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Abstract—Motivated by the potential of machine-learning-
based (ML) algorithms for radio access network (RAN) control
and management, we consider the problem of energy-aware
O-RAN service orchestration subject to ML inference time
constraints. While ML applications enable complex operations in
RAN control, guaranteeing service level agreements to close RAN
operations in real time is a key requirement to facilitating their
wider adoption. In this paper, we focus on orchestrating ML/AI
workloads as near-real-time applications in O-RAN Cloud (O-
Cloud). We propose PERX, an energy-efficient and performance-
aware O-RAN orchestrator that predicts the performance of
diverse sets of colocated ML/AL applications by learning a
pairwise characterization of application inference times via hier-
archical Bayesian learning. We formulate a latency-constrained
integer optimization problem for application orchestration and
propose an iterative procedure to solve the problem. In line with
industry standards, we adopt Kubernetes as the orchestration
framework to develop a latency-aware O-Cloud orchestrator.
Experimental results reveal up to 50 % increase in profit with
guaranteed service level agreements, compared to state of the art
benchmarks.

Index Terms—O-RAN, Service orchestration, Performance
profiling

I. INTRODUCTION

New generations of mobile networks bring the promise of
serving a large variety of networked applications, all with
different, often challenging performance requirements [4],
[14]. Meeting the requirements of these applications efficiently
requires intelligent and flexible radio access network resource
management and control [16].

The key approach to achieve this flexibility is the deploy-
ment of open radio access networks (O-RANs) [13], controlled
remotely by virtualized network functions, implemented in a
cloud or edge computing environment, forming a so-called O-
Cloud. Applications implemented in the O-Cloud can include
real-time (RT) and near-real-time (Near-RT) applications with
inference loops less than 10 ms and 10 ms to 1 s, respectively,
and provide intelligent RAN control capabilities, such as
network slicing, pricing, traffic classification, and anomaly de-
tection, among others [13]. With the advancement of artificial
intelligence, many of these applications are expected to be
data-driven, using machine learning (ML) models [15].

The O-Cloud approach allows network operators (tenants) to
share computing resources, and it also allows the dynamic al-
location and de-allocation of application instances, potentially
increasing compute resource utilization and decreasing energy
consumption. Applications deployed on the same server, how-

ever, contend for the same computing and memory resources
and affect the inference time of each other [9]. Therefore,
placing applications so that their inference deadline is met
while the resources are highly utilized is a challenge.

Existing cloud orchestration frameworks such as Kuber-
netes and OpenShift are ineffective in meeting the latency-
constrained service requirements in O-Cloud [18], necessitat-
ing an orchestration framework that orchestrates the applica-
tion instances considering their latency requirements as well
as the effect of resource contention [3], [8].

In this work, we propose PERX, a performance-aware
and energy-efficient, low-complexity service orchestrator. The
key component of PERX is the effective characterization of
resource contention among different types of applications to
aid in scaling and placing application instances. Our main
contributions are as follows:

• Based on extensive experiments, we propose a tractable
model of application inference times under pairwise
resource contention. Based on this, we construct an
inference time model for an arbitrary set of applications.

• By leveraging a hierarchical Bayesian learning frame-
work, we estimate the parameters of the inference time
of ML models from limited datasets.

• We propose an energy-aware utility function for ap-
plication placement and formulate an integer optimiza-
tion problem for application orchestration under latency
constraints. We find a near-optimal solution through an
iterative approach that scales well with the system size.

• We perform extensive experiments by emulating ML/AI
workloads on Kubernetes clusters. Our results show that
PERX outperforms state-of-the-art latency-aware orches-
tration frameworks in terms of operator revenue and
observes reduced SLA violations.

The rest of the paper is organized as follows. In Section II,
we introduce the system model. In Section III, we propose an
application inference time model. We formulate the latency-
constrained application orchestration problem in Section IV
and propose an iterative solution approach in Section V.
We show numerical results in Section VI. In Section VII,
we review the related work, and we conclude the paper in
Section VIII.

II. SYSTEM MODEL

We consider a set S of servers dedicated to execute data-
driven O-RAN applications from an application catalog A.



