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Abstract—We consider the problem of allocating wireless
and computing resources to a set of autonomous wireless
devices in an edge computing system. Devices in the system
can decide whether or not to use edge computing resources
for offloading computing tasks so as to minimize their
completion time, while the edge cloud operator can allocate
wireless and computing resources to the devices. We model
the interaction between devices and the operator as a Stackel-
berg game, prove the existence of Stackelberg equilibria, and
propose an efficient decentralized algorithm for computing
equilibria. We provide a bound on the price of anarchy
of the game, which also serves as an approximation ratio
bound for the proposed algorithm. Our simulation results
show that the joint allocation of wireless and computing
resources by the operator can halve the completion times
compared to a system with static resource allocation. At the
same time, the convergence time of the proposed algorithm
is approximately linear in the number of devices, and thus it
could be effectively implemented for edge computing resource
management.

I. INTRODUCTION

The technological evolution of handheld devices has
been followed by a rapid increase of user demand for a
variety of mobile applications such as mobile augmented
reality, face and object recognition, and real-time voice
and video [1], [2]. Yet, the computational capabilities of
today’s devices are not sufficient to meet the delay and
computational requirements of these applications.

A promising approach to meet the requirements of these
emerging applications is mobile edge computing (MEC) [3].
The key idea of MEC is to allow devices to offload their
computations through a wireless network to cloud resources
located at the network edge. Owing to the proximity
of the edge cloud to the end users, MEC can provide
significantly lower response times for individual devices
than conventional centralized clouds such as Microsoft
Azure or Amazon [4]. However, edge clouds are not as
computationally powerful as centralized clouds, which
together with the limited wireless resources may adversely
affect the response times when many devices attempt to
offload computations simultaneously [5], [6]. Therefore, in
order to fully exploit the potential of MEC, wireless and
computing resources have to be jointly managed.

The joint management of wireless and computing re-
sources requires one to take into account the characteristics
of the devices and of the infrastructure. First, devices
are heterogeneous in terms of the computing capabilities
and in terms of the characteristics of the computing tasks
they generate. The tasks have diverse delay requirements,
different amounts of input data and varying computational
complexities. Second, devices in edge computing systems
are likely to be autonomous entities [7], [8]. Third, edge
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computing systems may consist of multiple heterogeneous
wireless access points and edge clouds. Consequently, the
offloading decisions of the devices should be coordinated
such that the resources are efficiently utilized while taking
into account the interests of the individual devices, the
heterogeneity of their tasks, and the interaction with the re-
source allocation policies of the edge cloud providers. This
makes the joint management of wireless and computing
resources for edge computing inherently challenging.

In this paper we propose a novel approach to address
this challenge by considering the interaction between
an operator that manages the allocation of wireless and
computing resources, and devices that decide autonomously
whether or not to use shared resources for offloading
computing tasks so as to minimize their own completion
times. We model the problem as a multiple-leader common-
follower Stackelberg game, in which devices are leaders
and the operator is the follower. We provide a closed form
solution for the optimal resource allocation policy of the
operator and we show that under the optimal policy the
original player-specific weighted congestion game played
by devices can be transformed into a weighted congestion
game. We prove that Stackelberg equilibria exist, and we
propose an efficient decentralized algorithm for computing
an equilibrium. By establishing an upper bound on the
price of anarchy of the game, we show that the proposed
algorithm achieves a constant factor approximation. Finally,
we use simulations to show that the completion times
achieved by the proposed algorithm under the optimal
policy are significantly lower than the completion times
achieved in a system with static resource allocation.

The rest of the paper is organized as follows. We present
the system model in Section II. We present the optimal
resource allocation policy and prove the existence of
Stackelberg equilibria in Section III. We provide a bound
on the price of anarchy in Section IV and present numerical
results in Section V. We discuss related work in Section VI
and conclude the paper in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider an edge computing system that consists of a

set N ={1, 2, . . . , N} of wireless devices (WDs), a set A=
{1, 2, . . . , A} of access points (APs), a set C={1, 2, . . . , C}
of edge clouds (ECs), and an operator that manages the
allocation of the wireless and computing resources. We
denote by Ai⊆A the set of APs through which WD i∈N
can communicate with the ECs. Each WD i∈N generates
computationally intensive tasks, which can be characterized
by two parameters, the size Di of the input data and the
expected number Li of CPU cycles required to perform
the computation (e.g., in bits). As shown by recent works,
the number X of CPU cycles required per data bit can be
approximated by a Gamma distribution [9], [10]. Hence,
based on the empirical mean E[X], the relationship between
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Figure 1. Example of an edge computing system with N = 5 WDs,
C = 2 ECs and A = 3 APs. Transmission rates and cloud computing
power may be actively managed by the operator.

Li and Di can be expressed as Li=DiE[X]. To make the
analysis tractable, we make the common assumption that
the set of WDs is known (e.g., through signaling) [11] [12].

Each WD i ∈ N can decide whether to perform the
computation locally or to offload the computation to one
of the ECs c∈C through one of the APs a∈Ai. Thus, the
set of feasible decisions for WD i is Di={i}∪{(a, c)|a∈
Ai, c ∈ C}, where i corresponds to local computing and
(a, c) to offloading through AP a to EC c. We refer to
decision di∈ Di of WD i as its strategy, and we refer
to the collection d = (di)i∈N as a strategy profile, i.e.,
d∈×i∈NDi = D. For a strategy profile d ∈ D, we define
the set Oa(d) , {i|di=(a, ·)} of WDs that offload their
tasks through AP a and we denote by na(d) , |Oa(d)|
the number of WDs that offload their tasks through AP a.
Similarly, we define the set Oc(d) , {i|di = (·, c)} of
WDs that offload their tasks to EC c and we denote by
nc(d) , |Oc(d)| the number of WDs that offload their tasks
to EC c. Finally, we define the set O(d) , ∪c∈COc(d) of
all WDs that offload their tasks.

