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ABSTRACT
We consider the interaction between mobile edge computing (MEC)

resource management and wireless devices that offload computa-

tionally intensive tasks through shared wireless links to edge cloud

servers, so as to minimize their completion times. We model the

interaction between the devices and the operator that optimizes the

allocation of the wireless and computing resources as a Stackelberg

game. We show that a pure strategy Stackelberg equilibrium exists,

and we provide an efficient algorithm for computing equilibrium

allocations. Our simulation results show that joint optimization

of the wireless and computing resources can provide a significant

reduction of completion times at little increase in computational

complexity compared to a system where resource allocation is not

optimized.

1 INTRODUCTION
Mobile edge computing (MEC) brings computing resources close

to the network edge, and is expected to meet the low response

time requirements of emerging computationally intensive applica-

tions [1, 2]. It is thus considered to be a key enabler for emerging

IoT applications, including automated surveillance, augmented real-

ity, autonomous vehicles, and industrial monitoring [3, 4]. Despite

the proximity of the computing resources, when many devices use

the limited wireless and computing resources simultaneously, the

application response times could deteriorate [5, 6]. Thus, in or-

der to ensure low response times, the wireless and the computing

resources will have to be managed jointly.

The joint management of wireless and computing resources is

inherently challenging for various reasons. First, the computational

tasks generated by different devices might differ significantly in

terms of the amount of the input data needed to be transmitted, and

in terms of the computational complexity. Hence, resource manage-

ment has to accommodate heterogeneous wireless and computing

requirements. Second, the devices competing for the resources are

often autonomous entities, and thus the resource allocation should

be compatible with the devices’ individual interests. Third, in case

of a dense deployment of wireless access points and multiple edge

clouds, the offloading choices of individual devices have to be coor-

dinated so as to achieve good overall performance, while respecting

the interests of the devices and of one or more cloud providers.

Most previous works followed a centralized approach for man-

aging the wireless and computing resources, so as to maximize

the performance of the devices in terms of response time and en-

ergy consumption, without considering the devices’ interests [7–

9]. Recognizing the importance of the potential autonomy of the

devices [10, 11], a few recent works proposed to coordinate the

offloading decisions of the devices in a decentralized manner based

on game theoretical models [12–15], but without considering the

objectives of the cloud providers. There is thus a lack of a frame-

work for modeling the joint resource allocation problem of cloud

providers and autonomous devices, and we lack efficient algorithms

for managing the wireless and computing resources in a way that

is compatible with the interests of operators and devices alike.

In this work we propose to bridge this gap. We consider the

interaction between an operator that jointly optimizes the allocation

of wireless and cloud computing resources and autonomous devices

that aim at minimizing the response times of their own applications.

We formulate the problem as a multiple leader common follower

Stackelberg game, played by the devices as leaders and the operator

as follower. We provide a closed form solution for the operator’s

best response, and we show that a pure Stackelberg equilibrium

exists. Our constructive proof is based on transforming a player

specific congestion game into a weighted congestion game, and

serves as an efficient algorithm for coordinating the offloading

decisions of the devices, given the optimal policy of the operator

for allocating wireless and cloud computing resources.

The rest of the paper is organized as follows. Section 2 describes

the system model. In Section 3 we present the optimal resource allo-

cation policy and an efficient algorithm for computing equilibrium

offloading decisions of devices. In Section 4 we present numerical

results, and Section 5 concludes the paper.

2 SYSTEMMODEL AND PROBLEM
FORMULATION

We consider a mobile edge computing (MEC) system that consists of

N devices, C mobile edge clouds, and A access points (APs). We de-

note byN = {1, 2, . . . ,N }, C = {1, 2, . . . ,C} andA = {1, 2, . . . ,A}
the set of devices, mobile edge clouds and APs, respectively. We

denote by Ac ⊆ A the set of APs through which devices can com-

municate with cloud c ∈ C. We consider that each device i ∈ N
generates computationally intensive tasks, and we characterize

device i’s task by two parameters, the mean size Di of the input

data and the mean number Li of CPU cycles required to perform

the computation. Previous works have shown that the number X
of CPU cycles required per data bit can be modeled by a Gamma

