
A Comparison of Machine and Statistical Time
Series Learning for Encrypted Traffic Prediction

Qing He∗, Georgios P. Koudouridis†, György Dán∗
∗Division of Network and Systems Engineering, KTH Royal Institute of Technology, Stockholm, Sweden

email: qhe@kth.se, guyri@kth.se
†RAN System Lab., Stockholm Research Center, Huawei Technologies, Stockholm, Sweden

email: george.koudouridis@huawei.com

Abstract—This paper studies the utilization of machine and
statistical learning methods for predicting encrypted user traffic.
To this end, a reference system model and performance metrics
for traffic prediction have been defined for enabling on-line
training. Based on a collection of representative traffic data sets
including various video and web traffic, two different classes of
predictors have been evaluated. Our results show that very good
prediction performance can be achieved using long short-term
memory (LSTM) recurrent neural networks at the price of a
significant computational cost for training.

Index Terms—traffic prediction, ARIMA, LSTM, recurrent
neural networks, wireless networks

I. INTRODUCTION

Identifying network traffic accurately can improve network
management and resource utilization, and thus benefit Inter-
net Service Providers (ISPs) and mobile network operators
(MNOs). Before end-to-end encryption became prevalent in
Internet traffic, Deep Packet Inspection (DPI) and port based
classification have been widely used for classifying traffic.
However, these methods may fail as more and more traffic are
being encrypted and applications are using dynamic ports.

Encryption and the use of dynamic ports have triggered a
recent shift of attention to machine learning-based (ML) traffic
classification and prediction [1]. ML-based classification uses
statistical features of network traffic flows, and has been shown
to be promising for classifying encrypted data for a variety of
purposes [2]. Given the wide variety of potential combinations
of features, algorithms and objectives, the number of ways
in which ML can be used for classification and prediction
is indeed quite diverse, both concerning the traffic properties
used for classification (features), the ML algorithms used and
their results. Most notable are the results in [3] that focus on
identifying traffic flows based on a few initial packets upon a
flow arrives. Targeting early classification of encrypted traffic,
the studied features were the packet sizes, and the inter-packet
times, and their statistics, including the average, the standard
deviation, the maximum, the variance, and the geometric mean,
obtained from the first six packets of each flow. The results
show that most classifiers achieve similar performance when
using features created based on the packet sizes and inter-
arrival times for early stage traffic identification. At the same
time, the data sets used in [3] contain 10 years old traffic
types that are different from contemporary mobile broadband

traffic carried by the Dynamic Adaptive Streaming over HTTP
(DASH) protocol. Although more recent studies cope with
cellular traffic classification, which is typically performed as
an off-line method [4], [5], there is lack of studies that address
encrypted traffic prediction to be used as an on-line traffic
prediction method.

In this paper the objective is to identify different traffic
models and parameters that can be used for on-line predicting
user data traffic. Also, traffic parameters are limited to those
that can be extracted from encrypted data traffic. We utilize
the traffic parameters to evaluate and compare two classes
of prediction methods based on (i) time-series autoregressive
integrated moving average (ARIMA), and (ii) machine learning
based long short-term memory (LSTM) recurrent neural
network. The methods are applied for the payload prediction
of flows and aggregates consisting of video (e.g., DASH) and
non-video traffic. As it is expected, our results demonstrate
that video traffic is easier to predict than non-video traffic and
that machine learning can advantageously be used for traffic
prediction.

The rest of this paper is structured as follows: Section II
describes the system model and formulates the traffic prediction
problem. Section III provides a short description of the methods.
The results of the evaluation of these methods are presented,
compared and analyzed in Section IV, while the paper is
concluded in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model and notation

We consider traffic destined to a user in a network. Without
loss of generality, we assume that the system starts its operation
at time t = 0, and scheduling decisions, and hence prediction
decisions, are taken periodically with a periodicity of δ. We
refer to a sequence of packets from a source socket to a
destination socket as a flow, and we denote by f k the k th flow
in the traffic (counted based on arrival of the first packet of the
flow). We denote by Xk

−i the features created based on the first
i packets of flow f k , by Ak the arrival time of flow k, by Dk

the departure time of flow k, and by Nk the number of packets
in flow f k . Furthermore, we denote by ak

i the arrival time of
packet i in flow k and by bki is size (in bytes). For an aggregate,
we denote by P(t, t + τ) the number of bytes that arrive in the
interval (t, t + τ]. For flow f k we denote by Pk(t, t + τ) the

2020 International Conference on Computing, Networking and Communications (ICNC): Machine Learning for
Communication and Networking

978-1-7281-4905-9/20/$31.00 ©2020 IEEE 714

number of bytes that arrive in the interval (t, t+τ]. Furthermore,
we denote by X(t1, t2) the features created based on the packets
that arrived during [t1, t2].