Fig. 1 shows an example of a MEC system that consists
of N = 5 WDs, C = 2 ECs and A = 3 APs. WD 1
performs the computation locally, WDs 2 and 3 offload
their tasks to EC c1 through AP a, WDs 4 and 5 offload
their tasks to EC c2 through APs b and c, respectively. In
what follows we discuss our models of computing and
wireless resource management.
A. Computing Resource Management

A WD that chooses local computing performs its task
using its local computing resources. We denote by F li
the computational capability of WD i ∈ N (e.g., CPU cy-
cles/second). A WD that chooses offloading has to transmit
the data through an AP a, after which the task is performed
in an EC c. We denote by F c the computing capability of
EC c. We consider that the computing capability allocated to
WDs i ∈ Oc(d) is determined by the operator’s computing
resource allocation policy Pc : D→ R|C|x|N |≥0 . The policy
sets for every strategy profile d ∈ D the computing power
provisioning coefficients (pi,c)i∈N ,c∈C , akin to the weight
of a job in generalized processor sharing (GPS). Using
the shorthand notation pc=(pi,c)i∈N , we can express the
computing capability allocated to WD i by EC c as

F ci (d,pc) = F c
pi,c∑

j∈Oc(d) pj,c
. (1)

Observe that for a policy that sets pi,c = 1, ∀i ∈
Oc(d),∀d ∈ D, the computing power is shared equally.
While GPS is an ideal scheduler, several process schedulers
exist to approximate it in practice, e.g., DWRR [13].
B. Wireless Resource Management

The wireless medium of AP a is shared by the WDs
that choose to offload through AP a. We denote by Ri,a
the achievable PHY rate of WD i through AP a, which is

determined by the physical characteristics of the wireless
medium, distance, etc. The actual rate at which WD i can
offload its data through AP a is determined by the operator’s
rate allocation policy Pr : D→ R|A|x|N |≥0 . The policy sets
for every strategy profile the uplink access provisioning
coefficients (ui,a)i∈N ,c∈A, akin to the weight of a flow in
GPS. Using the shorthand notation ua=(ui,a)i∈N , we can
express the uplink rate assigned to WD i at AP a as

ωi,a(d,ua) = Ri,a
ui,a∑

j∈Oa(d) uj,a
. (2)

Observe that for a policy that sets ui,a(d)=1,∀i∈Oa(d)
we obtain the model that describes the time-fair throughput
sharing mechanisms in TDMA and OFDMA based MAC
protocols [14].
C. Cost Model

We define the cost of a WD as the completion time of
its task. In what follows we introduce our cost model in
the case of computation offloading and in the case of local
computing.

Computation offloading: In the case of computation
offloading the completion time of WD i’s task consists of
two parts. The first part is the time needed to transmit Di

amount of data, and the second part is the time needed
to perform Li CPU cycles at the cloud server. Thus, if in
strategy profile d WD i offloads to EC c ∈ C through AP
a ∈ Ai then its cost can be expressed as

Cci,a(d,ua,pc) = Di/ωi,a(d,ua) + Li/F
c
i (d,pc). (3)

In (3) we made the common assumption that the time
needed to transmit the results from the cloud to the
device can be neglected [5], [11], [15], [16], as for typical
applications (e.g., face and object recognition), the size of
the result of the computation is much smaller than Di.

Local computing: In the case of local computing the
completion time of WD i’s task is determined by the
number Li of CPU cycles pertaining to the task and by
the computing capability F li . Thus, the local computing
cost can be expressed as

Cli = Li/F
l
i . (4)

Total cost: To define the total cost, we first define the
shorthand notation u , (ua)a∈A and p , (pc)c∈C , and
express the cost of WD i

Ci(d,u,p)=
∑

(a,c)∈Ai×C

Idi,(a,c)C
c
i,a(d,ua,pc)+Idi,iC

l
i , (5)

where Idi,r = 1 if di = r and Idi,r = 0 otherwise. Finally,
we define the system cost C(d,u,p) as

C(d,u,p)=
∑
i∈N

Idi,iC
l
i+
∑
i∈N

∑
(a,c)∈Ai×C

Idi,(a,c)C
c
i,a(d,ua,pc).(6)

D. Problem Formulation
We consider that in the edge computing system each

WD is allowed to make an offloading decision so as to
minimize its own cost. On the one hand, this assumption
is motivated by the potential autonomy of WDs in edge
computing systems [7], [8]. On the other hand, the obtained
decentralized algorithms can serve as a good approximation
for the optimal solution. Nonetheless, the decisions of the
WDs interact with the computing resource and allocation
policies of the operator, and hence we model the problem
as a multiple-leader common-follower Stackelberg game,
in which WDs are leaders and the operator is the follower.
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Given a strategy profile d chosen by the WDs, the
objective of the operator is to minimize the system cost by
jointly optimizing the allocation of wireless and computing
resources. It does so by computing a best response (u∗,p∗)
to d through solving

min
u,p�0

C(d,u,p) (7)

We denote by (P∗r ,P∗c ) an optimal policy, i.e., a collection
of best responses for every d ∈ D.

The objective of every WD is to minimize its own
completion time (5), given the announced allocation policy
(Pr,Pc) of the operator through solving

min
di∈Di

Ci(di, d−i,Pr(di, d−i),Pc(di, d−i)), (8)

where we use d−i to denote the strategies of all WDs
except WD i. We refer to the problem as the mobile edge
computation offloading game (MEC-OG).

The fundamental questions we address in this paper are
threefold. First, we address wheter there is a combination
of computation offloading strategy profile and allocation
policy from which neither the WDs nor the operator have
an incentive to deviate, i.e., a subgame perfect equilibrium
of the Stackelberg game.

Definition 1 (SPE). Let (P∗c ,P∗r ) be a solution of (7), and
d∗i be a solution of (8). Then the point (d∗,P∗r ,P∗c ) is a
subgame perfect equilibrium (SPE) of the MEC-OG if for
any feasible (d,Pr,Pc) point the following holds

C(d∗,P∗r ,P∗c ) ≤ C(d∗,Pr,Pc),
Ci(d

∗
i , d
∗
−i,P∗r ,P∗c ) ≤ Ci(di, d∗−i,P∗r ,P∗c ),∀di∈Di,∀i∈N .

If the MEC-OG admits an SPE, the second question is
whether an SPE can be computed efficiently. Third, we
address whether the system cost in an SPE is efficient
compared to a centrally optimized system.

III. EXISTENCE OF STACKELBERG EQUILIBRIA

We start the analysis by considering problem (7) solved
by the operator, followed by problem (8) solved by the
WDs.

A. Optimal Resource Allocation Policy
Recall that an optimal resource allocation policy is

essentially a collection of best responses of the operator to
the strategy profiles d ∈ D played by the WDs. In what
follows we show that a best response of the operator to a
strategy profile d is unique up to a scale factor and can be
expressed in closed form.