distributed random variable [16, 17], and hence we can express

Li = DiE[X ], based on the empirical mean E[X ].
To facilitate the analysis, we make the common assumption

that the set of devices changes slowly [7, 18, 19]. Considering the

potential autonomy of the devices [10, 11], every device i ∈N is

allowed to make the offloading decision by itself, i.e., it can decide

to which cloud c ∈C to offload its task and for the chosen cloud c
through which of the APs a ∈Ac to transmit Di amount of data

pertaining to its task. Therefore, the set of feasible decisions for

device i isDi = {(c,a)|c ∈C,a ∈Ac }. We refer to decision di ∈Di of
device i as its strategy, and we refer to the collection d= (di )i ∈N as

a strategy profile, i.e., d∈×i ∈NDi .



AP1

MUd Rd,3

MUa

1

 

 

C1

C2

Fc

2Fc

AP3

Ra,3

AP2

MUb

MUc

MUe
Re,1

Rb,2

Rc,2

Figure 1: An example of a MEC system that consists of N = 5 devices, C = 2

edge clouds and A = 3 APs.

For a strategy profile d, we define the set Oa (d) ≜ {i |di = (·,a)} of
offloaders for AP a and the set Oc (d) ≜ ∪a∈AcOa (d) of offloaders

for cloud c . We use na (d) ≜ |Oa (d)| to denote the number of

offloaders that offload the task through AP a, and nc (d) ≜ |Oc (d)|
to denote the number of offloaders that offload the task to cloud c .

2.1 Wireless and Computing Resources
In what follows we introduce our model of sharing wireless and

cloud computing resources in theMEC computing system presented

above.

2.1.1 Wireless resource management. We denote by Ri,a the

PHY rate that is achievable to device i when it offloads its task

via AP a, and we consider that Ri,a depends on the physical layer

signal characteristics and the wireless channel state. Furthermore,

we consider that the actual rate at which device i can offload its

data via AP a is determined by the rate allocation policy of AP

a. To define the policy, we introduce the uplink access provision-

ing coefficient bi,a (d) for every device i∈Oa (d) and we denote by

ba = (bi,a )i ∈Oa (d) the collection of uplink access provisioning coef-

ficients for all devices i∈Oa (d). Given ba , the uplink rateωi,a (d, ba )
of device i at AP a can be expressed as

ωi,a (d, ba ) = Ri,a/
(
bi,a (d)na (d)

)
. (1)

Observe that if bi,a (d) = 1 for all i ∈ Oa (d), (1) can be used to

model throughput sharing mechanisms in TDMA and OFDMA

based MAC protocols [20].

2.1.2 Computing resource management. After the data are trans-
mitted via AP a∈Ac , the task is performed in the chosen cloud c .
We denote by Fc the computing capability of cloud c . We consider

that the computing capability of cloud c is actively allocated among

devices that use it, and to define the allocation policy we define

the computing power provisioning coefficient pi,c (d) for every de-

vice i∈Oc (d) and we denote by pc = (pi,c )i ∈Oc (d) the collection of

computing power provisioning coefficients for all devices i∈Oc (d).
Given pc , the computing capability Fci (d,pc ) allocated to device i
by cloud c can be expressed as

Fci (d,pc ) = Fc/
(
pi,c (d)nc (d)

)
. (2)

Fig. 1 shows an example of a MEC system that consists of 5 devices,

2 edge clouds and 3 APs. Devices a,d and b offload their tasks to

cloud c1 (devices a and d through AP3 and device b through AP2),
and devices c and e offload their tasks to cloud c2 through AP2 and
AP1, respectively.

2.2 Cost Model
We define the cost of device i as the completion time of its task,

which consists of two parts. The first part is the time needed to

transmit Di amount of data, and the second part is the time needed

to perform device i’s task at the cloud server. Thus, in the case of

offloading to cloud c through AP a ∈Ac , the cost C
c
i,a (d, ba ,pc ) of

device i can be expressed as

Cci,a (d, ba ,pc ) = Di/ωi,a (d, ba ) + Li/Fci (d,pc ). (3)

In (3)we made the common assumption that the time needed to

transmit the results of the computation from the cloud to the device

can be neglected [12, 21, 22], as for typical applications (e.g., face

and speech recognition), the size of the result of the computation

is much smaller than Di .