B. Prediction Problem

For the prediction problem let us define for Pk(t, t + τ)
the predictor pk(Xk(Ak, t), t, τ) ∈ R+, and for P(t, t + τ)
the predictor p(X(0, t), t, τ) ∈ R+, i.e., the predictor for the
aggregate. Values of interest for the prediction horizon in the
considered application domain are τ ∈ {10ms, 50ms, 100ms}.
We define the prediction error for flow k as the squared sum
of the prediction errors

Uk
p(τ) =

∑ bDk /δc

s= dAk /δe
(pk (Xk (Ak, sδ), sδ, sδ + τ) − Pk (sδ, sδ + τ))2

b(Dk − Ak)/δc
.

(1)
Based on Uk

p(τ)
we can express the aggregate prediction error

for the entire data set as

Up(τ) =

∑K
k=1 Uk

p(τ)
b(Dk − Ak)/δc∑K

k=1b(Dk − Ak)/δc
. (2)

Similarly, we define the aggregate prediction error based on
the predictor for aggregate data in [T1,T2] as

Ua
p(τ) =

∑ bT2/δc
s= dT1/δe

(p(X(T1, sδ), sδ, sδ + τ) − P(sδ, sδ + τ))2

b(T2 − T1)/δc
.

(3)
It is worthwhile to note the difference between Up(τ) and

Ua
p(τ)

. While the former can only be computed if flow level
information is available for prediction, the latter can be
computed with and without flow level information. Thus, we
can express (3) based on the flow level predictor errors

Ua(f)

p(τ)
=

∑ bT2/δc
s= dT1/δe

(
∑

k∈Ks
(Ak −

∑
k∈Ks

Pk)
2

b(T2 − T1)/δc
, (4)

where Ak = pk(Xk(Ak, sδ), sδ, sδ + τ), Pk = Pk(sδ, sδ + τ),
and Ks = {k = 1, 2, . . . ,K : Ak ≤ sδ < sδ + τ ≤ Dk}.

Consequently, we will focus on Ua
p(τ)

and Ua(f)

p(τ)
. Doing so

allows us to quantify the impact of having access to flow level
information (e.g., through DPI of IP addresses and port numbers
in the bearer) on the prediction accuracy. The objective of a
predictor is to minimize the prediction error given the available
information. We can thus formulate the prediction problem
without having access to flow level information as follows.

minimize Ua
p(τ) (5a)

subject to (3),
T1 + δ + τ ≤ T2, (5b)
p(X(T1, sδ), sδ, sδ + τ) ≥ 0,

s = dT1/δe, dT1/δe + 1, . . . , bT2/δc . (5c)

When flow level information is available, we can formulate
the prediction problem as follows.

minimize Ua(f)

p(τ)
(6a)

subject to (4)
T1 + δ + τ ≤ T2, (6b)

pk(Xk(Ak, sδ), sδ, sδ + τ) ≥ 0,
s = dT1/δe, dT1/δe + 1, . . . , bT2/δc . (6c)

III. DATA TRAFFIC PREDICTION

We consider two classes of predictors for data traffic
prediction focusing solely on short term traffic prediction using
the performance metrics defined in Section II-B. The input to
these predictors is a sequence values, one for each time period.
Thus, the packet traces have to be converted to a sequence of
values, from time stamps and packet lengths. There could be a
variety of ways for doing the conversion, however, our approach
was to compute the number of bytes that arrived during a time
period, and use this integer number as the time series data.
Based on this representation it is then straightforward to use
the above models for predicting the number of bytes that would
arrive in the next δms, based on past packet arrivals.