Theorem 1. Let d be a strategy profile played by the WDs.
The optimal allocation policy (P∗r ,P∗c ) of the operator
assigns to d the uplink access provisioning and computing
power provisioning coefficients

u∗i,a=

√
Di/Ri,a∑

j∈Oa(d)

√
Dj/Rj,a

,∀a∈A,∀i∈Oa(d), and (9)

p∗i,c=

√
Li/F c∑

j∈Oc(d)

√
Lj/F c

,∀c ∈ C,∀i ∈ Oc(d). (10)

Proof. By inspecting the leading minors of the Hessian
matrix of (3) it is easy to show that the matrix is neither
positive nor negative semidefinite already for the case when
there are only two WDs sharing a resource. Hence, the
problem (7) is neither convex nor concave in u and p.
Furthermore, it is easy to see from expressions (1) and (2)

that the optimal solution of (7) cannot be unique, since any
non-zero scalar multiple of feasible policies (Pr,Pc) yields
the same objective value, and hence if there is an optimal
solution then there is a continuum of optimal solutions.

To make the solution unique with respect to scalar
multiplication, let us introduce normalization constraints
on the sums of the provisioning coefficients, and obtain

min
u,p�0

C(d,u,p) (11)

s.t.
∑
j∈Oa(d) uj,a = 1, ∀a ∈ A (12)∑
j∈Oc(d) pj,c = 1. ∀c ∈ C (13)

Observe that due to the normalization constrainst the cost
function C(d,u,p) can be rewritten as

C ′(d,u,p) =
∑
a∈A

∑
i∈Oa(d)

Di

Ri,aui,a
+
∑
c∈C

∑
i∈Oc(d)

Li

F cpi,c
+

∑
i∈N\O(d)

Cli

Since the Hessian matrix of (3) is positive semidefinite on
the domain defined by (12) and (13) the problem (11)-(13)
is a convex optimization problem, and thus its optimal
solution must satisfy the Karush–Kuhn–Tucker (KKT)
conditions. To define the Lagrangian dual of (11)-(13),
we denote by α and β the dual variables associated with
constraints (12) and (13) and by γ and δ the non-negative
dual variables associated with constraints u�0 and p�0.
Using this notation, we express the Lagrangian associated
with (11)-(13) as

L(d,u,p,α,β,γ, δ)=C ′(d,u,p)+
∑
a∈A

αa
( ∑
j∈Oa(d)

uj,a−1)
)

−
∑
a∈A

∑
j∈Oa(d)

γj,auj,a+
∑
c∈C

βc
( ∑
j∈Oc(d)

pj,c−1
)
−
∑
c∈C

∑
j∈Oc(d)

δj,cpj,c.

Finally, we define the Lagrangian dual problem as
maxα∈RA,β∈RC ,γ,δ�0 minu,p�0 L(d,u,p,α,β,γ, δ), and
we formulate the following KKT conditions.

Stationarity: ∂L(d,u,p,α,β,γ,δ)
∂ui,a

=0,∀a∈A,∀i∈Oa(d)
∂L(d,u,p,α,β,γ,δ)

∂pi,c
=0,∀c∈C,∀i∈Oc(d)

Primal feasibility:
∑

j∈Oa(d) uj,a=1,∀a∈A∑
j∈Oc(d) pj,c=1,∀c∈C

Dual feasibility: γi,a, δi,c ≥ 0,∀i∈ N , ∀a∈ A, ∀c∈ C
Complementary −γi,aui,a=0,∀a∈A,∀i∈Oa(d)
slackness: −δi,cpi,c=0,∀c ∈ C, ∀i∈Oc(d)

Observe that ui,a = 0 and pi,c = 0 would lead to an
infinite completion time for WD i’s task, and thus ui,a > 0
and pi,c > 0 must hold. Therefore, γi,a = 0 and δi,c = 0
must hold in order to have the complementary slackness
conditions satisfied. Finally, from the stationarity conditions
we can express ui,a and pi,c as

ui,a =
√
Di/αaRi,a,∀a ∈ A,∀i ∈ Oa(d), and (14)

pi,c =
√
Li/βcF c,∀c ∈ C,∀i ∈ Oc(d). (15)

By substituting (14) and (15) in the primal feasibility
equations we can obtain the expressions for αa and βc,
and we can rewrite equations (14) and (15) as ui,a =√

Di/Ri,a∑
j∈Oa(d)

√
Dj/Rj,a

and pi,c =

√
Li/F c∑

j∈Oc(d)

√
Lj/F c

, which

proves the theorem.

It is important to note that following the optimal resource
allocation policy the operator allocates resources to the
WDs depending on the characteristics of their tasks (i.e.,
Di and Li). Furthermore, the resource allocation policy
of the operator can be made known a priori to the WDs,
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which allows us to analyze the computation offloading
problem of the WDs.

B. Computing Equilibrium Offloading Decisions

Observe that for an arbitrary resource allocation pol-
icy (Pr,Pc) the interaction between the WDs can be
modeled by a player-specific weighted congestion game
Γ(Pr,Pc) =< N , (Di)i∈N , (Ci)i∈N >, as (5) is both
a function of the WDs’ parameters and of the resource
provisioning coefficients. Unfortunately, for this class
of games general equilibrium existence results are not
available. In what follows we show that under the optimal
resource allocation policy of the operator the game is
transformed into a weighted congestion game.

Theorem 2. Consider that the operator uses the optimal
policy (P∗r ,P∗c ), i.e., u∗ and p∗ are the collections of the
optimal provisioning coefficients given by (9) and (10),
respectively. Then, the strategic interaction of the WDs can
be modeled as a congestion game with resource-dependent
weights wi,r,∀(i, r) ∈ N ×{Ai ∪C}, in which the cost of
WD i is given by

C̄i(d)=
∑

(a,c)∈Ai×C

Idi,(a,c)

(
wi,awa(d)+wi,cwc(d)

)
+Idi,iC

l
i , (16)

where wr(d) =
∑
j∈Or(d) wj,r.

Proof. Let us first substitute (9) and (10) into (3) in order
to obtain the offloading cost of WD i through AP a to EC
c under the opimal resource allocation policy (P∗r ,P∗c ),

C̄ci,a(d)=

√
Di

Ri,a

∑
j∈Oa(d)

√
Dj

Rj,a
+

√
Li
F c

∑
j∈Oc(d)

√
Lj
F c

. (17)

Second, let us define the weight wi,a ,
√
Di/Ri,a for each

tuple (i, a) ∈ N × Ai and the weight wi,c ,
√
Li/F c

for each tuple (i, c) ∈ N × C. Observe that the offloading
cost (17) in strategy profile d depends on the total weight
wa(d) =

∑
j∈Oa(d) wj,a associated to AP a and on the

total weight wc(d) =
∑
j∈Oc(d) wj,c associated to EC c.