Using the above notation, the cost Ci (d, ba ,pc ) of device i can
be expressed as

Ci (d, ba ,pc )=
∑

c ∈C

∑
a∈Ac

I (di ,(c,a))Cci,a (d,ba ,pc ), (4)

where I (di ,d) = 1 if di = d and I (di ,d) = 0 otherwise.

We use the shorthand notation b ≜ (ba )a∈A and p ≜ (pc )c ∈C ,
and we define the system cost C(d, b,p) as

C(d, b,p) =
∑

i ∈N Ci (d, ba ,pc ). (5)

2.3 Problem Formulation
We consider that the autonomous devices compete for the wireless

and cloud computing resources of the MEC system, managed by

an operator.

The objective of the operator is to jointly optimize the allocation

of the wireless and cloud computing resources, given the offloading

decisions of the devices. Given a strategy profile d chosen by the de-

vices, the operator optimizes the allocation of the wireless and cloud

computing resources through applying the optimal provisioning

coefficients b∗ and p∗ computed by solving

minb,p⪰0C(d, b,p) (6)

s.t.

∑
j ∈Oa (d)

1

bj,a (d)
= na (d), ∀a ∈ A (7)∑

j ∈Oc (d)
1

pj,c (d)
= nc (d), ∀c ∈ C (8)

where constraints (7) and (8) ensure the feasibility of sharing the

wireless and computing resources, respectively.

The objective of every device is to minimize its own cost (4),

given the allocation policy of the operator, that is, each device aims

at solving

mindi ∈Di Ci (di ,d−i , b
∗
a ,p
∗
c ), (9)

where we use d−i to denote the strategies of all devices except

device i .
We can model (6)-(8) and (9) together as a multi-leader-common-

follower Stackelberg game, played by the devices as leaders and

the operator as follower. We refer to the problem as themobile edge
computation offloading game (MEC-OG). Our objective is to answer

the fundamental question whether the MEC-OG has a subgame

perfect equilibrium, i.e., a combination of computation offloading

strategy profile and allocation policy fromwhich neither the devices

nor the operator have an incentive to deviate.

Definition 1 (SPE). Let (b∗,p∗) be a solution of (6)-(8), and d∗i be

a solution of (9). Then the point (d∗, b∗,p∗) is a subgame perfect



equilibrium (SPE) of the MEC-OG if for any feasible (d, b,p) point
the following holds

C(d∗, b∗,p∗) ≤ C(d∗, b,p),
Ci (d∗i ,d

∗
−i , b

∗
a ,p∗c ) ≤ Ci (di ,d∗−i , b

∗
a ,p∗c ),∀di ∈Di ,∀i ∈N .

Second, we want to understand whether such an equilibrium

can be computed efficiently, in terms of computational complexity

and signaling.

3 EXISTENCE OF STACKELBERG EQUILIBRIA
We start the analysis by considering the problem (6)-(8) of the

operator, and then we consider the problem to be solved by the

devices.

3.1 Optimal Resource Allocation Policy
The optimal allocation policy of the operator, i.e., the solution to

(6)-(8), is its best response to the strategy profile d chosen by the

devices. The following result shows that the optimal policy can be

expressed in closed form.

Theorem 1. Consider a strategy profile d. The optimal uplink
access provisioning coefficients b∗i,a (d) and the optimal computing
power provisioning coefficients p∗i,c (d) are given by

b∗i,a (d)=
∑
j ∈Oa (d)

√
D j/Rj,a

na (d)
√
Di/Ri,a

,∀i ∈Oa (d),∀a ∈A, (10)

p∗i,c (d)=
∑
j ∈Oc (d)

√
Lj/Fc

nc (d)
√
Li/Fc

,∀i ∈ Oc (d),∀c ∈ C. (11)

Proof. Let us substitute (1)-(2) into (3) to obtain

C(d, b,p)=
∑
j ∈N

∑
c ∈C

∑
a∈Ac

( D j

Rj,a
bj,a (d)na (d) +

Lj

Fc
pj,c (d)nc (d)

)
.

