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Abstract—Fog computing is recognized as a promising ap-
proach for meeting the computational and delay requirements
of a variety of emerging applications in the Internet of Things.
This work presents a game theoretical treatment of the resource
allocation problem in a fog computing system where wireless
devices periodically generate computationally intensive tasks,
and aim at minimizing their own cost.

I . I N T R O D U C T I O N

The emerging paradigm of fog computing brings comput-
ing resources close to the network edge. Placing computing
resources at the network edge in close proximity of end users
and devices may reduce the communication delays and the re-
sponse times, and is expected to enable a variety of emerging
Internet of Things (IoT) applications [1]. Applications that
could benefit most are those in need of periodic execution
of computationally intensive tasks on energy limited devices,
which could be offloaded to fog computing resources, such
as surveillance and augmented reality [2], [3].

The proximity of computing resources to devices is a
prerequisite for predictable and low response times, but it
may not be sufficient. In lack of resource management, when
many devices attempt to offload computations simultaneously
over a shared communication resource, such as a wireless
access point, the communication delays may increase and may
become unpredictable. Furthermore, computing resources
should be allocated so as to match the assignment of
communication resources and computational requirements,
to ensure low response times. Thus, the joint management
of communication and computing resources is essential for
ensuring predictable and low response times for computation
offloading.

Joint resource management for fog computing systems,
is, however challenging for several reasons. First, fog com-
puting systems are expected to consist of devices that are
heterogeneous in terms of their computational capabilities
and battery capabilities, and thus devices could have different
preferences over the energy consumption and the application
response times. Second, the different devices may generate
computational tasks that are very different in terms of the
amount of data needed to be transmitted and in terms of their
complexity. Furthermore, there may be many devices that
periodically generate computational tasks with low response
time requirements, and thus the tasks have to be scheduled
over time and across communication resources. Finally,
devices may be autonomous, and hence resource management
should respect their individual preferences.

Fig. 1. An example of a fog computing system that consists of N = 5
devices, T = 2 time slots, and A = 2 APs.

In this work we address the problem of managing the
communication and computing resources in a fog computing
system for computation offloading, and we use game theoret-
ical tools for designing an efficient decentralized algorithm
for coordinating the decisions of devices with periodic tasks.

I I . S Y S T E M M O D E L A N D P R O B L E M F O R M U L AT I O N

We consider a fog computing system that consists of a set
N of devices that generate computationally intensive tasks
periodically every T time units, a set A of APs and an edge
cloud. We consider that each device can choose one time slot
from the set T ={1, 2, . . . , T} to perform the computation,
and within the chosen time slot it can decide whether or not
to offload the computation to the cloud via one of the APs
a ∈ A. We denote by di ∈ Di the decision of device i, where
Di ={A∪{0}×T }, and 0 corresponds to local computing.

Task model: Device i’s task <Di, Li> is characterized
by two parameters, the mean size Di of the input data and
by the complexity Li, which is defined as the mean number
of CPU cycles required to perform the computation.

Communication model: When it offloads the task, each
device i has to transmit the input data of size Di via one of
the APs. We consider that the uplink rate that device i can
achieve if it offloads the task via AP a in time slot t is a
non-incrasing function of the number of devices that offload
via the same AP a in the same time slot t. Thus, the time
needed for device i to transmit Di amount of data via AP
a in time slot t and the corresponding energy consumption
are non-decreasing functions of the number of devices that
offload via the same AP a in the same time slot t.

Computation model: In the case of local computing, we
consider that the computational capability F 0

i of device i is
the same in each time slot t. Hence, the time needed for
device i to perform its task and the corresponding energy
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Fig. 2. Performance gain vs. number of devices (N ).
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Fig. 3. Ratio of offloaders vs. number of devices (N ).

consumption are independant of the chosen time slot. In
the case of computation offloading, we consider that the
computational capability F c of the cloud is the same in each
time slot t, but that the computational capability that device i
would receive from the cloud in time slot t is a non-increasing
function of the total number of devices that offload in the
same time slot t. Thus, the time needed for the cloud to
perform device i’s task depends on the chosen time slot t,
and we consider that it is a non-decreasing function of the
total number of devices that offload in the same time slot t.

Cost model: We consider that each device is interested in
minimizing the response time and the corresponding energy
consumption, and we define device i’s cost Ci as a linear
combination of its response time and its energy consumption.

Game theoretical formulation of the problem: Since devices
may be autonomous entities that aim at minimizing their
own cost, we model the problem as a strategic game Γ=<
N , (Di)i, (Ci)i>, in which the players are the devices, and
we refer to the game as the multi-slot computation offloading
game (MSCOG). Our objective is to answer the fundamental
question whether there exists a strategy profile in which there
is no device that can decrease its cost by changing its strategy,
i.e., a pure strategy Nash equilibrium (NE).

Figure 1 shows an example of a fog computing system
where five devices can choose one slot out of two time slots to
perform the computation and in the chosen time slot devices
can offload their tasks via one of two APs.

I I I . A N A LY T I C A L R E S U LT S

Single time slot: We show that the MSCOG for T=1 is best
response equivalent to a singleton player specific congestion
game, and thus it possesses a pure strategy NE. Nonetheless,
improvement paths may be cyclic and thus the MSCOG does
not allow a generalized ordinal potential function.

Multiple time slots: For T > 1 the best-response equiva-
lence does not hold, but as we prove the MSCOG possesses a
pure strategy NE for any T ≥1. Our constructive equilibrium
existence proof is based on the MyopicBest (MB) algorithm,
which adds devices one at a time, and lets them play their
best replies given the other devices’ strategies. We prove that
the algorithm has polynomial time complexity, and it can
be implemented in a decentralized manner. Consequently,
devices do not need to reveal their parameters, but only their
most recent decisions.

Structure of NE: We also characterize the structure of NE
in general, and we give insight into the structure of the NE
computed by the proposed MB algorithm. Based on these

structural results, we have established a bound on the price
of anarchy of the strategic game, which serves as the cost
approximation ratio for the MB algorithm.

I V. N U M E R I C A L R E S U LT S

We use extensive simulations to evaluate the performance
of the MB algorithm. We consider that the devices are placed
uniformly at random over a square area of 1km× 1km, and
A = 5 APs are placed at random on a regular grid with 25
points defined over the area. As a baseline for comparison we
use two algorithms. The first (RandomSlot (RS)) algorithm
lets each device choose a time slot at random, and implements
an equilibrium allocation within each time slot. The second
algorithm lets all devices perform local execution. We define
the performance gain of an algorithm as the ratio between the
system cost reached when all devices perform local execution
and the system cost reached by the algorithm.

Fig. 2 shows the performance gain as a function of the
number N of devices for four different values of T . The
results show that the MB and the RS algorithms can provide
significant gains compared to local execution. However, the
MB algorithm outperforms the RS algorithm for all values
of N and for all values of T except for T = 1 when the two
algorithms are equivalent. Therefore, coordination between
devices is essential for improving the performance of fog
computing systems.

Fig. 3 shows the ratio of devices that offload for T = 10.
The results show that for N > 1 the ratio of devices that
offload is always higher in the case of the MB algorithm than
in the case of the RS algorithm. Hence, coordination between
devices allows more devices to offload their tasks, and thus
it improves the utilization of fog computing resources.

V. C O N C L U S I O N

Our results show that game theoretical tools can be used
for designing efficienct algorithms for the joint management
of communication and computing resources in fog computing
systems, and that coordination between devices can provide
significant performance gains and improve resource utiliza-
tion.
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