The available memory of server s ∈ S is Cs. We denote by
Ca the memory requirement of an instance of the application
a ∈ A. Network tenants may request services by specifying
the application type, a ∈ A, the expected task arrival rate
λr
a, the number nr

a of application instances to be deployed,
the 95th percentile of the inference time τ r, and the price
ρr they are willing to pay. A tenant request can thus be
characterized by the tuple r = (a, nr

a, ρ
r, τ r, λr

a), and we
denote the set of tenant requests by R. Aligned with industry
standards (Kubernetes, OpenShift), we make the reasonable
assumption that the orchestrator uses load-balancing for the
application instances deployed for the same tenant request,
i.e., each instance receives tasks at rate λr

a/n
r
a.

Note that tenant requests specify the inference time require-
ment. This should be chosen by the tenant such that for the
task arrival process of the request it leads to an acceptable
response time (i.e., waiting plus inference time). This is a
calculation left to the tenant, without the involvement of the
service provider. Importantly, this service abstraction relieves
the tenant from specifying the task arrival process as part of
the request.

The orchestrator decides on which server the requested
instances are placed and may block some of the requests
to avoid the violation of the inference time requirements.
We denote the decision whether a tenant request r is to be
served by zr ∈ {0, 1}. We model the placement decisions of
application instances on servers by the allocation x = (xr

a,s),
where xr

a,s denotes the number of instances of application a
placed on server s in response to serving request r. Clearly,∑

s x
r
a,s = nr

a if zr = 1 and is 0 otherwise. We define the
binary variable wr

a,s = 1{xr
a,s>0}, indicating whether at least

one instance of application a is placed on server s in response
to tenant request r, and the set As = {a|wr

a,s = 1} to be
the set of applications placed on server s. Furthermore, we
denote the activation state of server s by ws = 1{

∑
a,r wr

a,s>0},
i.e., whether at least one application instance is placed on the
server.

III. INFERENCE TIME CHARACTERIZATION

In order to be able to find an application placement that sat-
isfies inference time constraints, we need to develop a simple
but accurate inference time model that enables counterfactual
reasoning, i.e., prediction of the inference time of an applica-
tion instance in a given placement, without having to perform
the placement. Going beyond previous work, which proposed
to characterize the inference time based on the number of
colocated applications on a server [8], in what follows, we
provide a novel characterization that, as we show later, allows
significant savings in terms of energy consumption and latency
constraint violation. The proposed characterization consists of
two steps, pairwise latency profiling and application contention
modeling, as discussed in the following.

A. Pairwise Latency Profiling

Tasks in O-RAN could be performed by a variety of ML-
models. To capture the potential diversity of future models,

we consider applications implemented using classical models
(e.g., random forest) and deep neural networks (feed-forward,
CNN, and LSTM architectures). Table I shows the describes
the architectures of the models considered.

We aim to derive a simple model of the inference time
(i.e., time spent on computation) of a model, as a function of
the workload of the server on which it is deployed. For the
measurements, we deploy the ML models on a single worker
node in a K8S cluster. The ML models are implemented
using TensorFlow and deployed as docker containers. Task
arrivals to the applications follow a Poisson process emulating
Machine-type Communications (MTC) and Ultra Reliable and
Low Latency Communications (URLLC) traffic [12], and we
measure the inference times of the tasks to determine the 95th

percentile of the application inference time.
Fig. 1 shows the CDF of the inference times of the

models when executed without other workloads. We note
that although the model sizes are similar in terms of the
number of parameters, the average inference times differ by
an order of magnitude. While this may be partly explained
by the differences in the operations involved, e.g., the use of
convolutions and sequential processing, this also implies that
each model makes use of the hardware resources, such as the
memory bus, CPU data caches, and instruction caches, to a
different extent. As a consequence, to get a good estimate
of the inference time of an application, it is important to
consider what other applications it is contending with for
shared hardware resources.

Impact of colocated applications: To assess the impact
of colocated applications, we deploy a single instance of
model a together with na′ ∈ N = {4, 8, 16, 32} instances
of model a′. The task arrival intensity to each application is
λa = λa′ = 4/sec. Fig. 2 shows the 95th percentile of the
measured inference times for each of the four models as a
function of the number of models it is colocated with. The
figure shows that different applications affect the inference
times to a different extent. For instance, even though the
inference time of the LSTM (and hence the offered load), is
higher than that due to the FF neural network, it is the FF
neural network that affects the inference times of the models
the most, followed by the LSTM . Thus, the type of colocated
application instances also plays a vital role in determining the
impact of resource contention.

