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Abstract—Age of information has been recently proposed to
quantify the freshness of information, e.g., in cyber-physical
systems, where it is of critical importance. Motivated by wireless
camera networks where multi-view image processing is required,
in this paper we propose to extend the concept of age of
information to capture packets carrying correlated data. We
consider a system consisting of wireless camera nodes with
overlapping fields of view and a set of processing nodes, and
address the problem of the joint optimization of processing
node assignment and camera transmission scheduling, so as to
minimize the maximum peak age of information from all sources.
We formulate the multi-view age minimization (MVAM) problem,
and prove its NP-hardness under the two widely used interference
models as well as with given candidate transmitting groups.
We provide fundamental results including tractable cases and
optimality conditions of the MVAM problem for two baseline
scenarios. To solve MVAM efficiently, we develop an optimization
algorithm based on a decomposition approach. Numerical results
show that by employing our approach the maximum peak age is
significantly reduced in comparison to a traditional centralized
solution with minimum-time scheduling.

Index Terms – Age of information, correlated information,
optimization, wireless camera networks.

I. INTRODUCTION

Wireless camera networks acquire, process, and analyze

digital images of areas or objects of interest. They form an

important building block of future smart cities, and serve a

variety of applications, such as surveillance [1], tracking [2],

healthcare [3], and intelligent transportation [4]. Many of

these applications require multiple cameras with overlapping

fields of view (FoV) to monitor a given scene, as doing so

can improve the robustness and accuracy of tracking, and

enables 3D scene reconstruction. Images from cameras with

overlapping FoVs have to be processed jointly, and under strict

delay constraints to enable real-time operation. The emerging

paradigm of fog computing could enable meeting the strict

delay constraints, as it allows to distribute computation, com-

munication, control and storage to computing nodes close to

the cameras, referred to as fog nodes. Comparing to centralized

cloud-based systems, fog computing based solutions reduce

the network traffic and delay, while they remain compatible

with affordable low cost cameras. Still, real-time processing

of the visual information in a fog computing enabled wireless

Q. He, G. Dán, and V. Fodor are with the Division of Network and
Systems Engineering, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, SE-10044, Stockholm,
Sweden. (e-mail: {qhe,gyuri,vfodor}@kth.se).

The work was partly funded by the Swedish Research Council
through project 621-2014-6.

Age 

Continuous time age 

Discrete time age 

t0 1 2 3 4 t1 t2 t3 5 
time 

Fig. 1. Age evolution of a source. The ith packet with time stamp τi is
received by the destination at ti. The age at ti equals ti − τi. If no packet
is received, the age increases linearly.

camera system requires joint optimization of the allocation

of computing resources and the scheduling of images from

cameras transmitting over a shared wireless channel.

A promising metric for quantifying the timeliness of end-to-

end data delivery, including queuing and transmission times,

is the recently introduced age of information, or simply,

age [5]. Age is commonly defined as the time elapsed since

the most recently received message was generated (see [6] and

references therein), as shown in Figure 1.

By definition, the value of age changes upon receiving each

packet. However, when processing requires information from

multiple senders, carried in different packets, such as the case

of cameras with overlapping FoVs, age of information should

change only when all packets carrying correlated information

are received. Extending the notion age to the context of

wireless camera networks thus requires us to revisit the way

of defining and calculating age: age has to be defined as

the difference between the current observation time and the

generation time of the latest “fully” received correlated set of

packets. In Figure 2, we illustrate age evolution of a source

given this new definition. We remark that the packets carrying

correlated information may be not delivered consecutively

since they are sent from multiple transmitters.

In order to minimize the age of information in a wireless

camera network, we need to solve two coupled resource

allocation problems. First, we need to determine the serving

fog node for each camera. We refer to this as the camera-

node assignment. Second, we need to to decide which of

the mutually interfering cameras should transmit together

and for how long. We refer to this as camera transmission

scheduling. Clearly, the two problems are coupled and require

joint optimization in order to minimize the age of the multi-

view image data at the fog nodes.
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Fig. 2. Age evolution of correlated information of a source. Packets U1 and
U2 carrying correlated information were generated at τ1,2 and received by
the destination node at t1 and t2, respectively. The age increases linearly until
t2, when it decreases to t2 − τ1,2. After t2, the age increases linearly until
t3,4, when packets U3 and U4 carrying correlated information and with time
stamp τ3,4 were simultaneously received by the destination. The age at t3,4
equals t3,4 − τ3,4.