Thus, the problem (6)-(8) is a convex optimization problem, and

the optimal solution must satisfy the Karush–Kuhn–Tucker (KKT)

conditions. In order to formulate the dual of the problem, we express

the Lagrangian associated with (6)-(8) as

L(d, b,p,α , β,γ ,δ) = C(d, b,p) +∑
a∈Aαa

(∑
j ∈Oa (d)

1

bj,a (d)−na (d)
)
−∑a∈A

∑
j ∈Oa (d)γj,abj,a (d)+∑

c ∈Cβc
(∑

j ∈Oc (d)
1

pj,c (d)−nc (d)
)
−∑c ∈C

∑
j ∈Oc (d)δj,cpj,c (d),

where α and β are dual variables associated with constraints (7)

and (8) andγ and δ are non-negative dual variables associated with

constraints b ⪰ 0 and p ⪰ 0.

The Lagrangian dual problem is then defined asmaxα ∈RA,β ∈RC ,γ,δ ⪰0
minb,p⪰0 L(d, b,p,α , β,γ ,δ), and the KKT conditions can be writ-

ten as follows

Stationarity:

∂L(d,b,p,α ,β,γ,δ )
∂bi,a (d) =0,∀a ∈A,∀i ∈Oa (d),

∂L(d,b,p,α ,β,γ,δ )
∂pi,c (d) =0,∀c ∈C,∀i ∈Oc (d), (12)

Primal

∑
j ∈Oa (d)

1

bj,a (d) =na (d),∀a ∈A,
feasibility:

∑
j ∈Oc (d)

1

pj,c (d) =nc (d),∀c ∈C, (13)

Dual feasibility: γi,a ,δi,c ≥ 0,∀i ∈ N ,∀a ∈ A,∀c ∈ C, (14)

Complementary −γi,abi,a (d)=0,∀a ∈A,∀i ∈Oa (d),
slackness: −δi,cpi,c (d)=0,∀c ∈ C,∀i ∈Oc (d). (15)

From (12), we have

bi,a (d) =
√

αa
na (d)Di/Ri,a + γi,a

,∀a ∈ A,∀i ∈ Oa (d), (16)

pi,c (d) =
√

β

nc (d)Li/Fc + δi,c
,∀c ∈ C,∀i ∈ Oc (d). (17)

First, observe that bi,a (d) > 0 and pi,c (d) > 0 must hold in

order to have (13) satisfied. Consequently, γi,a = 0 and δi,c = 0

must hold in order to have (15) satisfied. Substituting bi,a (d) =√
αaRi,a
na (d)Di

and pi,c (d) =
√

βF c
nc (d)Li to equations in (13) we have

√
αa =

∑
j∈Oa (d)

√
D j /Rj,a√

na (d)
and

√
β =

∑
j∈Oc (d)

√
Lj /F c√

nc (d)
, respectively.

Hence, bi,a (d) =
∑
j∈Oa (d)

√
D j /Rj,a

na (d)
√
Di /Ri,a

and pi,c (d) =
∑
j∈Oc (d)

√
Lj /F c

nc (d)
√
Li /F c

follow, which proves the theorem. □

Theorem 1 provides a closed form optimal allocation policy for

a strategy profile d as a function of the characteristics of the tasks

of the devices that share a wireless or computing resource, and can

be made known to the devices a priori.

3.2 Computing an Equilibrium Strategy Profile
We continue with modeling the interaction among the autonomous

devices, given that the operator implements its optimal resource

allocation policy.

Theorem 2. Given the optimal resource allocation policy of the
operator, the strategic interaction of the devices can be modeled as a
congestion game with resource dependent weights.

Proof. Let us define the link dependentweightswi,a ≜
√
Di/Ri,a

for each i ∈ Oa (d) and the cloud dependent weightswi,c ≜
√
Li/Fc

for each i ∈ Oc (d). Using this notation, and substituting (10) and

(11) into (3), the offloading cost of device i to cloud c through AP a
can be rewritten as

Cci,a (d) = wi,a
∑

j ∈Oa (d)
w j,a +wi,c

∑
j ∈Oc (d)

w j,c . (18)

Since the offloading cost (18) depends on the total weightwa (d) =∑
j ∈Oa (d)w j,a of all devices sharing AP a and the total weight

wc (d) =
∑
j ∈Oc (d)w j,c of all devices sharing cloud c , the interaction

between the devices can be modeled as a weighted congestion game
with resource-dependent weights, which proves the theorem. □

We refer to the resultingweighted congestion game Γ=<N , (Di )i ,
(Ci )i > as the devices computation offloading game (DC-OG), in

which the players are devices, and the cost of each device i is given
by

Ci (d)=
∑

c ∈C

∑
a∈Ac

I (di , (c,a))Cci,a (d), (19)

where Cci,a (d) is given by (18). Note that Γ is a strategic game.