Impact of task arrival rate: A key factor that may affect
the inference time of an application is the arrival rate of
the tasks to contending applications, since this affects the
operating load of the applications. To confirm this, we place

Application Architecture Model size
(No. of parameters)

FF [200, 500, 100, 10] 151,810
LSTM [100, 100, 10, 1] 161,821
CNN [256, 32× 3, 16× 3, 100, 10] 139,390

RF Max. depth: 10
Num. trees: 100 ∼ 53,870

TABLE I: ML models used for profiling.
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Fig. 1: Inference time of ML models when executed alone.
Dashed lines show the averages.
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Fig. 2: 95th percentile of inference time of a model vs. number
of contending applications na′ .

an application a and measure its inference time as a function
of the arrival intensity λa′ ∈ Λ = {1, 2, 4, . . . 8}/s of the
contending application a′. Fig. 3 shows the 95th percentile of
the inference time of application a as a function of the arrival
intensity λa′ of the contending application for na′ = 16.

The figure shows that for the applications FF , LSTM , and
CNN , the task arrival rate to the contending application has
a significant impact on the inference time, while the inference
time of RF seems to be unaffected.

B. Application Contention Model

The above results show that colocation affects the inference
time of an application depending on the types of colocated
applications along with the number of instances and their task
arrival rates. Capturing these for all possible combinations
of application placements would make the model difficult
to parametrize and thus intractable. Instead, we propose to
build an inference time model based on pairwise models of
application contention. For simplicity, we omit the subscript s
whenever it is possible.

Pairwise contention model: The proposed model is
based on a pairwise characterization of the inference time
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Fig. 3: 95th percentile of the inference times of applications
as a function of the arrival intensity λa′ of the contending
application a′, for na′ = 16.

tsa,a′(na′,s, λa′,s) of application a as a function of the number
of contending application instances na′,s and their average
arrival rates λa′,s =

∑
r λ

r
a′xr

a′,s/n
r
a′ , i.e., considering the

average task arrival intensity to an instance of the contending
application a′ on server s. Motivated by the shapes of the
curves in Fig. 1 and Fig. 3, we propose to use a sigmoid
function as an approximation. Our choice is also motivated by
the fact that a sigmoid is easy to parametrize. The resulting
pairwise approximation of the 95th percentile of the inference
time is given by

t̂sa,a′(λa′ , na′,s; θ
a,a′

) =
θa,a

′

1 (na′,s)

1 + e−θa,a′
2 (na′,s)(λa′,s−θa,a′

3 (na′,s))

(1)

θa,a
′

i (na′,s;α
a,a′

i , βa,a′

i ) = αa,a′

i + na′,sβ
a,a′

i , (2)

where θa,a
′
= (θa,a

′

1 , θa,a
′

2 , θa,a
′

3 ) are the parameters of the
sigmoid function computed as an affine function of the number
of instances na′,s of the contending application. Equations (1)
and (2) allow a convenient parameterization of a family of
sigmoid functions for each application pair (a, a′), yet the
simplicity allows the parameterization to be incorporated as
a constraint in an optimization problem.

Composite contention model: Given these pairwise con-
tention models, we estimate the 95th percentile inference time
of application a ∈ As on server s under an application
placement x via an additive composite contention model

t̂sa(x) = t̄sa +
∑

a′∈As

[
t̂sa,a′(na′,s, λa′)− t̄sa

]
= t̄sa +

∑
a′∈As

t̃sa,a′(na′,s, λa′,s), (3)



Variable Description
zr Binary variable indicating if request r is served
xr
a,s Number of instances of application a hosted on s assigned to request r

wr
a,s Auxiliary variable indicating if request r has an instance on server s

wa,s Auxiliary variable indicating if application a is hosted on server s
ws Auxiliary variable indicating if server s hosts at least one application instance
na,s Total number of instances of application a hosted on server s
Ef

s Fixed energy consumption of running server s
Ed

a,s Energy consumption per inference task processed by application a on server s

TABLE II: Frequently used notation.

where t̄sa is the 95th percentile inference time of application
a in isolation, and t̃sa,a′ = tsa,a′ − t̄sa is the increase of
the inference time of application a when contending against
a′. While this composite model is admittedly simple, it is
relatively easy to integrate it an optimization problem, as we
discuss next.