Thus, the interaction between the WDs can be modeled
as a weighted congestion game with resource-dependent
weights. This proves the theorem.

We refer to the resulting strategic game Γ(P∗r ,P∗c ) =<
N , (Di)i∈N , (C̄i)i∈N > as the optimal allocation compu-
tation offloading game (OA-COG), in which the players
are WDs with the objective to minimize their costs given
by (16). Clearly, if the OA-COG has a pure strategy Nash
equilibrium (NE) then the MEC-OG has an SPE. Hence, in
what follows we focus on the existence and computability
of pure NE for the OA-COG.

Definition 2. (Pure NE and Best reply) A pure strategy
Nash equilibrium (NE) is a strategy profile d∗ in which
all players play their best replies to each others’ strategies,
that is,

C̄i(d
∗
i , d
∗
−i) ≤ C̄i(di, d∗−i),∀di ∈ Di,∀i ∈ N .

Given a strategy profile d = (d′i, d−i), a better reply of
WD i is a strategy d′i such that C̄i(d′i, d−i) < C̄i(di, d−i),
and a best reply of WD i is a better reply d∗i such that
C̄i(d

∗
i , d−i) ≤ C̄i(di, d−i),∀di ∈ Di.

Before we formulate our next result let us recall the
definition of an exact potential function from [17].

Definition 3. A function Φ : ×i(Di)→ R is an exact po-
tential for a finite strategic game Γ =< N , (Di)i, (C̄i)i >
if for an arbitrary strategy profile (di, d−i) and for any
better reply d′i the following holds

C̄i(d′i, d−i)−C̄i(di, d−i)=Φ(d′i, d−i)−Φ(di, d−i). (18)

Given an arbitrary ordering of WDs, let us introduce the
following shorthand notation,

w≤ia (d)=
∑

{j∈Oa(d)|j≤i}

wj,a, w>ia (d)=
∑

{j∈Oa(d)|j>i}

wj,a,

w≤ic (d)=
∑

{j∈Oc(d)|j≤i}

wj,c, w>ic (d)=
∑

{j∈Oc(d)|j>i}

wj,c.

Theorem 3. The OA-COG has the exact potential function

Φ(d) =
∑
i∈N

(∑
a∈A

Φi,a(d)+
∑
c∈C

Φi,c(d)+Φi,i(d)

)
, (19)

where Φi,a(d) = Idi,(a,·)wi,aw
≤i
a (d), Φi,c(d) =

Idi,(·,c)wi,cw
≤i
c (d), and Φi,i(d) = Idi,iC

l
i .

Proof. Let us define function Φi(d) =
∑
a∈A Φi,a(d) +∑

c∈C Φi,c(d)+Φi,i(d), and rewrite Φ(d) =
∑
i∈N Φi(d).

To prove that Φ(d) is an exact potential function, let us
consider strategy profiles d and d′ such that d=(dk, d−k)
and d′=(d′k, d−k), and consider the following two cases.

Case 1: Changing offloading strategy: We start with
considering the case when WD k offloads its task in both
strategy profiles d and d′. Let us denote by dk = (a, c)
and d′k = (a′, c′) the offloading decisions of WD k in d
and d′, respectively. If a 6=a′ and c 6=c′ then the difference
between the cost of WD k in d and that in d′ is given by

C̄k(d)− C̄k(d′) = wk,awa(d) + wk,cwc(d)−
−wk,a′wa′(d)− wk,c′wc′(d).

To compute the change of the potential, observe that
Φi,i(d) = Φi,i(d′) for all WDs i ∈ N , since the set of
WDs that perform the computation locally is the same in
d and d′. We also have that Φi,r(d) = Φi,r(d′) for every
resource r ∈ A∪C \{a, a′, c, c′} since Or(d) = Or(d′).
Furthermore, we observe that Φi(d)=Φi(d′) for all WDs
i<k. For WDs i>k that offload their tasks through APs
a and a′ we have that Φi,a(d)− Φi,a(d′) = wi,awk,a and
Φi,a′(d)−Φi,a′(d′)=−wi,a′wk,a′ , respectively. Similarly,
for WDs i > k that offload their tasks to ECs c and
c′ we have that Φi,c(d) − Φi,c(d′) = wi,cwk,c and
Φi,c′(d)− Φi,c′(d′) = −wi,c′wk,c′ , respectively. For WD
k we have the following

Φk(d)− Φk(d′) = wk,aw
≤k
a (d) + wk,cw

≤k
c (d)−

−wk,a′w≤ka′ (d)− wk,c′w≤kc′ (d).

We hence obtain the equality

Φ(d)−Φ(d′)=wk,aw
>k
a (d)+wk,cw

>k
c (d)−wk,a′w>ka′ (d)−

wk,c′w
>k
c′ (d)+wk,aw

≤k
a (d)+wk,cw

≤k
c (d)−wk,a′w≤ka′ (d)−

wk,c′w
≤k
c′ (d) = wk,awa(d)+wk,cwc(d)−wk,a′wa′(d)−

wk,c′wc′(d) = C̄k(d)− C̄k(d′).

Similarly, we can show that Φ(d)−Φ(d′) = C̄k(d)−C̄k(d′)
if WD k changes only the AP, i.e., if dk = (a, c) and
d′k = (a′, c), a 6= a′ or if WD k changes only the EC, i.e.,
if dk = (a, c) and d′k = (a, c′), c 6= c′.

