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Abstract—In this paper, we consider the problem of optimal
dynamic service function (SF) placement and flow routing in a
service function chaining (SFC) enabled network. We formulate a
multi-objective optimization problem to maximize the acceptable
flow rate and to minimize the energy cost for multiple service
chains. We transform the multi-objective optimization problem
into a single-objective mixed integer linear programming (MILP)
problem, and prove that the problem is NP-hard. We propose a
polynomial time algorithm based on linear relaxation and round-
ing to approximate the optimal solution of the MILP. Extensive
simulations are conducted to evaluate the effects of the energy
budget, the network topology, and the amount of server resources
on the acceptable flow rate. The results demonstrate that the
proposed algorithm can achieve near-optimal performance and
can significantly increase the acceptable flow rate and the service
capacity compared to other algorithms under an energy cost
budget.

Index Terms—Service function chaining, acceptable flow rate,
energy cost, flow-compensatory rounding based placement.

I. I NTRODUCTION

Today’s networks rely on a variety of service functions (SFs)
(often called middleboxes), such as firewalls and network
address translators, for processing user traffic [1]. Depending
on service requirements and policy the traffic of different users
may have to be processed by different SFs in a particular
order, which is often referred to as service function chaining
(SFC) [2]. SFC is currently being discussed in the Internet
Engineering Task Force (IETF) SFC working group (WG),
including an SFC architecture [3] and various use cases (e.g.,
SFC in mobile networks [4]).

SFC today is based on proprietary network hardware ap-
pliances from independent vendors, which makes flexible and
elastic resource management challenging. Network functions
virtualization (NFV) [5] has been recently introduced to ad-
dress this challenge. With NFV the SFs are virtualized (instead
of hardware-based SFs or physical SFs), and an SF is placed
(or instantiated) within a virtual machine (VM) [6], [7] on
a commodity server while consuming server resources, e.g.,
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CPU cycles and memory. Which commodity server a particular
SF is placed, and how many instances of an SF are instantiated
can be decided depending on the actual traffic volumes. NFV
thus provides flexibility in allocating resources to SFs and in
combining different instances of SFs into service chains (SCs),
and can thus potentially reduce capital expenditure (CAPEX)
and operational expenditure (OPEX) of network operators [8].

To fully leverage the flexibility of NFV enabled SFC, it is
important to be able to route flows that use an SC on links
and paths with sufficient bandwidth between the individual
SFs. Such flow specific routing can be effectively achieved
by the well-known concept of software defined networking
(SDN) [9]. SDN decouples the control plane and the data
plane, and allows a logically centralized controller in the
control plane to define and install per-flow forwarding rules
for flexible routing.

Given the flexibility provided by NFV and SDN, an impor-
tant and challenging problem is to optimize the placement
of SFs and the distribution of flows on network paths for
SFC under link capacity and server resource constraints. This
problem was considered in several recent works [10]–[20],
with the common assumption that the amount of admitted
flows (i.e., flow rate or throughput) for each SC is known.
An equally important and challenging problem, which has
received little attention so far, is to determine the service
capacity of a network in terms of the acceptable flow rates
for a set of SCs. Being able to determine the acceptable
flow rate of individual SCs in an SFC-enabled network could
allow operators to implement SC-based pricing and admission
policies for maximizing revenues, and could be used by
operators for link capacity and server resource dimensioning
so as to maximize the flow rates for different SCs.

Motivated by these important use cases, in this paper we
formulate the problem of maximizing the acceptable flow rate
and minimizing the energy cost for multiple SCs in an NFV-
enabled network as a multi-objective optimization problem.
In the proposed optimization problem the placement of SFs
(i.e., their locations and the number of SF instances) and
flow distribution (i.e., the routes for SC flows) are jointly
considered as decision variables, while the acceptable flow
rate of individual SCs is determined based on pre-defined
weight factors. We transform the multi-objective optimiza-
tion problem into a single-objective mixed integer linear
programming (MILP) problem by means of theǫ-constraint
method [21], and prove that the MILP problem is NP-hard.
We then propose a rounding-based approximation, called flow-
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compensatory rounding-based placement (FCRP), which runs
in polynomial time and can be executed at a central entity
(i.e., SDN controller). Simulation results demonstrate that the
proposed algorithm can achieve near-optimal performance and
significantly increase the acceptable flow rate compared to
other algorithms under an energy cost budget.

The contributions of this paper are threefold. First, we study
the joint optimization of maximizing the acceptable flow rate
of each SC and minimizing the energy cost under resource
capacity constraints in an NFV-enabled network. To this end,
we determine the locations and the number of SF instances as
well as the routes of SC flows, while the acceptable flow rate
of each SC is determined by an SC-specific weight. Second,
weaklyPareto-optimal solutions of the formulated optimization
problem and solutions of the proposed algorithm capture an
acceptable flow rate-energy cost curve, while through adjusting
the SC weights, the solutions allow to explore the region of
admissible flow rates as a function of the service capacity.
Third, extensive simulation results show that the performance
of the proposed algorithm is close to optimal while it can
be easily implemented and operates in polynomial time, and
give insight into the effect of various system parameters (e.g.,
energy cost budget) on the acceptable flow rates.

The rest of the paper is organized as follows. Section II
discusses related work. The system model and the optimal
resource allocation problem are described in Section III and
Section IV, respectively. The proposed algorithm is described
in Section V and extensive simulation results are presented in
Section VI. Section VII concludes the paper.

II. RELATED WORK

Previous works on resource allocation for SFC either ad-
dress routing for fixed SF placement [10]–[13] or routing for
flexible SF placement [14]–[20], with consideration for various
objectives.