By using the notation introduced in Section II-B, we can
denote by P(t) the number of bytes that arrived during the
tth prediction interval, counting from T1, and can express the
predictor p(t) for P(t) with the following two models.

A. Autoregressive integrated moving average

Autoregressive integrated moving average (ARIMA) models
are widely used for time series analysis, including forecasting,
in econometrics and in engineering [6]. The formulation of
ARIMA(p,d,q) is given as

∆
dp(t) = α + φ1∆

dP(t − 1) + φ2∆
dP(t − 2) + · · ·

· · · + φp∆
dP(t − p) +

At − θ1 At−1 − θ2 At−2 − · · · − θq At−q, (7)

where At is a (weak) white noise process, and

α =

(
1 −

p∑
i=1

φi

)
µ, (8)

with µ denoting the process mean. If At follows the standard-
ized student’s t distribution, then

At = Tv

√
v − 2
v

, (9)

where At is a Student’s t distribution with degrees of freedom
v > 2.

B. Long Short-Term Memory Recurrent Neural Network

Long short-term memory (LSTM) neural networks are
recurrent neural networks that are able to learn long-term

2020 International Conference on Computing, Networking and Communications (ICNC): Machine Learning for
Communication and Networking

715

Table I
RMSE results for 10ms, 50ms, and 100ms prediction intervals and for different types of traffic. The rows specify the training data sets, and hence the model,

the columns stand for the testing data set.

Prediction interval Model Long DASH Short DASH Live Video Non-video
Long-DASH.ARIMA(5,0,0) 3397 4970 9159 59
Short-DASH.ARIMA(5,0,0) 3397 4970 9159 59

10 ms Live-Video.ARIMA(6,0,6) 3397 5490 9110 2131
Non-Video.ARIMA(5,1,1) 3818 4970 9159 59

Average bytes 1840 497 6033 38
Long-DASH.ARIMA(1,0,0) 14777 18573 34173 172
Short-DASH.ARIMA(1,0,0) 14777 18573 34173 172

50 ms Live-Video.ARIMA(1,0,0) 31892 33062 13074 29558
Non-Video.ARIMA(1,0,0) 14777 18573 34173 172

Average bytes 9201 2485 30165 192
Long-DASH.ARIMA(3,0,0) 25142 34607 65574 428
Short-DASH.ARIMA(6,0,1) 28356 26254 65542 689

100 ms Live-Video.ARIMA(4,0,0) 59264 62331 18556 56261
Non-Video.ARIMA(1,0,0) 27154 35280 65626 362

Average bytes 18403 4971 60330 385

dependencies in time series data [7]–[9], unlike feed-forward
neural networks. The equations of LSTM are as follows.

it = σ
(
P(t)Ui + p(t − 1)W i) (10a)

ft = σ
(
P(t)U f + p(t − 1)W f) (10b)

ot = σ
(
P(t)Uo + p(t − 1)Wo) (10c)

C̃t = tanh
(
P(t)Ug + p(t − 1)Wg) (10d)

Ct = σ
(
ft ∗ Ct−1 + it ∗ C̃t

)
(10e)

p(t) = tanh(Ct) ∗ ot (10f)

Here t corresponds to a timestamp and i, f , and o, are the
input, forget and output gates respectively. They have the exact
same equations but with different parameter matrices W , which
is the recurrent connection at the previous hidden layer and
current hidden layer. U is the weight matrix connecting the
inputs to the current hidden layer, σ is the sigmoid activation
function for forget gate and tanh is the hyperbolic tangent
activation function for cell state. C̃ is a candidate hidden state
that is computed based on the current input and the previous
hidden state. C is the internal memory of the unit, and is a
combination of the previous memory, multiplied by the forget
gate, and the newly computed hidden state, multiplied by
the input gate. The predictor p(t) is the output hidden state,
computed by multiplying the memory with the output gate.

IV. PREDICTION EVALUATION

A. Data sets and Evaluation Realization

The traffic of the computer was generated using various web
browsers, Chrome and Firefox, while browsing a variety of web
pages, among them web pages with video content, including
YouTube, FaceBook, LinkedIn. For capturing incoming traffic
on a desktop computer, Wireshark was used [10]. In total we
captured four traces of 60 minutes duration each. We refer to
these as the Long DASH, Short DASH , Live Video , and Non-
video data sets. The captured data consists of packet arrival
time stamps and packet sizes. In addition, we also capture the
IP header information.

