming media and videoconferencing 1999-
2001. He was a visiting researcher at the Swedish Institute
of Computer Science in 2008, a Fulbright research scholar
at University of Illinois at Urbana-Champaign in 2012-2013,
and an invited professor at EPFL in 2014-2015. He has
been an area editor of Computer Communications since
2014 and of IEEE Transactions on Mobile Computing
since 2019. His research interests include the design and
analysis of content management and computing systems,
game theoretical models of networked systems, and cyber-
physical system security and resilience.

15