In the case of fixed SF placement the problem is to
determine the routes of SC flows for given SF locations. Kim
et al. [10] propose algorithms for SC path selection so as to
reduce the operation cost while Gushchinet al. [11] formulate
a path optimization problem to minimize the number of routing
rules when all SFs of an SC are consolidated in a single
VM. Unlike ours, these works do not consider the processing
order specified in the SCs, which is a fundamental requirement
in SFC. Mijumbi et al. [12] formulate an online mapping
and scheduling problem in which the SFs that each SC flow
passes are scheduled over time so as to improve the revenue
while reducing the cost in terms of computational resource
utilization, not considering link capacity constraints. The paper
proposes several greedy algorithms and a tabu search based
heuristic algorithm. Janget al. [13] formulate the problem of
minimizing the network resource usage for a given SC flow
as a linear programming (LP) problem which determines the
routes of SC flows. Compared to [13], our work considers
the joint optimization of SF placement and routing for SC
flows as a multi-objective optimization problem, and allows
simultaneous optimization of the acceptable flow rate and the
energy cost.

In the case of flexible SF placement, the routes of SC flows
and the locations of the SFs are determined simultaneously.
Mehraghdamet al. [14] define SF graphs for each SC request,
and formulates an optimization problem in which the SF
graphs are mapped to a substrate network for optimizing link
utilization, energy cost, and latency. Bariet al. [15] formulate
the problem of minimizing OPEX and resource fragmentation.
In the problem, directed graphs model SCs, which are mapped
to a physical network using a heuristic algorithm based on
the Viterbi algorithm. Baumgartneret al. [16] study a virtual
mobile core network embedding problem to minimize the
cost of link and node resources. The solution is based on
embedding multiple subchains in the user and control planes
of a given physical substrate network. These works can be
considered as an extended version of the virtual network em-
bedding problem [22], as they take into account the processing
order in SFC. Different to our work, the maximization of the
acceptable flow rates and the minimization of the energy cost
are not taken into account in these works.

Ma et al. [17] present an SF placement problem with the
objective of load balancing taking into account that SFs may
reduce or expand flow rates, and propose a polynomial time al-
gorithm. Moenset al. [18] propose an SF placement algorithm
that considers services embedded in a VM (not individual
SFs), and resources are assigned to VMs to minimize the
number of active servers. Unlike our work, these works do
not take into account the processing order specified in the
SCs. Mohammadkhanet al. [19] formulate the problem of
accommodating more flows in a domain by minimizing the
maximum utilization of links and CPUs, and proposes several
heuristics. This approach is different from ours, as it aims at
maximizing the remaining resource capacity per link and CPU,
instead of maximizing the acceptable flow rate. Liet al. [20]
design a unified framework composed of an NFV orchestration
system for SF placement and an SDN controller for routing. In
the framework, a heuristic solution is proposed for minimizing
the hop count between an ingress node and an egress node.

Compared to these previous works, our work allows to
investigate the tradeoff between acceptable flow rate and en-
ergy cost for multiple SCs by determining both SF placement
and routing, and makes it possible to characterize the service
capacity of an SFC-enabled network in terms of acceptable
flow rates.

III. SYSTEM MODEL

In this section, we present our model of an SFC enabled
network, compatible with the IETF SFC architecture [3].

A. Network topology

We consider an SFC-enabled network, as shown in Figure 1,
and model it as a directed graphG = (V,E). In accordance
with the IETF SFC architecture [3], the setV of nodes consists
of the setVing of ingress nodes, the setVegr of egress nodes,
the setVSN of service nodes (SNs), and the setVSFF of
service function forwarders (SFFs), i.e.,V = Ving ∪ Vegr ∪
VSN ∪ VSFF . For a directed edge(i, j) ∈ E ⊆ V × V we
denote byC(i,j) its capacity, e.g.,C(SFF1,SFF2) = 2 Gbps in
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Fig. 1. SFC-enabled network topology.

Figure 1. The ingress nodes and the egress nodes are entry
and exit points of SC flows, respectively, and we make the
natural assumption that the ingress nodes play the role of the
classifier, as in [3], i.e., the ingress node performs the SFC
encapsulation to identify a specific SF path (SFP). SFFs only
forward flows to other SFFs or to SFs after checking the SFP
information contained in the SFC encapsulation header. Note
that according to [3] once processed by an SF placed on an
SN, flows return to the SFF visited previously (e.g., SFF1→SF
2-2→SFF1 in Figure 1).

We consider that an SN is a commodity server that can
host multiple VMs, with one SF instance per VM. Each SN is
endowed withL types of resources (e.g., CPU and memory),
and we denote byAi = {ai1, ..., a

i
L} the available resources

of SN i. As discussed in the IETF SFC WG and shown in
Figure 1, there is a central entity, the SDN controller, located
in the control plane [23]. The SDN controller monitors and
collects the status information in the SFC-enabled network
(e.g., resources of nodes, link capacities, SC requests) and
performs SF placement and flow distribution by solving the
optimization problem presented in Section IV.

B. Service functions and service chains

We denote byM = {1, ...,M} the set of available SFs, and
we denote byRm = {rm1 , ..., rmL } the resource requirement of
an instance of SFm (i.e., a VM template of SFm). We denote
by Cm the maximum flow rate that SFm is able to serve, and
refer to it as the processing capacity of an instance of SFm.
An SF may change the rate of a flow that traverses it [24], for
example, a firewall and a wide area network (WAN) optimizer
can reduce the flow rate by dropping unpermitted flows and
by compressing flows, respectively. To capture this, we denote
by αm the flow rate inflation factor of SFm [14], [17], e.g.,
αm = 0.95 implies that the flow rate decreases by5% when
a flow is processed by SFm.