Case 2: Changing between offloading and local comput-
ing: We continue with considering the case when WD k
offloads its task in one of the strategy profiles d and d′ and
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AU(d)
1: while ∃ WD j s.t. dj 6=arg mind′j∈Dj

C̄j(d
′
j ,d−j) do

2: d∗j = arg mind′j∈Dj
C̄j(d

′
j , d−j)

3: d = (d∗j , d−j)
4: end while
Figure 2. Pseudo code of the AsynchronousUpdates (AU) algorithm.

it performs the computation locally in the other strategy
profile. Let us first consider that WD k offloads its task in
strategy profile d, and denote by dk = (a, c) its offloading
decision, and that WD k performs the computation locally
in strategy profile d′, i.e., d′k = 0. Then the difference
between the cost of WD k in d and that in d′ is given by

C̄k(d)− C̄k(d′) = wk,awa(d) + wk,cwc(d)− Clk.
For the potential, we know that Φi,i(d) = Φi,i(d′) for all

WDs i ∈ N \{k} and we also have that Φi,r(d) = Φi,r(d′)
for every resource r ∈ A ∪ C \ {a, c}. Furthermore, we
observe that Φi(d) = Φi(d′) for all i < k. For WDs
i > k that offload their tasks through AP a we have that
Φi,a(d)−Φi,a(d′) = wi,awk,a. Similarily, for WDs i > k
that offload their tasks to EC c we have that Φi,c(d) −
Φi,c(d′) = wi,cwk,c. Finally, for WD k we have

Φk(d)− Φk(d′) = wk,aw
≤k
a (d) + wk,cw

≤k
c (d)− Clk.

We hence obtain the equality

Φ(d)−Φ(d′)=wk,aw
>k
a (d)+wk,cw

>k
c (d)+wk,aw

≤k
a (d)

+wk,cw
≤k
c (d)− Clk = wk,awa(d) + wk,cwc(d)− Clk =

C̄k(d)− C̄k(d′).

Similarily, we can show that Φ(d) − Φ(d′) = C̄k(d) −
C̄k(d′) if WD k changes its strategy from local computing
in d to offloading to EC c through AP a in d′, i.e., if
dk = 0 and d′k = (a, c), which proves the theorem.

The existence of an exact potential function implies that
the OA-COG has a pure NE [17]. We can thus formulate
the following result.

Corollary 1. The OA-COG has a pure strategy NE d∗.
Hence, an SPE (d∗,P∗r ,P∗c ) for the MEC-OG exists.

There are a variety of algorithms that are known to
converge to an equilibrium for exact potential games, such
as fictitious play [17], joint strategy fictitious play [18], and
the best and better reply dynamics [17]. Nonetheless, they
have exponential worst case complexity in general [19],
[20]. Thus, the second fundamental question we address
in this paper is whether a NE of the OA-COG (and thus
an SPE of the MEC-OG) can be computed efficiently.

In what follows we propose the ImproveLocalComputing
(ILC) algorithm to address this important question. The
ILC algorithm starts from a strategy profile in which all
WDs perform computation locally. Let us first denote by
N ′ the set of WDs that have never changed their strategy
from local computing to computation offloading (note that
at the beginning N ′ = N ). The ILC algorithm consists
of two phases that are executed alternatingly. In the first
phase, among all WDs i ∈ N ′ that can decrease their
cost by starting to offload, a WD with the maximum task
complexity Li is allowed to perform a best reply. In the
second phase, which we refer to as the update phase, WDs
i ∈ N\N ′ are allowed to update their best replies according
to the AU algorithm shown in Fig. 2.

In what follows we show that by letting WDs to start
to offload in non-increasing order of their task complexi-

ties, the ILC algorithm reduces the number of iterations
compared to the best reply dynamic that lets WDs to start
using cloud resources in an arbitrary order.

Proposition 1. Let us consider a strategy profile d in which
all WDs j ∈ N \N ′ perform best replies and let us assume
that there is a WD i ∈ N ′ that can decrease its cost by
starting to offload to one of the ECs. Then upon WD i
performs its best reply, WDs j ∈ O(d) will not have an
incentive to change between ECs.

Proof. Let us consider two WDs, i ∈ N ′ and k ∈ Oc(d),
and let us assume that WD i can decrease its cost by
starting to offload. Furthermore, let us assume that a best
reply of WD i is offloading to an EC c, i.e., for any EC
c′ ∈ C \ {c} the following holds(

wc(d) + wi,c

)
wi,c <

(
wc′(d) + wi,c′

)
wi,c′ . (20)

Let us denote by d′ the resulting strategy profile in which
Oc(d′)=Oc(d)∪{i} and Oc′(d′)=Oc′(d) for c′ 6=c. Let us
next assume that WD k∈Oc(d′) can decrease its offloading
cost by changing its strategy from (·, c) to (·, c′), i.e.,

wc(d′)wk,c >
(
wc′(d′) + wk,c′

)
wk,c′ . (21)

Since Oc′(d′) = Oc′(d) for c′ 6= c, we have that
wc′(d′) = wc′(d). By applying wc′(d′) = wc′(d) in (21)
and by combining inequalities (20) and (21) we obtain
that
√
Li >

√
Lk holds, which contradicts the fact that the

ILC algorithm allows WDs i ∈ N ′ to start to offload in
non-increasing order of their task complexities Li. This
proves the result.

Note that WDs can change between ECs only if the
congestion in an EC decreases, i.e., if one of the WDs
changes its strategy from offloading to local computing.
This is, however, rarely the case, and as we show later,
the number of iterations needed to compute an equilibrium
allocation of offloading decisions using the ILC algorithm
is on average almost linear in the number of WDs.
C. Implementation considerations

In what follows we discuss how the SPE can be
implemented in practice. Given the information about
the resource allocation policy adopted by the operator,
WDs perform best replies one at a time according to
the ILC algorithm. Upon its turn, a WD computes the
set of its best replies based on the information about
the congestion on resources, as provided by the operator.
If it can improve its current offloading decision then it
reports one of its best replies to the operator, otherwise
it reports its current offloading decision. The operator
then sends the updated information about the congestion
on the resources to the next WD that is supposed to
update its offloading decision. Upon convergence, given
the equilibrium offloading decisions of WDs computed
by the ILC algorithm, the operator allocates wireless and
computing resources optimally according to (9) and (10).
By Corollary 1 the resulting state is an SPE.

IV. PRICE OF ANARCHY

We have so far shown that the OA-COG has a pure
strategy NE, and hence the MEC-OG has an SPE. Further-
more, both can be computed efficiently. In what follows
we provide a bound on the suboptimality of the computed
SPE, with respect to a solution that minimizes the system
cost. We do so by bounding the price of anarchy (PoA)
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of the SPE (denoted by PoAMEC-OG), which is defined
as the ratio of the cost in the worst case SPE (d∗,P∗r ,P∗c )
and the cost in an optimal solution (d̂, P̂r, P̂c).