IV. PROBLEM FORMULATION

We use the proposed inference time model for formulating
the problem of maximizing the revenue of the operator from
serving tenant requests.

A. Operator Profit

We express the operator profit as the difference of its
revenue from serving tenant requests and the cost of the energy
consumed for serving the requests. We adopt a widely used
model of the power consumption, formulated as the sum of
the fixed power consumption Ef

s if server s is active and
the dynamic energy consumption, which depends on the task
arrival rates of application instances placed on server s, i.e.,

E(w,x) =
∑
s∈S

Ef
sws +Σs∈SΣa∈As

Ed
a,sλa,s(x) , (4)

where Ed
a,s is the energy consumption per inference request

for application a running on server s, which is multiplied by
the average task arrival intensity λa,s(x) = Σr∈Rxr

a,sλa/n
r
a.

The profit of the operator is then expressed as

U(w,x, z) = Σr∈Rρrzr − σEE(w,x), (5)

where σE is the unit cost of power consumption for the
duration of the tenant requests.

B. Optimization Problem

Using the notation defined in Section II and the inference
time characterization defined in Section III, we can formulate
the profit maximization problem as,

max
w,x,z

U(w,x, z) (6)

subject to:∑
s∈S

xr
a,s ≥ na

r −M(1− zr),∀r ∈ R (7)∑
s∈S

xr
a,s ≤ na

r +Mzr,∀r ∈ R (8)∑
r∈R

∑
a∈A

Cax
r
a,s ≤ Cs,∀s ∈ S (9)

tsa(x) ≤ τ r +M(1− wr
a,s),∀s ∈ S, r ∈ R (10)

xr
a,s ≥ 1−M(1− wr

a,s),∀r ∈ R, a ∈ A, s ∈ S
(11)

xr
a,s ≤ Mwr

a,s,∀r ∈ R, a ∈ A, s ∈ S (12)∑
r∈R

xr
a,s ≥ 1−M(1− wa,s),∀a ∈ A, s ∈ S (13)∑

r∈R
xr
a,s ≤ Mwa,s,∀a ∈ A, s ∈ S (14)∑

r∈R

∑
a∈A

xr
a,s ≥ 1−M(1− ws),∀s ∈ S (15)∑

r∈R

∑
a∈A

xr
a,s ≤ Mws,∀s ∈ S . (16)

Constraints (7) and (8) employ the big-M linearization to
ensure that nr

a application instances are provisioned for request
r. (9) enforces that the memory requirement of the applications
is met and that the memory consumption of provisioned ap-
plication instances on the server s does not exceed the system
capacity, (10) enforces the latency constraint on each server,
using the delay model tsa(x) as defined in (3). Constraints
(11) - (16) introduce auxiliary variables, (11) and (12) set
the variable wr

a,s to 1 if request r for application a has at
least one instance on server s, (13) and (14) ensure that
wa,s = 1 if server s hosts at least one instance of application
a. Finally, constraints (15) & (16) set ws to one if server
s is active. We refer to the above problem as the energy-
aware O-RAN service orchestration with pairwise performance
profiling (PERX) problem.

V. SOLUTION METHODOLOGY

We now address the methodological challenges faced in
estimating the parameters of the inference time model and
in solving PERX.

A. Parameter Estimation

For efficient parametrization, we leverage the observation
that (1) and (2) form a hierarchical model, which allows us to
use a hierarchical Bayesian approach for estimating the model
parameters for each application pair (a, a′).

For this, we model the observed inference time as
tsa,a′ = t̂sa,a′(λa′ , na′ ; θa,a

′
) + ϵ1, with ϵ1 ∼ N (0, σ2

1),
i.e., observations are subject to Gaussian noise. Furthermore,
we represent the parameters of the sigmoid as Θa,a′

i =

θa,a
′

i (na′ ;αa,a′

i , βa,a′

i ) + ϵ2, with ϵ2 ∼ N (0, σ2
2) accounting

for modeling errors. We can then formulate the hierarchical
model

tsa,a′ |{Θa,a′

i }3i=1 ∼ N (t̂sa,a′(λa′ , na′ ; {Θa,a′

i }3i=1), σ
2
1) (17)

Θa,a′

i |αa,a′

i , βa,a′

i ∼ N (θa,a
′

i (na′ ;αa,a′

i , βa,a′

i ), σ2
2)

αa,a′

i ∼ U(γ, δ) , βa,a′

i ∼ U(γ, δ), γ < δ.