A sequence of SFs forms an SC, and for an SCs we denote
by Ts the number of SFs that it is composed of. An SCs can
thus be represented by a vectorσ ∈ MTs , and we denote
by σs

t the tth SF in SCs. For example, in Figure 1 the first
SF in SC1 is SF 2, i.e., σ1

1 = 2, and the length of SC1
is T1 = 2. A particular SF or an SF instance may appear in
multiple SCs, possibly with different indices, e.g., in Figure 1
SF 2 is the first SF in SC1, but is the third SF in SC2. To
ease presentation, we make use of the Kronecker deltaδσs

t m,
e.g., in Figure 1 we haveδσ1

1
2 = 1 and δσ1

2
2 = 0 because

in SC 1 SF 2 is the first SF (not the second SF). Finally, we
denote byS = {1, ..., S} the set of SCs.

For eachs ∈ S we define the SC weight factorws ∈ (0, 1],
which is a system parameter, and can be used to prioritize SCs,
e.g., depending on the number of customers using an SC.

C. SF placement decision variables

We allow multiple instances of an SF to be placed on a
particular SN. We denote byPi,m the number of instances
of SF m placed on SNi, and define theM × |VSN | SF
placement matrixP = (Pi,m). As an example, in Figure 1
PSN1,SF2

= 2 because two instances of SF2 are placed on SN
1. Furthermore, we define the setP of all possible SF place-
ment matrices, which is a finite subset of allM × |VSN | non-
negative integer matrices, determined by the SNs’ resource
availabilitiesAi and the SFs’ resource requirementsRm.

D. Flow distribution decision variables

The placement of SFs together with the SF and link ca-
pacities determines the acceptable flow rate of the SCs. We
denote byf s ∈ R≥0 the acceptable flow rate of SCs, and we
define the flow rate vectorF = (f1, ..., fS). Furthermore, we
denote byF ⊂ R

S
≥0 the set of acceptable flow rate vectors,

and define the aggregate flow rateF =
∑

s∈S f s.
To serve SCs at a flow rate higher than the capacity of

individual links and SF instances, we allow the flow of an
SC to be split among multiple SFPs. Since an SC flow is
typically an aggregate of the traffic of multiple users, splitting
can be done without the risk of packet re-ordering. To capture
multiple SFPs for an SCs, we denote byfσs

t

(i,j) the flow rate of
SCs that passes link(i, j) after being processed by SFσs

t . As
a compact notation we define the order3 tensorFL = (f

σs
t

(i,j))

for (i, j) ∈ E, s ∈ S, t ∈ {0, Ts}, whereσs
0 (i.e.,t = 0) means

that the flow of SCs is not yet processed by any SF andσs
Ts

means that the flow of SCs is processed by all SFs in SCs.
Finally, we denote byFL the set of possibleFL tensors. As
an example, in Figure 1 there is an SFP for SC1 with a flow
rate of 1 Gbps (dashed line), thusfσ1

1

(SFF1,SFF2)
= 1 Gbps

since the flow traversing the link between SFF1 and SFF2
is already processed by the first SF in SC1 (i.e., SF2).

Similarly, for capturing the flow rates injected to SF in-
stances, we denote byfσs

t

(i,n) the flow rate injected to thenth

instance of SFσs
t+1 placed on SNi after being processed

by SF σs
t . As a compact notation we use the order4 tensor

FI = (f
σs
t

(i,n)) for i ∈ VSN , s ∈ S, t ∈ {0, Ts − 1}, n ∈

{1,max
i,s,t

Pi,σs
t
}. Finally, we denote byFI the set of possible

FI tensors. As an example, in Figure 1 the flow of SC1
is injected to the second instance (i.e.,n = 2) of SF 2
(which is the first SF in SC1) placed on SN1, and thus
f
σ1

0

(SN1,2)
= 1 Gbps.

E. Normalized energy cost

We use the normalized energy cost to capture the energy
efficiency of a placement. We make the reasonable assumption
that the energy use is proportional to the amount of SN
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resources that are required to instantiate SFs [20], and define
the resource-energy weight factorel ∈ [0, 1] to model the
differing impact of different resources on the energy use
(e.g., CPU utilization vs. memory use). We thus express the
normalized energy cost as

E =
∑

i∈VSN

∑

m∈M

Pi,m

L
∑

l=1

rml
∑

i∈VSN

ail
el. (1)

IV. CONSTRAINTS AND PROBLEM FORMULATION

We are now ready to formulate the problem of finding an
optimal placement of SF instances and corresponding SC flows
that maximizes the flow rate of SCs and minimizes the energy
cost. We start with introducing the flow conservation, capacity
and SF order constraints, followed by the objective function.

A. SC flow conservation constraints

The first type of flow conservation constraint ensures that
the sum of incoming flow rates to an SFF is equal to the sum
of outgoing flow rates from the SFF,
∑

j∈V

f
σs
t

(j,i) =
∑

j∈V

f
σs
t

(i,j), ∀s ∈ S, ∀t ∈ {0, Ts}, ∀i ∈ VSFF .