To compute such a bound, let us denote by PoA(Pr,Pc)
the PoA of the strategic game played by the WDs for
a policy (Pr,Pc) of the operator for which an equilib-
rium allocation d∗ of offloading decisions exists. The
PoA(Pr,Pc) is the ratio of the worst case NE cost and
the optimal offloading cost, i.e.,

PoA(Pr,Pc) =
maxd∗∈D∗

∑
i∈N Ci(d∗,Pr,Pc)

mind∈D
∑
i∈N Ci(d,Pr,Pc)

, (22)

where D∗ is the set of equilibria of offloading decisions
under (Pr,Pc). In what follows we provide an upper bound
on PoAOA-COG = PoA(P∗r ,P∗c ) of the strategic game
OA-COG.
Theorem 4. PoAOA-COG ≤

3+
√
5

2 .

Proof. Our proof is inspired by Theorem 3.1 in [21], which
provides a PoA bound for normalized weighted congestion
games. Our proof extends the PoA bound to the OA-COG,
which is not a normalized weighted congestion game.

We start with defining the set R=N ∪ A ∪ C of all
resources available in the system. Furthermore, we denote
by Rdi the set of resources that WD i uses in strategy
profile d, and we use d∗ and d̂ to denote a NE and an
optimal strategy profile of the OA-COG, respectively. Let us
define the local computing weight wi,i,

√
Li/F li for each

WD i ∈ N , and the set of WDs using local computing link i
Oi(d)={i|di= i}. Observe that either Oi(d)=∅ or Oi(d)=
{i} holds since the local computing resources are not
shared among WDs. We can thus express the total weight
wi(d)=

∑
i∈Oi(d) wi,i associated with local computing link

i, which is either wi(d)=0 or wi(d)=wi,i.
Using the above notation we can express the system cost

C(d,P∗r ,P∗c ) for the OA-COG in a strategy profile d as

C(d,P∗r ,P∗c ) =
∑
r∈R

∑
i∈Or(d)

wr(d)wi,r =
∑
r∈R

w2
r(d). (23)

Furthermore, from the definition of a NE we obtain∑
r∈Rd∗

i

wr(d∗)wi,r ≤
∑

r∈Rd∗
i
∩Rd̂i

wr(d∗)wi,r + (24)∑
r∈Rd∗

i
\Rd̂i

(
wr(d∗) + wi,r

)
wi,r ≤

∑
r∈Rd̂i

(
wr(d∗) + wi,r

)
wi,r.

First, by summing inequality (24) over all WDs i we obtain∑
i∈N

∑
r∈Rd∗

i

wr(d∗)wi,r≤
∑
i∈N

∑
r∈Rd̂i

(
wr(d∗)+wi,r

)
wi,r. (25)

Second, by reordering summations, we can rewrite (25) as∑
r∈R

∑
i∈Or(d∗)

wr(d∗)wi,r≤
∑
r∈R

∑
i∈Or(d̂)

(
wr(d∗)wi,r+w2

i,r

)
.(26)

Next, from the definition of the total weight wr(d) =∑
i∈Or(d) wi,r associated with resource r and from∑
i∈Or(d) w

2
i,r ≤ w2

r(d) we obtain∑
r∈R

w2
r(d∗)≤

∑
r∈R

wr(d∗)wr(d̂) +
∑
r∈R

w2
r(d̂). (27)

We can now use the Cauchy-Schwartz inequality
(
∑
r∈R arbr ≤

√∑
r∈R a

2
r

∑
r∈R b

2
r) to obtain∑

r∈R
w2
r(d∗)≤

√∑
r∈R

w2
r(d∗)

∑
r∈R

w2
r(d̂) +

∑
r∈R

w2
r(d̂). (28)

If we divide the right and the left side of inequality (28)
by
∑
r∈R w

2
r(d̂) > 0 we can rewrite it using (23) as

C(d∗,P∗r ,P∗c )

C(d̂,P∗r ,P∗c )
≤

√
C(d∗,P∗r ,P∗c )

C(d̂,P∗r ,P∗c )
+ 1. (29)

Since (29) holds for any NE of the OA-COG, it holds for
the worst case NE too, and thus we have

PoAOA-COG ≤
√
PoAOA-COG + 1. (30)

By solving (30) we obtain that PoAOA-COG ≤
3+
√
5

2 ,
which proves the theorem.

Given the PoA bound for the OA-COG we are now
ready to provide a PoA bound for the MEC-OG.

Theorem 5. PoAMEC-OG ≤
3+
√
5

2 .

Proof. Let (d∗,P∗r ,P∗c ) be an SPE of the MEC-OG and let
(d̂, P̂r, P̂c) be an optimal solution. Clearly, by Theorem 1
we have that C(d̂, P̂r, P̂c) = C(d̂,P∗r ,P∗c ), as (P∗r ,P∗c )
is an optimal policy. The result then follows from the
definition of the PoA and from Theorem 4.

V. NUMERICAL RESULTS

In the following we show results from extensive sim-
ulations to evaluate the system performance from the
perspective of the operator of the WDs.

For the simulations we placed ECs and WDs uniformly
at random over a square area of 1km×1km, and we placed
5 APs at random on a regular grid with 25 points defined
over the area. This uniform deployment corresponds to
a dense urban area. We consider that the channel gain
of WD i in the case of offloading through the same AP
a depends on its distance di,a from the AP and on the
path loss exponent α. We use α = 4 according to the
path loss model in urban and suburban areas [22]. For
simplicity we assign a bandwidth of Bi,a=5 MHz to each
communication link (i, a) ∈ N ×Ai. The transmit power
P ti,a at which WD i offloads the data through AP a is drawn
from a continuous uniform distribution on [0.05, 0.18] W
according to [23]. Given the noise power Pn we calculate
the transmission rate Ri,a achievable to WD i for offloading
to AP a as Ri,a=Bi,alog(1+d−αi,a

P t
i,a

Pn
). The input data size

Di is drawn from a uniform distribution on [0.2, 4] Mb,
and the number X of CPU cycles required per data bit
is a Gamma distributed random variable with the shape
k = 0.5 and scale θ = 1.6. Given Di and X , we calculate
the complexity of a task as Li=DiX .