Given a dataset T s
a,a′ , containing the measured inference

times of tasks of application a when contending against na′

instances of application a′ as part of the pair-wise experiments,
we initialize the parameters {σ1, σ2, γ, δ} based on the dataset



Pairwise latency
characterization

ML application
catalog

FF
LSTM
CNN
RF

Load 𝜆

Server 1 Server 𝑆

. . .

O-Cloud

Composite 
contention model

Kubernetes
Scheduler

Placement 𝒙

Tenant Requests
{(𝑎! , 𝑛"! , 𝜌! , 𝜏! , 𝜆"! )}

Offline Profiling

𝝀.(𝟎)

Solve ILP

Avg. arrival rate 𝝀.(𝒌)
Candidate placement 𝒙(𝒌)

PERX Optimizer
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inference time and iteratively solves the ILP yielding the placements.

as σ1 = 1, σ2 = 1, γ = 0, δ = 2.5. We then estimate the pair-
wise parameters by maximizing the posterior distribution,

α∗ a,a′
, β∗ a,a′

= arg max
αa,a′ ,βa,a′

f(αa,a′
, βa,a′ |T s

a,a′) (18)

∝ arg max
αa,a′ ,βa,a′

f(T s
a,a′ |Θa,a′

)

f(Θa,a′ |αa,a′
, βa,a′

)f(αa,a′
, βa,a′

) ,

This way we obtain |A|× |A| pair-wise inference models that
characterize the inference time of application a when con-
tending against na′ instances of a′ as a function of the arrival
rate λa′ . Our results in Section VI show that the inference
time estimates based on pairwise profiling are accurate for
our purpose.

B. Solving PERX

Observe that the delay constraint (10) in PERX is non-
linear due to that in (3) the average arrival intensity to
application a′ is a function of the decision variable x, λa′,s =∑

r λ
r
a′xr

a′,s/n
r
a′ , which in turn is multiplied by the number of

instances of application a′ on server s, na′,s =
∑

r′ x
r′

a′,s. The
constraint thus contains the product of two decision variables.

Instead of using an off-the-shelf nonlinear problem solver,
we propose an iterative approach that decouples the compu-
tation of λa′,s from the choice of the placement in PERX.
Initially, we set the arrival intensity per instance of the appli-
cation by considering the average arrival intensities of all the
tenants, i.e., λ

(0)

a′,s = 1∑
r 1{ar=a′}

∑
r

λr
a

nr
a
1{ar=a′}, ∀s ∈ S to

obtain a latency estimate, which we use to obtain a placement
by solving PERX (via branch-and-bound). We then iteratively
recompute λ

(k)

a′,s based on the most recent placement x(k). We
iterate the process until convergence, i.e., until the successive
deployments yield the same result, x(k+1) = x(k). Fig. 4 illus-
trates the proposed solution methodology for PERX, including
the pairwise profiling-based inference time estimation and its

ability to integrate with existing cloud orchestrators such as
Kubernetes.

VI. NUMERICAL RESULTS

A. Evaluation Methodology

We perform extensive experiments to evaluate PERX. We
consider deployments on S = |S| ∈ {2, 5, 10, 20} servers
using the application catalog shown in Table III. The applica-
tions are packaged as docker containers for deployment, with
a memory requirement of Ca = 750MB approximately. For
the deployment, we use Dell R7515 PowerEdge servers with
Cs = 32GB of RAM and 32 physical cores.