In what follows we answer the fundamental question whether

the DC-OG has a pure strategy Nash equilibrium.

Definition 2. A pure strategy Nash equilibrium (NE) is a strategy

profile d∗ in which all players play their best replies to each others’

strategies, that is,

Ci (d∗i ,d
∗
−i ) ≤ Ci (di ,d∗−i ),∀di ∈ Di ,∀i ∈ N .



Given a strategy profile d = (d ′i ,d−i ), an improvement step of

device i is a strategy d ′i such that Ci (d ′i ,d−i ) < Ci (di ,d−i ). A best
improvement step is an improvement step that is a best reply.

Before we formulate our next result let us recall the definition

of an exact potential function from [23].

Definition 3. A function Φ : ×i (Di ) → R is an exact potential

for a finite strategic game Γ =< N , (Di )i , (Ci )i > if for any arbi-

trary strategy profile (di ,d−i ) and for any improvement step d ′i the
following holds

Ci (d ′i ,d−i )−Ci (di ,d−i )=Φ(d
′
i ,d−i )−Φ(di ,d−i ). (20)

We continue by introducing the following shorthand notation,

w≤ir (d)=
∑
{j ∈N |j≤i,r ∈dj ,r ∈di ,r ∈A∪C}

w j,r .

Let us now recall the following result about weighted congestion
games with resource-dependent weights.

Lemma 3. [24] Let Γ be a weighted congestion game with resource-
dependent weights in which the players compete over a finite set R of
resources. Then, Γ has an exact potential function Φ(d) if and only if
the cost cr of sharing every resource r ∈ R is an affine function of the
congestion on resource r ∈ R, i.e, cr (d) = ar

∑
{j ∈N |r ∈dj }w j,r + br ,

ar ,br ∈ R. The potential function Φ(d) is given by

Φ(d) =
∑

i ∈N

∑
r ∈di

c≤ir (d)wi,r , (21)

where c≤ir (d) = arw
≤i
r (d) + br .

We can now formulate the following result on equilibrium exis-

tence.

Theorem 4. The DC-OG is an exact potential game with the exact
potential function as given in (21), and hence it possesses a pure
strategy Nash equilibrium.

Proof. Observe that the cost ca (d)=
∑
j ∈Oa (d)w j,a of sharing

AP a and the cost cc (d) =
∑
j ∈Oc (d)w j,c of sharing cloud c are

identity functions of the congestion on AP a and the congestion on

cloud c , respectively. Since the identity function is affine, Lemma 3

applies, which proves the theorem. □

The existence of an exact potential function allows us to compute

a NE of the DC-OG using the ImproveOffloading (IO) algorithm,

shown in Fig. 2. The algorithm adds devices one at a time, and lets

them perform their best improvement steps given the other devices’

strategies.

Corollary 1. The IO algorithm converges to an equilibrium allo-
cation d∗ in a finite number of improvement steps.

Proof. First, observe that since the number of devices is finite,

the number of induction steps in which a new device is added by

the IO algorithm is finite too. Second, since the DC-OG is an exact

potential game, it follows from (20) that the decrease in a device’s

cost due to its best improvement update step results in exactly the

same amount of decrease in the potential function Φ defined by

(21). Since ×i (Di ) is a finite set, Φ cannot decrease indefinitely and

thus the IO algorithm must terminate in an equilibrium allocation

upon every induction step, which proves the result. □

d = IO(N)
1: N ′ ← ∅
2: for N = 1, . . . , |N | do
3: i ← N , N ′ = N ′ ∪ {i}
4: d∗i (N ) = argmini ∈Di Ci (di ,d

∗(N − 1))
5: d = (d∗i (N ),d

∗(N − 1))
6: while ∃j∈{N ′ |dj ,argmind ′j ∈DjCj (d ′j ,d−j )} do
7: d∗j = argmind ′j ∈Dj Cj (d ′j ,d−j )
8: d = (d∗j ,d−j )
9: end while
10: d∗(N ) ← d
11: end for
12: return d

Figure 2: Pseudo code of the IO algorithm.
Finally, we can formulate our main result concerning the exis-

tence of a SPE of the MEC-OG.