We consider two operator policies in the evaluation. We
refer to (P∗r ,P∗c ) as the optimal allocation (OA) policy.
Under the OA policy the WDs can use the ILC algorithm
for computing an SPE, as shown before. As a baseline for
comparison, we consider the policy (Pear ,Peac ) that shares
the resources equally among WDs. We refer to this policy
as the equal allocation (EA) policy, and to the resulting
strategic game played by WDs as the equal allocation
computation offloading game (EA-COG). As shown in [24]
equilibria under the policy (Pear ,Peac ) exist for C = 1, and
the algorithm proposed in [24] can be extended such that it
computes a NE also for C>1, as we discuss next. Observe
that under the EA policy and for C ≥ 1, WDs offloading
their computation to a particular EC receive an equal share
fraction of the EC’s computing capability, and thus the
best reponse EC is the same for all WDs. We can thus use
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Figure 3. Performance gain vs. number of WDs N for A = 5 APs.
Homogeneous ECs, F c,tot = 192GHz.
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Heterogeneous ECs, F c,tot = 192GHz.
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the algorithm proposed in [24] for computing a NE of the
EA-COG for C ≥ 1. We refer to the resulting algorithm as
the JoinAndPlayAsynchronousUpdates (JPAU) algorithm.

As a baseline for the ILC and JPAU algorithms pro-
posed for computing an equilibrium of the OA-COG and
EA-COG, respectively, we use the FastestLinkNearestCloud
(FLNC) algorithm. According to the FLNC algorithm WDs
offload the computation through the AP with the highest
achievable transmission rate and to the EC closest to the
chosen AP. Observe that FLNC can be used with both
operator policies. The results shown are the averages of
1000 simulations, together with 95% confidence intervals.

A. User-oriented performance

We start with considering the system performance
from the point of view of the WDs. We define the
performance gain PGEA−FLNC(dA,Pr,Pc) (w.r.t. the
EA-FLNC) for a strategy profile dA computed by algorithm
A ∈ {ILC, JPAU,FLNC} under a resource allocation
policy (Pr,Pc) ∈ {(P∗r ,P∗c ), (Pear ,Peac )} as

PGEA−FLNC(dA,Pr,Pc) =
C(dFLNC ,Pear ,Peac )

C(dA,Pr,Pc)
.

Fig. 3 shows the performance gain as a function of the
number N of WDs for two MEC systems, one with C=1
(F c1=192 GHz) and one withC=3 (F ci=64 GHz), i.e., ECs
are homogeneous. The figure shows that the performance
gain is largest when the operator uses the OA policy and
WDs offload according to an equilibrium computed by the
ILC algorithm. Interestingly, even OA-FLNC outperforms
EA-JPAU for C=1 ECs and N>10 WDs. These results
indicate that the operator’s resource allocation policy has
a large impact on the user-perceived performance. Overall,
we can observe that the performance gain increases with
a decreasing marginal gain in N , which suggests that the
achievable performance gain is limited by the congestion
on the APs and ECs.

Fig. 4 shows the corresponding performance gain for
heterogeneous ECs for two MEC systems, one with C=

3 ECs and one with C=6 ECs. The total cloud computing
capability F c,tot=192GHz of the system is distributed
among the ECs such that F c1=32 GHz and F ci=F ci−1 +
32 GHz, i > 1, for C = 3 ECs, and F c1 = 12 GHz and
F ci=F ci−1 +8 GHz, i>1, for C=6 ECs. As in Fig. 3, the
results in Fig. 4 show a decreasing marginal gain in N and
confirm that the largest performance gain is achieved by the
OA-ILC. Nonetheless, a comparison of Fig. 3 and Fig. 4
reveals that the performance gain is affected by the number
of ECs in the system and the way the total cloud computing
capability is shared among the ECs. One the one hand, the
performance gain increases with C. On the other hand, the
performance gain for C=3 ECs is greater in the case of
heterogeneous ECs than that in the case of homogeneous
ECs. Thus, OA-ILC is most beneficial when edge cloud
resources are heterogeneous. The improved performance is
partly due to that the WDs in the baseline strategy profile
(computed by the FLNC) offload their tasks through the
fastest link to the EC that is closest to the chosen AP, and
since WDs, APs and ECs are randomly placed over the
area, the number of WDs per EC is not proportional to its
computing capability, as we will see later.

B. Infrastructure-oriented performance

In order to evaluate the system performance from
operator’s perspective, we investigate how the choice
of the resource allocation policy and the algorithm for
computing the offloading decisions of WDs affects the
number nc(dA,Pr,Pc) of WDs per EC and the cost
Cc(dA,Pr,Pc)=

∑
i∈Oc(dA,Pr,Pc)

Ci(dA,Pr,Pc) per EC.
For consistency, we show results for a system with
heterogeneous cloud resources, i.e., F c,tot = 192 GHz
divided among three ECs such that F c1 = 32 GHz and
F ci = F ci−1 + 32 GHz, for i > 1.

Fig. 5 and Fig. 6 show nc(dA,Pr,Pc)andCc(dA,Pr,Pc)
for each of the ECs as a function of the number N of WDs,
respectively. The results are shown for the ILC, JPAU and
FLNC algorithms under both the OA and EA resource
allocation policies. By looking at nc(dA,Pr,Pc) for all
ECs for a fixed N , we observe from Fig. 5 that the ratio of
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the WDs that offload their tasks decreases as N increases.
This happens because the number of WDs that cannot
benefit from offloading due to high congestion on the
shared resources increases with N . Fig. 5 also shows that
the difference in the congestion experienced by the ECs
is smallest when the offloading decisions of the WDs are
computed by the FLNC algorithm. This is due to that in
the strategy profile computed by the FLNC algorithm WDs
offload their tasks to the EC that is closest to the fastest
AP, and since the WDs, APs, and ECs are placed uniformly
at random over the region, all ECs experience the same
congestion on average. Consequently, the corresponding
cost per EC, shown in Fig. 6, is inverse proportional to the
computing capability of the EC.

On the contrary, in the case of equilibria computed by
ILC and by JPAU (i.e. equilibria under the OA and EA
policies, respectively) the congestion and the cost per EC
are proportional to the computing capability of the EC as
shown in Fig. 5 and Fig. 6, respectively. We also observe
that the total number of WDs that offload their tasks and the
total offloading cost are higher in an equilibrium computed
by the JPAU algorithm than in an equilibrium computed by
the ILC algorithm. This is due to that the cloud computing
resources are shared among WDs independently of their
tasks’ complexities in the case of the EA policy, and
consequently the WDs overuse the ECs.