A. Related Work

The study on age of information has received large attention

since the concept was formally introduced [5]. Early works

show that age is different from existing metrics, such as

delay and latency. Hence it is a fundamentally novel metric

quantifying the freshness of information (see [6] and the

references therein). In most of previous works, e.g., [5]–

[8], the problem of age in different real-time systems has

been explored using various queueing models like M/M/1,

M/M/2, M/D/1, M/G/1, etc., where status update packets arrive

stochastically at the source nodes and are queued following

the discipline of First-Come-First-Served (FCFS). New queue

management strategies, e.g., Last-Come-First-Served (LCFS),

were proposed in [9], [10]. The authors of [11] show that the

LGFS policy achieves a smaller age process (in a stochastic

ordering sense) than any other causal policy for multi-channel

and multi-hop networks. In [12], a general age penalty function

was introduced to characterize the level of dissatisfaction on

data staleness. To evaluate the timeliness for a system in

question, the average age, calculated as the area under the

sawtooth curve in Figure 1, normalized by the observation

interval, was considered in [5], [7] for capturing the average

system behavior in a queueing system fed by a single source

and by multiple sources, respectively. To characterize the worst

case system behavior, the authors of [10] introduced the notion

of peak age, which is the maximum value of the age achieved

immediately before receiving a new packet (e.g., in Figure 1,

the ith peak age of the source is obtained observing the

ith peak value in the sawtooth curve). Subsequently, [13]

considered optimal link scheduling to drain a given set of

packets with respect to the total age. In [14], a stationary

scheduling policy has been proposed for minimizing average

and peak age in wireless networks under general interference

constraints. In all these works, the age of information changes

upon receiving each individual packet. Therefore, existing

results do not apply for camera networks with multi-view

processing, as considered in our work.

Wireless camera networks (or visual sensor networks) have

been studied extensively in the past two decades, with the

main objective of improving the quality of visual analysis and

to enable real-time service, subject to the inherent communi-

cation and computing resource constraints. Recently, wireless

camera networks have been revisited in the context of fog

computing architectures [15]. In [16], the authors address

the multi-view sensor assignment problem with the objective

of maximizing the total number of multi-views processed

within a time frame, and present an approximation algorithm.

In [17] the minimization of the time needed to complete

the distributed visual analysis for a video sequence subject

to a mean average precision requirement is considered. The

problem of multi-view coding and routing of features in visual

sensor networks is studied in [18], where the authors develop

a robust optimization framework for maximizing the amount

of information extracted from the sources. Nevertheless, the

communication and computing resource allocation in wireless

camera (or visual sensor) networks with respect to the fresh-

ness of information has not been considered until recently [19].

Compared to [19], where we address the joint optimization

problem for the uncapacitated fog node case and present basic

results, in this paper we consider the capacitated fog node case,

and significantly extend both the analytical and the numerical

results.

B. Contributions

In this paper, we propose to jointly optimize fog node

assignment and transmission scheduling in a wireless camera

network, so as to minimize the age of the multi-view image

data at the destinations. Our main contributions are fourfold.

First, we extend the concept of age of information to correlated

information from multiple senders, which allows us to use

this metric in wireless camera networks. Beyond wireless

camera networks, our proposed notion of age can be used

in other systems where an age update is triggered by multiple

correlated packets. Second, we consider the joint optimization

of fog node assignment and camera transmission scheduling,

so as to minimize the age of the multi-view image data at the

fog nodes. We formulate the optimization problem and pro-

vide fundamental results about problem complexity, tractable

cases, and optimality conditions. Third, to efficiently solve the

problem, we develop a sub-optimal, but fast, algorithm based

on problem decomposition. In addition, for benchmarking

purposes, we provide an integer linear programming (ILP)

formulation, which enables the computation of global optima

for small problem instances. Finally, we use simulations to

explore the benefits of the jointly optimized fog node assign-

ment and camera transmission strategy for minimizing the age

of information in wireless camera networks.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Camera network with multi-view processing

We consider a wireless camera network that consists of

a set of cameras C = {1, 2, . . . , C}, a set of scenes S =
{1, 2, . . . , S}, which we also refer to as sources, and a set

of fog (computing) nodes N = {1, 2, . . . , N}. Each camera

captures images from one of the scenes. The cameras have

overlapping FoV, and each scene is monitored by multiple
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cameras. We denote by c(s) the set of cameras that have a

view of scene s, and we assume that cameras monitoring the

same scene capture images simultaneously. The cameras send

the images to their respective serving fog node for processing,

and we define

lcn =

{

1 if camera c is served by node n;