(2)

The second type of constraint ensures that incoming flow rates
to an SN are the same as the outgoing flow rates from the SN,
subject to the flow rate inflation factor,

f
σs
t−1

(j,i) ασs
t
= f

σs
t

(i,j),

∀s ∈ S, ∀t ∈{1, Ts}, ∀j ∈ VSFF , ∀i ∈ VSN . (3)

Since each ingress node is the starting point of aggregated
flow rates, the third type of constraints requires that outgoing
flows from an ingress node have not yet been processed by
any SFs in an SC,

Ts
∑

t=1

∑

j∈V

f
σs
t

(i,j) = 0,
∑

j∈V

f
σs
0

(i,j) = f s, ∀s ∈ S, ∀i ∈ Ving . (4)

Similarly, incoming flows to an egress node should have been
processed by all SFs in an SC,

Ts
∑

t=1

∑

j∈V

f
σs
t−1

(j,i) = 0,
∑

j∈V

f
σs
Ts

(j,i) = f s

Ts
∏

t=0

ασs
t
,

∀s ∈ S, ∀i ∈ Vegr . (5)

The fifth type of flow constraint ensures that incoming flows
to an SN can be injected only to SF instances that are placed
on the SN,

∑

j∈VSFF

f
σs
t−1

(j,i) =
∑

m∈M

Pi,m
∑

n=1

δσs
tm

f
σs
t−1

(i,n) ,

∀s ∈ S, ∀t ∈ {1, Ts}, ∀i ∈ VSN . (6)

The last type of flow constraint allows prioritization among
competing SCs through the SC weight factorws. Our use

of the weight factor is similar to generalized processor shar-
ing [25], and ensures that a fractionws of the total flow rate
is allocated to SCs,

f s = ws

∑

s∈S

f s = wsF, ∀s ∈ S. (7)

B. Capacity constraints

The first type of capacity constraint ensures that link capac-
ities are not exceeded,

∑

s∈S

Ts
∑

t=0

f
σs
t

(i,j) ≤ C(i,j), ∀(i, j) ∈ E. (8)

The second type of capacity constraint ensures that the flow
rate injected to an SF instance does not exceed the processing
capacity of the SF instance,

∑

s∈S

Ts
∑

t=1

δσs
tm

f
σs
t−1

(i,n) ≤ Cm,

∀i ∈ VSN , ∀m ∈ M, ∀n ∈ {1, Pi,m}. (9)

Finally, the third type of capacity constraint ensures that
the capacity of an SN resource is not exceeded by the SF
placement,

∑

m∈M

rml Pi,m ≤ ail, ∀l ∈ {1, L}, ∀i ∈ VSN . (10)

C. SC order constraints

To ensure that flows traverse SF instances in the order
required by the SC, we require that flows processed by SF
σs
t are directed to an SN with at least one instance of the

subsequent SF, i.e., SFσs
t+1,

∑

j∈VSFF

∑

s∈S

Ts
∑

t=1

δσs
tm

f
σs
t−1

(j,i) ≤ Pi,mCm,

∀m ∈ M, ∀i ∈ VSN . (11)

D. Decision variable constraints

Recall that Pi,m takes non-negative integer values and
f
σs
t

(i,j), f
σs
t

(i,n), f
s take non-negative real values. We thus have

Pi,m ∈ Z≥0, ∀i ∈ VSN , ∀m ∈ M, (12)

0 ≤ f
σs
t

(i,j) ≤ f s, ∀(i, j) ∈ E, ∀s ∈ S, ∀t ∈ {0, Ts}, (13)

0 ≤ f
σs
t−1

(i,n) ≤ f
σs
t−1

(j,i) , ∀i ∈ VSN , ∀j ∈ VSFF ,

∀s ∈S, ∀t ∈ {1, Ts}, ∀n ∈ {1, Pi,σs
t
}. (14)
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E. Joint Flow Maximization and Energy Minimization Prob-
lem

We are now ready to formulate the problem of maximizing
the total acceptable flow rate and minimizing the energy cost
in an SFC-enabled network as the following multi-objective
optimization problem

max
F∈F ,FL∈FL,FI∈FI ,P∈P

(F,−E) (15)

subject to (2)− (14).

In order to transform the above multi-objective problem
into a single objective problem, we use theǫ-constraint
method [21], that is, the energy cost part of the objective
function is converted into a constraint by introducing a thresh-
old ETh for the energy cost. The resulting Energy Cost
Constrained Maximum Flow SF Placement (EC-MaxF-SFP)
problem is then

max
F∈F ,FL∈FL,FI∈FI ,P∈P

F (16)

subject to (2)− (14), E ≤ ETh.

It is easy to see that (16) is an MILP problem, and is
computationally infeasible to solve in general, as shown by
the following theorem.

Theorem 1: TheEC-MaxF-SFPproblem is NP-hard.
Proof: To show that theEC-MaxF-SFPproblem is NP-

hard, we provide a polynomial time reduction from the un-
bounded multiple knapsack (UMK) problem, which is known
to be NP-hard [26].

The UMK problem considers a set of itemsI = {1, ..., I}
with profit pi and weightwi, and a set of knapsacksK =
{1, ...,K} with capacitiesck. The objective is to compute
how many of each item to assign to each knapsack, denoted
by xki, ∀k ∈ K, ∀i ∈ I, so as to maximize the total profit
∑K

k=1

∑I

i=1 pixki) subject to knapsack capacity constraints
∑I

i=1 wixki ≤ ck, ∀k ∈ K.
We now show how to construct an instance of theEC-MaxF-

SFP problem for solving an instance of the UMK problem.
First, in the EC-MaxF-SFPproblem all link capacities are
set to infinite (i.e., big enough). This ensures thatEC-MaxF-
SFPonly considers the acceptable flow rates at ingress nodes,
regardless of flow conversation and SC order constraints.
Second, the number of SN resource types is set to one, i.e.,
L = 1, and the energy cost threshold is set to1.