For the evaluation, we consider three scenarios. In the
first two scenarios, scenario-NRT and scenario-AS,
the number of tenant requests is R = 100S/3, i.e., the
number of requests is scaled with the number of servers. Each
tenant may request nr

a ∈ {3, . . . , 15} instances of application
a ∈ A = {FF,LSTM,CNN,RF}, A = |A| = 4, with an
arrival intensity λr

a ∈ [20, 100] (tasks / s). Task arrivals for a
tenant request follow a Poisson process with intensity λr

a, as
in [12]. In scenario-NRT, the tenant latency requirements
follow the near-RT specification, τ r ∈ [300, 500] (ms). In
scenario-AS, latency requirements are application-type
specific, as shown in Table III. The latency requirements in
the scenario-AS are tighter for the CNN and the RF ap-
plications, aligned with their low inference times. In the third
scenario, scenario-AS50, the number of tenant requests
is 50, the other parameters are as in scenario-AS. The
parameters are chosen uniformly at random for each tenant
request within the specified intervals. The monetary value of
requests and the energy consumption per task execution are
shown in Table III, and we use σE = 0.032 $ / kW for the
unit power cost. The fixed power consumption for the servers
is set to Ef

s = 100W. The results shown are the averages of
10 experiments.
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We consider two baselines for comparison. The first baseline
is Scal-ORAN [8], which colocates application instances by
ensuring that the average inference time of all applications
hosted on the server meets the delay requirements and uses a
piecewise linear approximation of the inference time, based on
the total number of colocated instances. The second baseline,
Scal-ORAN-cons, is a modified version of Scal-ORAN that as-
sumes application-agnostic contention and estimates the infer-
ence time of application a as ta,a′(x) = ta,a(

∑
a∈As

na, λa).
We use Scal-ORAN-cons to show the detrimental impact of
overestimating the inference time. We use the branch-and-
bound implementation of Gurobi for computing the place-
ments in each iteration of PERX, as well as for the solution
of Scal-ORAN and of Scal-ORAN-cons.

B. Inference Time Estimation Performance

We start with evaluating the effectiveness of (3). To
parametrize the pairwise models, we collect a data set of 16
data points for each pair of applications. We then create 60
random placements on a Kubernetes cluster and use (3) to
predict the inference times of the applications. Fig. 5 shows
the probability mass function of the relative prediction error.
We observe that the proposed pairwise profiling approach
combined with (3) results in a relative prediction error centered
around 0. On the contrary, Scal-ORAN [8] and Scal-ORAN-
cons tend to overestimate the inference times, potentially
leading to under-utilization of resources.

C. Operator Revenue

Fig. 6 shows the operator’s revenue as a function of the
number of servers. Fig. 6a shows that PERX consistently
achieves around 50% higher revenue than the baselines in
the case of scenario-RT. We attribute this to the higher
accuracy of the proposed inference time estimation, which

Application Payment
($ / hr)

Energy Consumption
(J / request)

Latency Requirement (ms)
AS, AS50 NRT

FF 6 22 [250, 400]

[300, 500]
LSTM 5 16 [400, 500]
CNN 4 8.77 [130, 250]
RF 3 5 [15, 40]

TABLE III: Tenant request parameters.
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Fig. 6: Operator profit U vs. number of servers S.
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Fig. 7: Acceptance ratio vs. number of servers S.

takes into account the types and task arrival rates of contending
applications. We note that compared to Scal-ORAN, Scal-
ORAN-cons has a tendency to overestimate the inference
time, which leads to conservative application placement, con-
sequently yielding a lower revenue. The problem appears to
be exacerbated in the case of scenario-AS, Fig. 6b, due
to the fact that the latency constraints for the RF applica-
tion are much more stringent compared to other applications
(Table III), and overestimating the inference time for the
RF application results in accommodating significantly fewer
instances of it.

This hypothesis is confirmed by Fig. 7. The figure shows
that the higher revenue of PERX is owing to the fact that it
is able to accept about 60% more tenant requests for both
near-real-time latency constraints (Fig. 7a) and application-
specific latency requirements (Fig. 7b). Furthermore, we ob-
serve that Scal-ORAN fails to meet the demand in case of
scenario-AS (Fig. 7b). Given the dissimilar application re-
quirements (scenario-AS, Table III), averaging the service
times leads to overestimation errors; for instance, placing the
FF application together with RF overestimates the service
times for RF applications, inhibiting their colocation.