Proposition 1. The SPE for the MEC-OG is the point (d∗, b∗, p∗),
where d∗ is computed by the IO algorithm, and b∗ and p∗ are defined
according to (10) and (11), respectively.

Proof. The proof of the proposition follows from the proofs of

Theorem 1 and Corollary 1, respectively. □

3.3 Implementation considerations
In practice, computing the SPE can be implemented as follows. First,

with the obtained information about the resource allocation mecha-

nism implemented at the operator side, the devices implement a NE

in a decentralized manner by performing improvement steps one at

a time according to the IO algorithm. Each device reports its offload-

ing decision to the operator, which sends the information about the

congestion on the wireless and cloud computing resources back to

the devices. Based on the received information, devices may update

their offloading decisions one at a time. According to Corollary 1,

the devices will stop updating their offloading decisions within a

finite number of improvement steps, and thus they will converge

to a NE. Second, given the computed NE, the operator allocates the

wireless and cloud computing resources to the devices optimally

according to (10) and (11). After the resource provisioning is done,

neither the devices nor the operator would have an incentive to

deviate, and thus the system reaches the SPE.

4 NUMERICAL RESULTS
We use extensive simulations to evaluate the cost performance of

the system in which the operator allocates the wireless and cloud

computing resources according to the optimal allocation (OA) policy,
and the devices implement their offloading decisions according to

the IO algorithm.We consider that the devices and clouds are placed

uniformly at random over a square area of 1km × 1km, while the

APs are placed at random on a regular grid with A2
points defined

over the area. We consider that the channel gain of device i to an

AP a is proportional to d−αi,a , where di,a is the distance between

device i and AP a, and α is the path loss exponent, which we set to 4

according to the path loss model in urban and suburban areas [25].

For simplicity we assign a bandwidth of Ba =5 MHz to every AP

a. We set the data transmit power P ti of every device i to 0.4 W
according to [26] and given the noise power Pn we calculate the

transmission rate Ri,a achievable to device i for the communication
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Figure 3: The performance gain vs. number of devicesN forA = 5. The results
shown are the averages of 1000 simulations, together with 95% confidence
intervals.

with AP a as Ri,a =Baloд(1+P ti d
α
i,a/Pn ). Unless otherwise noted,

we consider a system with A = 5 APs and clouds with the same

computing capability Fc = 64GHz [27]. The input data size Di is

uniformly distributed on [0.2, 4] Mb and we calculate the number

Li of CPU cycles required to perform the computation as Li =DiX ,

where the number X of CPU cycles required per data is a Gamma

distributed random variable with the shape parameter k = 0.5 and

scale parameter θ = 1.6.

As a baseline for resource sharing we use an equal resource

allocation policy, according to which the devices receive the same

amount of the shared resource. We refer to this policy as the equal
allocation (EA) policy. Given that the operator implements the EA

policy, the devices are playing a player-specific congestion game on
a network made of two parallel networks connected in series. It

follows from Theorem 2 in [28] that the resulting game has a pure

strategy Nash equilibrium and from Theorem 1 in [28] that the

equilibrium offloading strategy profile d∗ can be computed using

the IO algorithm.

In order to evaluate the performance of the proposed IO algo-

rithm, we use a simple fastest-link nearest-cloud (FLNC) algorithm,

according to which devices offload their computation through the

AP that provides the highest achievable transmission rate and to

the cloud with the shortest distance to the chosen AP.

For a resource allocation policy P and the offloading strategy

profile dA computed by an algorithm A we define the performance
gain as

CEA(dFLNC )
CP (dA) ,

where CP (dA) is the system cost reached when the operator im-

plements the resource allocation policy P , and the devices compute

their offloading decisions according to the algorithm A.