Then, for each itemi we create an SFm with resource
requirementrm1 = wi, and capacityCm = pi. Furthermore, for
each knapsackk we create an SNi with resource availability
ai1 = ck. By doing so, the objective ofEC-MaxF-SFPbecomes
the maximization of the total acceptable flow rate (the total
profit of the UMK), and the resulting placementPi,m of SFs
to SNs is the solutionxki of the UMK. Consequently, the
EC-MaxF-SFPproblem is NP-hard.

Since the EC-MaxF-SFP problem is NP-hard, in what
follows we propose a polynomial-time heuristic as a solution.

V. FLOW-COMPENSATORYROUNDING-BASED

PLACEMENT ALGORITHM

The proposed flow-compensatory rounding-based placement
(FCRP) algorithm approaches the maximum acceptable flow

Algorithm 1 FCRP algorithm.

Input: G, Ai, Rm, Cm, αm, ws, σ
s
t

Output: P,F,FL,FI

Step 1: Feasibility check
1: if ETh ≥

∑

m∈M

∑

l∈[1,L]

rml∑

i∈VSN

ai
l

el then Go to Step2

2: else Stop Algorithm 1
3: end if

Step 2: LP relaxation
4: Let Nmax =

(

nmax
i,m

)

i∈VSN ,m∈M
, nmax

i,m = min
l∈{1,L}

⌊

ai
l

rm
l

⌋

5: SolveEC-MaxF-SFPLP(Nmax) to obtainPR.
Step 3: Placement adjustment

6: for m = 1 to M do
7: Let i = argmaxi∈VSN

{

PR
i,m

}

8: if PR
i,m < 1 and ∃l ∈ [1, L], s.t. ail ≥ rml , then

9: SetPR
i,m = 1

10: end if
11: end for

Step 4: Flow rate loss evaluation
12: Let PI =

(

P I
i,m

)

i∈VSN ,m∈M
, P I

i,m =
⌊

PR
i,m

⌋

13: Let Fd =
(

fd
i,m

)

∈ R
|VSN |×M

≥0

14: for i = 1 to |VSN | do
15: for m = 1 to M do
16: Let wm =

∑

s∈S

∑Ts

t=1 δσs
tm

ws

17: Let fd
i,m = (PR

i,m − P I
i,m)Cmwm/

∑

m∈M

wm

18: end for
19: end for

Step 5: Flow-compensatory rounding
20: while F

d > 0 do

21: Let m′ = argmaxm∈M

{

∑

i∈VSN

fd
i,m

}

22: Let i′ = argmaxi∈VSN

{

fd
i,m′

}

23: SetP I
i′,m′ = P I

i′,m′ + 1, fd
i′,m′ = 0

24: if ∃l ∈ {1, L} s.t. ai
′

l <
∑

m∈M

P I
i′,mCm, or E >

ETh then
25: SetP I

i′,m′ = P I
i′,m′ − 1, fd

i′,m′ = 0
26: end if
27: end while

Step 6: Optimal path creation
28: SolveMaxF LP

(

P
I
)

to obtainF,FL,FI .

rate by iteratively reducing the flow rate loss compared to an
optimal fractional solution. In what follows we explain the
operation ofFCRPand analyze its computational complexity.

A. Algorithm Description

Algorithm 1 shows the pseudo-code ofFCRP. The algo-
rithm consists of six steps. The first step is to verify the
feasibility of EC-MaxF-SFP. If the problem is feasible,FCRP
creates an LP relaxation ofEC-MaxF-SFPreferred to asEC-
MaxF-SFPLP. In other words, integer variables (i.e.,Pi,m)
in EC-MaxF-SFPare replaced by real variables, which makes
EC-MaxF-SFPLP an LP problem. Therefore, the relaxed
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problem can be solved in polynomial time via well-known
algorithms (e.g., interior point method [27]) implemented in
various LP solvers (e.g., IBM ILOG CPLEX). As the third
step,FCRP adjusts the real-valued SF placement solution to
ensure that each SF has at least one instance. In the fourth
step, it rounds the adjusted real-valued solution for the SF
placement, and evaluates the flow rate loss due to rounding.
In the fifth step, it iteratively adjusts the rounded SF placement
to reduce the flow rate loss. Finally, for the computed SF
placement it computes the optimal flow vectors by solving
the LP problem (referred to asMaxF LP) obtained fromEC-
MaxF-SFPwith the fixed SF placement.

Step 1) Feasibility check:The feasibility check verifies
that the given energy cost threshold (i.e.,ETh) is sufficient for
instantiating at least one instance per each SF. The algorithm
terminates if this is not the case.

Step 2) LP relaxation: Note that the indexn in f
σs
t

i,n refers
to thenth instance of an SF in problem (16), and its maximum
value is determined byPi,m, which is the number of instances
of SFm on SN i, and is the integer variable of the MILP.

In order to make an LP relaxation possible, we compute the
maximum numbernmax

i,m of SF instances that can be placed on
SN i by rounding down the ratio of the resource capacity of
the SN and the resource requirement of an SF instance (line 4).
We then temporarily create fictitious instances of each SF up
to the maximum number on each SN. Therefore, the relaxed
EC-MaxF-SFPLP problem includes flow variablesfσs

t

i,n for

all 1 ≤ n ≤ nmax
i,m , and constraintsfσs

t

i,n = 0 for n > Pi,m. We
then solve theEC-MaxF-SFPLP problem, which provides a
real-valued SF placement matrixPR (line 5).