For each data set, we used 80% of the data for training and
the remaining 20% of the data for testing. For the ARIMA
and LSTM predictors we train a model on each data set, and
test all four the trained models on all data sets for the same
prediction interval.

B. Prediction Results

We start the evaluation with the ARIMA model, and we
consider the prediction intervals of 10ms, 50ms and 100ms.
Table I shows the root mean square error (RMSE) obtained
using the ARIMA models, and as a comparison it also shows
the average number of bytes per prediction interval. The rows
specify the training data sets, and hence the model, while the
columns stand for the testing data set. Based on the ACF and
the PACF of the data sets we identified the best fit model
for each data set, and used maximum likelihood estimation
for finding the optimal parameters. The ACF and PACF are
commonly used for analyzing the correlation structure of time
series and help in identifying the order of the ARIMA model
to be used for prediction [11]. As an example for the prediction
interval of 100ms, the time series, the ACF, and the PACF for
the four data sets are shown in Figure 2. The best fit ARIMA
models for the 100ms prediction interval are all different, like
for 10ms and unlike for 50ms. For the 50ms prediction interval
all models are ARIMA(1,0,0), but the parameters of the models
trained on different data are likely to be different, hence even in
this case we have one model per data set. For each prediction
interval, Table I shows the RMSE of the ARIMA models when
applying the four models on the four data sets. As a basis for
comparison, the last row shows the ground truth of the average
number of bytes per prediction interval for the data sets.

Next, we present results for the LSTM model, using a small
network that has an input layer with one input, a hidden layer
with one neuron, and an output layer that makes a single value
prediction. The LSTM network is trained for 200 epochs and a
batch size of 1 is used. As the output given by a recurrent neural
network may vary with different initial conditions, we repeat
the experiments for each case multiple times, and show the

2020 International Conference on Computing, Networking and Communications (ICNC): Machine Learning for
Communication and Networking

716

Table II
LSTM results for 10 ms, 50 ms ans 100 ms prediction intervals and different traffic types. The rows specify the training data sets, and hence the model, the

columns stand for the testing data set.

Prediction Interval Model Long DASH Short DASH Live Video Non-video
Long-DASH.LSTM 229 256 3820 43
Short-DASH.LSTM 237 65 5821 35

10 ms Live-Video.LSTM 17410 9532 3210 1599
Non-Video.LSTM 327 96 3211 14

Average bytes 1840 497 6033 38
Long-DASH.LSTM 1021 235 16501 110
Short-DASH.LSTM 4880 226 18600 418

50 ms Live-Video.LSTM 61354 58996 5908 39002
Non-Video.LSTM 1072 313 38760 57

Average bytes 9201 2485 30165 192
Long-DASH.LSTM 632 23384 54323 588
Short-DASH.LSTM 2343 4580 43854 1321

100 ms Live-Video.LSTM 12602 78532 23865 6403
Non-Video.LSTM 7136 27471 69224 276

Average bytes 18403 4971 60330 385

average RMSE (excluding the extreme values) as an indication
of the expected performance of the model on unseen data on
average.

Table II shows LSTM prediction results for prediction
intervals of 10ms, 50ms, and 100ms. Again, the row specifies
the training data set, and hence the model, the columns stand
for the testing data set. For the prediction interval of 10ms,
the RMSE results shown are the averages based on 8 test runs.
The results show that the LSTM model performs well for the
data set of the same type of traffic as the model is trained
for, but the predictor performance could be very poor if an
LSTM model is applied to data sets that are dominated by
different types of traffic than what it was trained for. For the
prediction intervals of 50ms and 100ms, the RMSE results are
the averages based on 10 test runs. The results confirm the
observation that for all prediction intervals the LSTM models
perform well on their corresponding test data sets but not on
the other test data sets.