4.1 User focused performance analysis
We start with evaluating the performance gain as a function of

number N devices. Fig. 3 shows the performance gain achieved by

the IO algorithm under the OA policy, the performance of the IO

algorithm under the EA policy, and the performance of the FLNC

algorithm under the OA policy in a system with C = 1, C = 2 and

C = 3 clouds.

The results show that the performance gain increases with a

decreasing marginal gain in N , showing that the achievable perfor-
mance gain is limited by the number of devices, i.e., by the conges-

tion on the wireless and cloud computing resources. We observe

that the performance gain is largest when the operator implements

the OA policy, and the devices compute their equilibrium offloading

decisions using the IO algorithm. Furthermore, we observe that the

performance gain achieved by the FLNC algorithm under the OA

policy is significantly higher than the performance gain achieved

by the IO algorithm under the EA policy. This suggests that the

choice of the resource allocation policy has a large impact on the

system performance.

We also observe that when the offloading decisions are calcu-

lated using the IO algorithm, the performance gain increases with

the number of clouds for both resource allocation policies. This

is due to that for larger number of clouds the offloading strategy

profile computed by the IO algorithm and the offloading strategy

profile computed by the FLNC algorithm might differ significantly.

Consequently, the performance gain becomes more dominated by

the offloading strategy profile than by the resource allocation policy.

On the contrary, when the offloading decisions are calculated using

the FLNC algorithm and the operator implements the OA policy,

the performance gain decreases as the number of clouds increases.

This is due to that the performance gain is determined only by the

implemented resource allocation policy (the offloading decisions

are calculated using the FLNC algorithm as in the case of the used

baseline), and since the impact of the resource allocation policy

decreases as the number of clouds increases, the performance gain
decreases too.

4.2 Cloud focused performance analysis
We look at the system from a cloud perspective by considering

the number nc (d) of offloaders per cloud and by considering the

cost per cloud, which we define for a strategy profile d as Cc (d)=∑
i ∈Oc (d)Ci (d). In the following we consider a system with three

clouds with computing capabilities 100GHz, 64GHz, and 32GHz,
respectively.

Figures 4 and 5 show nc (d) and Cc (d), respectively, for each of

the clouds as a function of N . The results are shown for all possible

combinations of the introduced resource allocation policies and

the introduced algorithms for computing the offloading strategy

profile. Fig. 4 shows that when the offloading strategy profile is

computed using the FLNC algorithm, the devices are almost equally

distributed among the clouds. This is due to that the FLNC algo-

rithm chooses the cloud that is nearest to the fastest link, and since

the devices and the clouds are placed uniformly at random over the

region, all clouds will experience the same congestion on average.

Consequently, the corresponding cost per cloud, shown in Fig. 5, is

larger for clouds with less computing capability.

Fig. 4 also shows that when the offloading decisions are calcu-

lated using the IO algorithm and the operator implements the EA

policy, the congestion of a cloud increases with its computing capa-

bility. This is due to that the resources are allocated equally among

the devices, and thus independently of the tasks’ complexities. Con-

sequently, the cost per cloud is highest for the most congested (and

the most powerful) cloud as shown in Fig. 5. On the contrary, when

the offloading decisions are calculated using the IO algorithm and
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the operator implements the OA policy, the results in Fig. 4 show

that the devices are fairly distributed among the clouds, which is

due to that the OA policy takes into the consideration the complex-

ity of devices’ tasks. For the same reason, the corresponding cost

per cloud, shown in Fig. 5, is almost the same for all clouds.

5 CONCLUSION
We have provided a game theoretical analysis of the interaction

between an operator that jointly manages wireless and cloud com-

puting resources and autonomous devices that aim at minimizing

the completion times of their offloaded tasks. Our model of the in-

teraction as a Stackelberg game allowed us to identify the optimal

policy of the operator, and given the optimal policy of the operator,

we showed that devices can implement an equilibrium allocation of

their offloading decisions in a decentralized manner efficiently. Our

numerical results show that the joint optimization of wireless and

cloud computing resources can reduce the completion time of the

tasks significantly compared to a system where resource allocation

is not optimized.
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