C. Computational complexity

We characterize the computational complexity of an
algorithm as the number of iterations needed to compute a
computation offloading strategy profile. Since the OA-COG
is a potential game, we use the AU algorithm (c.f. Fig. 2)
as a baseline for comparison, as it is guaranteed to converge
from an arbitrary initial strategy profile [17]. For the AU
algorithm we consider three initial strategy profiles: a
randomly chosen initial strategy profile (RandomAU), an
initial strategy profile in which all WDs offload their tasks
such that the number of WDs offloading the computation
to an EC is proportional to its computing capability
(ECProportionalAU), and an empty strategy profile where
the WDs enter the game in non-increasing order of
their task complexities (JoinNon-IncrAU). Furthermore,
we consider the complexity of computing an equilibrium
of the EA-COG using the JPAU algorithm.

Fig. 7 shows the number of iterations needed to compute
an equilibrium of the OA-COG and an equilibrium of the
EA-COG, as a function of N for the same set of parameters
as in Fig. 3. We observe that the number of iterations
scales approximately linearly with N in all cases and that
computing an equilibrium of the OA-COG using the ILC
algorithm is more efficient than computing an equilibrium

of the EA-COG using the JPAU algorithm; the difference
is up to 50%.

We also observe that the choice of the initial strategy
profile affects the complexity of computing an equilibrium
of the OA-COG, and we make three observations. First,
the number of iterations required by ILC and by JoinNon-
IncrAU is insensitive to the number of ECs, while the
number of iterations required by RandomAU and by
ECProportionalAU increases with the number of ECs. This
is due to that in the case of ILC and of JoinNon-IncrAU
the WDs start using ECs in non-increasing order of their
task complexities, and thus it follows from Proposition 1
that when a new WD starts offloading, WDs will not have
an incentive to change between ECs. This is not true in
the case of RandomAU and of ECProportionalAU, since
they start from a strategy profile where WDs did not start
to offload in the order of the complexities of their tasks,
and consequently the WDs can decrease their offloading
cost not only by changing between the APs, but also by
changing between the ECs. Second, the ECProportionalAU
has the highest computational complexity. This is due
to that ECProportionalAU starts from an initial strategy
profile that has the highest congestion on the resources
and thus when a WD updates its strategy the number of
WDs affected by the update step is higher than in the case
of the other initial strategy profiles. Finally, the smallest
computational complexity can be achieved by the proposed
ILC algorithm. On the one hand, this is because the WDs
do not have to choose their initial strategy as in the case of
the JoinNon-IncrAU. On the other hand, the WDs cannot
decrease their offloading cost by changing between the ECs
as in the case of the RandomAU and ECProportionalAU.

To summarize, the proposed OA-ILC algorithm can
provide a significant reduction in terms of completion
times and has low computational complexity, and could be
a good candidate for coordinating the offloading decisions
of WDs for edge computing.

VI. RELATED WORK

There is a large body of recent works on computation
offloading for mobile cloud computing [25], [26], [11],
[27], [28], [5], [29], [24]. Many of these works assume
that the offloading decisions of devices are determined by a
centralized entity with the objective to meet the energy and
latency constraints of the devices [25], [26], [11], [27]. [25]
considered that devices offload the computation either to a
computationally limited local cloud or to a computationally
rich remote cloud, and proposed a policy that schedules
resources in the clouds so as to meet the delay require-
ments of the applications. [26], [11], [27] formulated
the computation offloading problem as an optimization
problem that minimizes the energy consumption of the
mobile devices under latency constraints. [26] considered
that devices may offload their tasks to an edge cloud
through a base station, and proposed a policy for managing
computing and communication resources assuming that the
base station has perfect knowledge about the system. [11],
[27] considered a network composed of multiple cells,
each equipped with an edge cloud. [11] proposed an
iterative algorithm for jointly optimizing the allocation
of computing and uplink bandwidth resources, and [27]
proposed an iterative algorithm for jointly optimizing the
allocation of computing and both uplink and downlink
bandwidth resources. Unlike these works, we consider that
devices make offloading decisions autonomously.
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Closer related to ours are recent works that propose de-
centralized algorithms based on a game theoretic treatment
of the computation offloading problem [28], [5], [29], [24],
[30], [31]. [28] considered that devices may offload the
computation to the cloud through a single wireless link if
doing so minimizes their own energy consumption, and
proved the existence of equilibria when devices with the
same delay budget compete only for wireless resources. [5],
[29], [24] considered that devices may offload their tasks
to the cloud through one of multiple wireless links so as to
minimize the linear combination of the delay and the energy
consumption. [5] considered the congestion only on the
wireless links and proved the existence of equilibria under
the assumption that a device experiences the same channel
gain for all wireless links. [29] extended the equilibrium
existence results of [5] to a dynamic environment, where
devices may be active or inactive. [24] considered that
devices may offload their tasks to the cloud through one
of multiple heterogeneous wireless links, modeled the
congestion on both cloud and wireless links and provided
a polynomial time algorithm for computing equilibria.
Authors in [31] considered the interaction between devices
that always offload their tasks and an operator that optimizes
the allocation of wireless and computing resources. [30]
considered a fog computing system where multiple devices
may offload their computational tasks to each other or
to an edge cloud and provided an efficient algorithm for
computing a mixed strategy equilibrium in a decentralized
way. Our work differs significantly from these works, as we
model the congestion on multiple heterogeneous wireless
links and in edge clouds, we consider devices that can
autonomously decide whether to offload, and consider that
the resources in the system are managed by an operator.

Closest to our work in the literature on game theory
is [32], which considers the effectiveness of Stackelberg
strategies for atomic congestion games. Authors in [32]
consider that the leader controls a subset of non-selfish
players, focus on affine latency functions and on congestion
games on parallel links. On the contrary, in our model the
leader manages the sharing of resources, and we consider
a player-specific weighted network congestion game for
which the existence of equilibria is not known in general.
Thus, our work provides a novel game theoretic perspective
on congestion games.

VII. CONCLUSION
We have provided a game theoretical analysis of selfish

computation offloading in a mobile edge computing sys-
tem where wireless and computing resources are jointly
managed by an operator, and devices make offloading
decisions autonomously so as to minimize the completion
times of their tasks. Based on a Stackelberg model of
the interaction between the operator and devices, we
proved the existence of an equilibrium allocation policy
and we proposed an efficient decentralized approximation
algorithm for computing offloading decisions of devices.
Our numerical results show that the proposed algorithm is
computationally efficient and can significantly improve the
system performance through optimally allocating wireless
and computing resources to the devices, while allowing the
devices to make their offloading decisions autonomously.
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