Step 3) Placement adjustment:In order to avoid solutions
in which a particular SF is not placed on any SN, which may
occur due to the rounding in the next step, if there is an SFm
for which the highest value ofPR

i,m is less than1, we round
it up to 1 (lines 6-11). This ensures that at least one instance
of SFm, and thus constraint (7) can be satisfied.

Step 4) Flow rate loss evaluation:To create an integer
placement matrix we round downPR to the nearest integer,
resulting inPI (line 12). Rounding leads to a decrease of the
aggregate processing capacities of SF instances, which results
in a decrease (loss) of flow rate. We thus compute the flow
rate loss matrixFd = (fd

i,m), whose entries capture the flow
rate loss for SNi and SFm (lines 13-19). Recall that the
flow rate for each SC has a different weight, which is taken
into account when computing a weight factorwm for each SF
(line 16). Given the SF weights, we can use the decrease of the
processing capacity (i.e.,(PR

i,m −P I
i,m) ∗Cm) combined with

the share of SFs (i.e.,wm/
∑

m∈M wm) (line 17) to compute
the decrease of flow rate.

Step 5) Flow-compensatory rounding:In the fifth step we
iteratively adjust the integer placement matrixPI . Rounding
is performed once for every node-SF pair inFd, i.e., a total
of M × |VSN | times (lines 20-27), which guarantees that the
running time of the algorithm is bounded.FCRP first finds
an SF (m′) with maximum loss rate among all SNs (line 21),
and then selects an SN (i′) that has the largest loss rate for the
observed SF (line 22). The reason why we choose the SF first

Parameter

Resource (vCPU) Requirement (vCPU)

SN 1 SN 2 SF 1 SF 2

6 6 2 1

= 11 (vCPU) / 12 (vCPU)

SN 1 (5 vCPU) SN 2 (6 vCPU)

SF 1

VM

SN 1 (5 vCPU)

, = .

SN 2 (4 vCPU)

, = . , = .5 , = .3

Step 1

SN 1 (5 vCPU) SN 2 (6 vCPU)

, = .

Add!

, = . , = . , = .3

SN 1 (6 vCPU) SN 2 (6 vCPU)

, = . , = . , = .3

Don’t add!

(Violation for )

Step 2

Step 3

Step 4

SF 1

VM

SF 2

VM

SF 1

VM

SF 2

VM

SF 2

VM

SF 1

VM

SF 1

VM

SF 2

VM

SF 1

VM

SF 1

VM

SF 2

VM

SF 2

VM

SF 1

VM

SF 1

VM

SF 2

VM

SF 2

VM

SF 1

VM

SF 1

VM

SF 2

VM

SF 2

VM

SF 1

VM

SF 1

VM

SF 2

VM

SF 1

VM

SF 1

VM

SF 2

VM

SF 2

VM

Fig. 2. Example of FCRP algorithm.

is to balance the number of instances among SFs belonging
to the same SC, as doing so helps to avoid an SF becoming a
bottleneck for an SC. To compensate the flow rate loss,P I

i′,m′

is incremented for SNi′ and SFm′, and the corresponding
flow rate loss is set to0 (line 25). Note that the rounding
procedure should not lead to a violation of resource capacity
of any SN or the energy cost thresholdETh (lines 24-26).

Step 6) Optimal path creation: Given the integer SF
placement matrixPI , the last step consists of solving the
MaxF LP problem to find the maximum acceptable flow rate
and the optimal paths, i.e.,F,FL,FI (line 28). Note that the
MaxF LP problem is obtained from theEC-MaxF-SFPby
removing constraints (10), (12), and the energy cost constraint,
together with the givenPI .

B. Flow-Compensatory Rounding Example

We illustrate the operation ofFCRP through an exam-
ple shown in Figure 2. The example assumes that the SF
placement and the flow rate losses have been computed, as
described in Steps1 − 4. In the example two instances of
SF 1 and one instance of SF2 are placed on SN1, and one
instance of SF1 and two instances of SF2 are placed on SN2.
Also, available resources of SN1 and SN2 are equally set to
6 virtual CPUs (vCPUs) and the number of vCPUs required
by an instance of SF1 and SF2 are 2 and 1, respectively.
Therefore, SN1 and SN2 are consuming5 vCPUs and4
vCPUs, respectively.

In the example, the algorithm starts with the given SF
placement at Step1 in Figure 2. Then we assume that the
corresponding flow rate loss for SF1 is 0.8, given by the sum
of fd

1,1 = 0.3 in SN 1 andfd
2,1 = 0.5 in SN 2 while the flow

rate loss for SF2 is 0.7, given by the sum offd
1,2 = 0.4 in

SN 1 andfd
2,2 = 0.3 in SN 2. Therefore, as described in Step

5 of Algorithm 1, SF1 is selected first, since its flow rate loss
is larger than that for SF2. Next, SN2 is chosen for SF1,
because the flow rate loss in SN2 for SF1 (0.5) is larger than
that in SN1 for SF 1 (0.3). As an adjustment one instance
of SF 1 is added on SN2 for accepting a higher flow rate,
as shown at Step2 in Figure 2. After Step2 in Figure 2, the
algorithm performs the same procedure.

The following iteration first selects SF2, since its flow rate
loss (0.7) is larger than that for SF1 (0.3). SN 1 is then
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TABLE I
DEFAULT PARAMETERS IN SIMULATIONS.