For each data set, we normalized the RMSE values, which
have been obtained by the model trained on this data set, by
the actual average number of bytes per prediction interval,
which have been obtained from the ground truth. We present
the normalized RMSE in Figure 1. Based on the results we
can make the following observations. First, the results obtained
using the ARIMA models are rather poor. On the one hand,
this is due to the high variability of three of the four time
series. On the other hand, this is also due to that the ARIMA
model assumes that the time series is stationary, while the
considered data sets are not. Secondly, the results using the
LSTM network are far superior compared to the ARIMA
models. It is important to note, however, that training the LSTM
model is associated with computational cost. For instance, it
takes about ten minutes to train a simple LSTM model with
200 epochs on a NVIDIA Quadro M2000 GPU (768 cores and
4GB of memory). Evaluations with more epochs could further
improve the prediction accuracy, but with higher computational
cost.

In addition, comparing the results for ARIMA (in Table I)

(a) Prediction interval of 10ms

(b) Prediction interval of 50ms

(c) Prediction interval of 100ms

Figure 1. Normalized RMSE for data sets of different prediction intervals.

and for LSTM (in Table II), though it may happen that in a
few cases a model trained on one data set performs well on
other data sets, in general there does not seem to exist a one-
size-fit-all predictor for the data sets dominated by different
types of traffic. As a final general remark, although bursts
following a regular pattern (e.g., in time) would be possible to
predict by simple predictors (e.g., ARIMA), our results show

2020 International Conference on Computing, Networking and Communications (ICNC): Machine Learning for
Communication and Networking

717

(a) Long DASH (b) Short DASH

(c) Live Video (d) Non-video

Figure 2. Time series, ACF and PACF of four homogeneous data sets with τ = 100ms.

that in practice the traffic is not regular enough for these simple
predictors to predict traffic bursts.

V. CONCLUSIONS

The results for traffic prediction show that the traditional
ARIMA model does not perform well due to the non-linear and
non-stationary characteristics of the data traffic. The ML-based
approaches such as LSTM could significantly outperform the
ARIMA models, at the cost of significant training time and,
somewhat increased prediction complexity. In an on-line setting
the predictor to be used may have to be adapted based on the
performance of the available predictors. In future work we plan
to explore a bigger variety of predictors, and the possibility of
choosing predictors dynamically for traffic of mixed data types.
Furthermore, we will investigate whether retraining predictors
online is a feasible solution.

REFERENCES

[1] M. Finsterbusch, C. Richter, J.-A. M. E. Rocha, and K. Hanssgen,
“A survey of payload-based traffic classification approaches,” IEEE
Communications Surveys & Tutorials, pp. 1135–1156, 2014.

[2] J. Garcia, T. Korhonen, R. Andersson, and F. Vastlund, “Towards
video flow classification at a million encrypted flows per second,” in
Proc. of IEEE 32nd International Conference on Advanced Information
Networking and Applications (AINA), 2018, pp. 818–824.

[3] L. Peng, B. Yang, Y. Chen, and Z. Chen, “Effectiveness of statistical
features for early stage internet traffic identification,” International
Journal of Parallel Programming, pp. 1–17, 2015.

[4] K. J, Hajjar, and D.-V. J. A. A, “A multilevel taxonomy and requirements
for an optimal traffic-classification model,” International Journal of
Network Management, pp. 101–120, 2014.

[5] P. Velan, M. Cermak, P. Celeda, and M. Drasar, “A survey of methods
for encrypted traffic classification and analysis,” International Journal
of Network Management, pp. 355–374, 2015.

[6] MathWorks, “Time econometric modeler,” 2019,
https://se.mathworks.com/help/econ/econometric-modeler-
overview.html.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, MIT Press, 1997.

[8] Z. Zhao, W. Chen, X. Wu, P. Chen, and J. Liu, “LSTM network: a
deep learning approach for short-term traffic forecast,” in Proc. of IET
Intelligent Transport Systems, 2017.

[9] T. Fischer and C. Krauss, “Deep learning with long short-term mem-
ory networks for financial market predictions,” European Journal of
Operational Research, pp. 654–669, 2018.

[10] Wireshark, https://www.wireshark.org/.
[11] T. Anderson, “The statistical analysis of time series,” J. Wiley&Sons,

1971.

2020 International Conference on Computing, Networking and Communications (ICNC): Machine Learning for
Communication and Networking

718