The decrease in acceptance ratio under scenario-AS for
Scal-ORAN (Fig. 7b) may seem unexpected, and it is due to
that branch-and-bound fails to converge for S ≥ 10 (within
10 minutes) due to the large number of tenant requests. To
confirm this, we show results for scenario-AS50, where
the number of tenant requests is limited to R = 50. Fig. 8a
shows a steady increase in the acceptance ratio, but PERX can
still admit more tenant requests. As a result, PERX achieves
consistently higher revenue (Fig. 8b).

Fig. 9 shows the number of tenant requests served per appli-
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Fig. 8: Acceptance ratio and operator profit (U ) vs. number
of servers S for scenario-AS50.
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Fig. 9: Average number of tenant requests served per applica-
tion type on S = 20 servers under the three scenarios.

cation type in the three scenarios, using the three algorithms.
The figure shows that Scal-ORAN serves significantly less
tenant requests for CNN and RF applications. Furthermore,
we observe that PERX can not only accept more tenant
requests (for instance, FF application requests), but it can
also serve application requests that other baselines cannot, for
instance, LSTM application requests. The fact that PERX can
accept more tenant requests for FF applications is especially
interesting, considering that the FF application is the one that
contends most with other applications (Figs 2a - 2d).

D. Task Latency Requirement Violation Probability

Fig. 10 shows the percentage of task latency requirement
violations for the four applications for S = 5 servers, based
on an actual deployment for scenario-AS, measured over
5 minutes. Note that a value below 5% means that the SLA
is not violated, as the SLA specifies the 95th percentile
requirement. We observe that as a consequence of averaging
the inference times, Scal-ORAN underestimates the inference
time for the LSTM application due to averaging, which
results in more latency constraint violations for the LSTM
applications. Being conservative, Scal-ORAN-cons incurs the
least latency violations for all applications (but also lowest
profit). Although PERX results in a marginally higher latency
constraint violation rate for CNN and LSTM , the mean
latency constraint violations are below 5%, which implies that
the SLA is met.
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Fig. 10: Percentage of task latency violations for the four
application types, S = 5 servers, scenario-AS. The dashed
lines mark the mean task latency violation.

VII. RELATED WORK

Service orchestration in O-RAN is receiving increasing
attention in the literature [6], [17]. Authors in [11] focus on
latency-constrained service orchestration and DU placement,
considering deployment constraints imposed by the infrastruc-
ture. Similarly, [1], [10] formulate an optimal placement prob-
lem to minimize energy consumption. Authors in [3] propose
an O-RAN service orchestrator for ML and AI workloads.
Authors in [8] proposed a data-driven application inference
time model to aid in proactive application placement, but
the model leads to overestimation and underestimation of
application inference times, potentially leading to lost revenue.
Compared to these works, we propose a novel approach based
on pairwise inference time profiling and show its benefits in
application placement subject to meeting SLAs.

Designing latency-aware orchestration policies has recently
been considered in the cloud computing literature [2]. Authors
in [7] profile the application inference time on a pairwise
basis, but do not consider colocated applications with multiple
application instances. Authors in [7] consider the impact of
colocating multiple application pairs, their approach does,
however, not scale to complex deployments and does not
support placement, only request scheduling. Authors in [5]
train a binary classifier to determine whether an application
instance can meet the latency requirements, given the current
resource utilization, such as CPU and RAM, but do not
consider placement, which is the main focus of our work.

VIII. CONCLUSION

In this paper, we proposed PERX, an energy-aware O-RAN
service orchestrator that places O-RAN application instances
on the O-Cloud server such that the inference time limits
are honored and the profit of the O-Cloud operator is max-
imized. The challenge of the application placement is that the
application inference times are unknown due to the complex
effects of resource contention. The key component of PERX
is, therefore, a low complexity solution for the estimation of
the inference times that takes into account the colocated mix
of application instances and the arrival intensity of tasks. Our



extensive evaluation shows that PERX outperforms state-of-
the-art baselines by up to 50 % in terms of operator revenue
while observing reduced SLA violations, demonstrating the
importance of accurate inference time characterization.

PERX leaves life cycle management of the application
instances to the underlying orchestrator, it could thus be
integrated with the schedulers of existing orchestration frame-
works such as Kubernetes and OpenShift. Interesting direc-
tions of future work include extending PERX to modeling
performance when using hardware accelerators, such as GPUs
and TPUs, and to services consisting of chains of ML models.
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