Description Value

Number of SFFs / SNs / links 10 / 6 / 42
ETh 0.5

vCPU requirements of SFs (1, 1, 2, 2, 4) [29]
Processing capacities of SFs (0.5, 0.5, 1, 1, 2.5) (Gbps) [29]

Flow rate inflation factors of SFs (0.8, 1, 1.2, 1, 1)
Set of SC weights (0.4, 0.3, 0.2, 0.1)

selected owing to the larger flow rate loss (0.4), as shown at
Step3 in Figure 2. Unfortunately, adding one instance of SF2
exceeds the threshold for the energy cost (i.e.,11/12), which
makes this adjustment infeasible. The rounding procedure
terminates eventually, after it iterates through the remaining
pairs, whose final placement is shown at Step4 in Figure 2.

C. Complexity Analysis

In Algorithm 1, the for loop in lines 15-18 iteratesM
times, and the number of iterations of thefor loop at lines
14-19 is |VSN |. Thus the number of iterations in the nested
for loop isM × |VSN |, which includes thefor loop iterating
M times in lines 6-11. In addition, the maximum number
of iterations of thewhile loop in lines 20-27 is the size
of matrix F

d, i.e., M × |VSN |. Algorithm 1 solves two LP
problems, i.e.,EC-MaxF-SFPLP and MaxF LP problems.
The formerEC-MaxF-SFPLP problem includes all variables
defined in theEC-MaxF-SFPproblem. Their sizes areS for
F,

∑

s∈S Ts × |E| for FL,
∑

s∈S Ts × |VSN | × |Nmax| for
FI , and |VSN | × M for P, respectively. We denote byTC

the sum of the sizes. Note that the complexity of solving
the latterMaxF LP problem is lower than that of solving the
former problem since the SF placement matrixP is excluded
as variable. Since solving the LP problem can be done in
polynomial time, the complexity ofFCRP is polynomial in
TC . In particular, if an interior point method with complexity
O(N3.5) is used for solving the LP problem, the complexity
of FCRP becomesO(T 3.5

C ). Given recent developments in
SDN/NFV technologies and high-performance controllers for
WANs, the FCRP algorithm could be executed in real time
for medium sized network topologies.

VI. PERFORMANCEEVALUATION

We use simulations to provide insight into the performance
of the proposedFCRPalgorithm and the acceptable flow rates.
To evaluate the performance ofFCRP, we consider an SFC-
enabled network on the Abilene WAN topology (consisting of
12 nodes) in Internet2 [28]. The nodes in the network topology
are mapped to SFFs, an ingress node, and an egress node. The
ingress node and the egress node are chosen to be at least two
hops away. We connect6 SNs to the mapped SFFs, and choose
the link capacities from the discrete uniform distribution
(DUnif) on {5, 10} (Gbps). Since usually CPU capacity is the
most limited resource and the CPU usage dominates the energy
cost, we only consider CPU resources in the simulations, and
choose the number of vCPUs of each SN from the DUnif on
{20, 25, 30}. For this network topology, we consider5 SFs,
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Fig. 3. Pareto frontier obtained based on the optimal solution and using FCRP.
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Fig. 4. Region of admissible flow rates forS = 2.

and we create4 SCs by randomly choosing subsets of3 or 4
SFs. The parameters are summarized in Table I. As a baseline
for comparison we consider two placement algorithms and two
routing algorithms.

• Randomized placement (RP) algorithm: The algorithm
randomly places each SF instance on an SN, subject to
node capacity constraints.

• SF-aware placement (SFAP) algorithm: The algorithm
sorts the SFs in ascending order of their flow inflation
factorsαm, and sorts the SNs in ascending order of their
hop-distance from the ingress node. It then places SFs on
SNs in order.

• Multi path routing (MPR) algorithm : Given the lo-
cations and the number of SF instances, this algorithm
determines multiple routing paths per SC by solving the
MaxF LP problem.

• Single path routing (SPR) algorithm: Given the SF
placement, the algorithm chooses a single routing path
between each pair of SNs that can accept the maximum
flow in an SC. The single path can be computed using
well-known algorithms for solving the maximum flow
problem (e.g., Edmonds-Karp algorithm [30])

Given the two placement algorithms and the two rout-
ing algorithms, we compareFCRP to 5 algorithms, namely,
FCRP-SPR, RP-MPR, RP-SPR, SFAP-MPR, and SFAP-SPR.
Note thatFCRP-SPRsupportsSPR instead ofMPR applied
in FCRP. For fair comparison withFCRP, ETh for the other
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algorithms is set to the energy cost obtained fromFCRP, and
the initial number of SF instances is commonly determined
according towm in Algorithm 1. As a result, the energy costs
obtained using all algorithms are fairly similar. We thus show
simulation results only for the (aggregate) acceptable flow rate,
with the exception of Figure 3. All simulation results shown
are averaged over200 simulation runs, and95% confidence
intervals are shown.

A. Pareto frontier and Service capacity

We first compare the optimal solution obtained by solving
theEC-MaxF-SFPproblem to the solution obtained byFCRP,
by plotting the Pareto frontier, i.e., the achievable set of
combinations of energy cost and acceptable flow rate that
cannot be improved upon without deteriorating one of the two.
To obtain the Pareto frontier, we solved theEC-MaxF-SFP
problem for various values ofETh between0 and 1, each
solution providing us aweaklyPareto-optimal solution [21],
and plotted the resulting energy cost and acceptable flow rate.

Figure 3 shows the Pareto frontier of the flow rate (x-
axis) and the energy cost (y-axis) obtained by solvingEC-
MaxF-SFP (denoted byOPT) and obtained byFCRP. To
interpret the figure, observe that points above the curves
are not Pareto efficient and points below the curves are not
achievable. The figure shows thatFCRPachieves near-optimal
performance, as the relative difference toOPT is less than
13.3% in terms of the flow rate and7.5% in terms of the
energy cost. We can also observe that the trade-off between
energy cost and flow rate is approximately linear. At the same
time, it is important to note that the actual energy cost does
not increase proportional to the energy cost thresholdETh

for high values of the threshold (e.g., forETh = 0.75 the
actual energy cost is below0.5), which shows that the link
capacity constraints limit the acceptable flow rates above a
certain amount of SN resources. Overall, the figure shows that
the proposedFCRPalgorithm allows to explore nearly Pareto
efficient combinations of energy cost and acceptable flow rate,
and can thus be used for long term capacity planning and for
characterizing the trade-off between flow rate and energy cost.

Figure 4 shows the regions of acceptable flow rates of2
SCs forFCRP and OPT, respectively with3 different values
of ETh where the region is obtained by varyingw1 between0
and1. The figure shows the capacity region of the network in
terms of acceptable flow rates, and confirms that the capacity
region is convex and can be explored usingFCRP.

B. Effect of energy cost thresholdETh

Figure 5 shows the acceptable flow rates as a function of
the energy cost thresholdETh for six algorithm combinations.
The figure shows that the acceptable flow rate increases with
ETh with a decreasing marginal gain, as the amount of usable
SN resources increases, confirming our previous observation
for Figure 3. At aroundETh = 0.7 the link capacity starts
to limit the acceptable flow rates for all six algorithms, but
as shown in the figure,FCRP achieves up to35% and95%
higher flow rates thanRP andSFAP, respectively.
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It is interesting to note that even thoughRP places SF
instances at random without consideration of the processing
order of the SCs and the locations of SF instances, it performs
better thanSFAP, which places SF instances based on their
flow rate inflation factor. The reason is that RP can avoid low
capacity links on the paths of SC flows by evenly distributing
the SFs in the network.

Comparing single and multi-path routing, Figure 5 shows
that multipath routing has little impact on the flow rate on the
considered network topology, as most flows traverse a single
path (that can accept the largest flow rate) between SNs. We
can thus conclude that it is the placement of SFs, respecting
SC order and resource availability, that are most important for
maximizing the acceptable flow rate.

Figure 6 shows the acceptable flow rate regions for all six
considered algorithms forS = 2, obtained by varyingw1

between0 and1. We observe that not only doesFCRP have
the largest acceptable flow rate region, but it is also the only
algorithm that results in a convex flow rate region. The reason
for the irregular (non-convex) shape of the curves for the other
two algorithms is that they do not account for the processing
order of the SCs for SF placement.

C. Effect of network topology

In order to assess the impact of the network topology on
the performance of the algorithms next we consider the Geant
topology (23 nodes) [28] and a4-ary Fat-tree (36 nodes) [31],
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which is a well-known data center network topology, besides
the Abilene network. We added12 SNs to the Geant network
topology, as it is more complex and larger than the Abilene
network. For the Fat-tree we mapped core switches to an
ingress node and an egress node, host servers to SNs, and
remaining switches to SFFs.

Figure 7 and Figure 8 show the flow rate as a function of
ETh for the Geant and the Fat tree topologies and for the six
algorithms, respectively, and show thatFCRP performs best
overall. At the same time, Figure 7 highlights the importance
of optimal multi-path routing on the Geant topology, which
allows for more paths between SNs than the Abilene topology.
Similarly, Figure 8 shows that the performance gain ofFCRP
is more significant on the Fat-tree topology than on Abilene
and on Geant, which is due to that theRPandSFAPalgorithms
do not consider the SF order, and thus there is a high
probability that flows traverse the same links between SNs,
even though the Fat-tree topology has multiple paths between
SNs. This shows that on a regular topology it is essential to
use a placement algorithm that considers the order of SFs.

D. Effect of SN resource availability

Figure 9 shows the flow rate as a function of the amount of
SN resources for the six algorithms for the Abilene topology.
The figure shows that the flow rates obtained usingFCRPand
FCRP-SPRincrease with the amount of SN resources with a
decreasing marginal gain, which is due to the saturation of
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the link capacities. AsFCRPcaptures both the computational
and link capacity constraints, it could be used for optimal
dimensioning of the SN capacity for given link capacities and
network topology, as well as for link dimensioning for given
SN capacities.

Interestingly, contrary to expectations and toFCRP, the flow
rates of RP and SFAP do not increase monotonically as a
function of the available SN resources. This is because they
may place SF instances on SNs connected to low capacity
links, and as the amount of SN resources increases, flows’
competition for link capacity reduces the acceptable flow rates.
This observation again highlights the importance of capturing
computational and communication constraints together with
SC order requirements for the optimization of SF placement.

VII. C ONCLUSION

In this paper we considered the placement of SFs and
corresponding routing with the aim of maximizing the ac-
ceptable flow rate and minimizing the energy cost in an
SFC-enabled network. We transformed the multi-objective
optimization problem into an MILP problem with a single-
objective, and proposed a rounding-based heuristic algorithm,
FCRP, with low computational complexity. Simulation results
demonstrate thatFCRP achieves near-optimal performance
and can significantly increase the acceptable flow rate under
an energy cost budget compared with other algorithms. The
presented results allow network operators to compute the
acceptable flow rates and the service capacity when multiple
SCs are needed, as a function of various networks and SF
parameters. As part of our future work we plan to address the
problem of resource allocation for a sequence of SC requests
subject to reconfiguration constraints in the framework of
sequential decision making problems. As another extension,
we also plan to investigate resource optimization issues in
container-based SFC.
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