0 otherwise.
(1)

To allow the processing of multi-views, the cameras c(s) that

cover scene s need to transmit their images to the same fog

node, hence we have
∑

n∈N

∏

c∈c(s)

lcn = 1, ∀s ∈ S. (2)

The fog nodes are responsible for receiving and processing

the image data from the cameras they serve. The information

from one scene is processed by one fog node. To capture com-

puting capacity constraints, we denote by Mn the maximum

number of cameras that can be supported by fog node n, that

is,
∑

c∈C

lcn ≤ Mn, ∀n ∈ N . (3)

The images captured by a camera are queued in its buffer

before being delivered to the respective fog node. We con-

sider the first-come-first-served (FCFS) queueing discipline,

because in applications such as monitoring and tracking histor-

ical data are of interest as well and hence need to be delivered

in a timely manner.

The cameras transmit the images to the fog nodes via a

shared wireless channel, as depicted in Figure 3. To determine

whether or not a set of cameras can transmit simultaneously,

we consider two widely used interference models [20]. Under

the protocol model any two camera-fog node pairs can be

active together if and only if they are sufficiently spatially

separated from each other. Under the physical model, aka,

the signal-to-interference-and-noise ratio (SINR) model, for a

subset of cameras g ⊆ C to be able to transmit together, given

SINR thresholds must be met at each fog node serving the

cameras,

SINRn(c, g ) ,
PcGcn

∑

ι∈g ,ι 6=c PιGιn + σ2
n

≥ γc,

n ∈ {N : lcn = 1}, ∀c ∈ g ,

(4)

where Pc is the transmit power of camera c and Gcn is the

channel gain between camera c and fog node n, incorporating

the effects of path loss, shadowing and fading, and σ2
n is

the noise variance. In what follows, to achieve a unified

problem formulation, we use the term group to refer to a set of

cameras that can transmit simultaneously, determined by the

interference model. We denote by g a camera group and by Ψ
the set of all feasible camera groups under a given interference

model and network configuration, then g ∈ Ψ.

B. Age calculation

We consider that time is slotted and is divided into subse-

quent scheduling cycles. In each scheduling cycle, we schedule

the transmission of the images queued at the beginning of the
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Fig. 3. An illustration of the system model, where each scene is monitored
by at least two cameras, as indicated by the solid lines, and each camera
transmits the captured images to its destination fog node, as shown by the
dashed lines.

cycle. We denote by Uci the ith image in the queue of camera

c. The images that arrive during the cycle are queued by the

cameras under the FCFS discipline, and will be scheduled

in the next cycle. The considered cycle-based scheduling is

motivated by scenarios where the information updates happen

at random, e.g., triggered by environmental changes, and thus

the arrival of new packet is hard to predict. Nonetheless, it also

a useful model for scenarios where arrivals are predictable, in

which case the cycle length and the re-scheduling frequency

could be optimized (often referred to as a receding horizon

control strategy).

Let us denote by t0 the starting time of the current schedul-

ing cycle, and by Kc the number of queued images of camera

c at t0. Furthermore, we denote by tj the time at the end

of the jth slot of the scheduling cycle. The transmission rate

of a camera-fog node pair in a feasible group is one image

per time slot. Since the image data are queued using FCFS

and the cameras monitoring the same scene capture images

simultaneously, the ith image in the queue of each camera

c ∈ c(s) carries time stamp τsi, which indicates the generation

time of image Uci, ∀c ∈ c(s). We refer to the set of images

Bsi = {Uci, ∀c ∈ c(s)} as the ith image block of s.

Let us denote by as0 the initial age of scene s at time t0. Due

to the requirement of multi-view processing, the information

of scene s will not be updated until all the images of an image

block are delivered to the fog node n serving cameras c(s).
Therefore, at time tj the age of a source s is defined as

asj =















tj − τsi if all the images of the ith image

block of s have been delivered to

node n exactly by tj ;

as,j−1 + 1 otherwise.
(5)

Note that the age calculation in (5) differs from the case

when the age is updated upon the delivery of each packet, as

considered in the literature. In addition, it may happen that

the images in an image block are not delivered consecutively

since they are sent from multiple cameras. Hence our problem

differs from the case when multiple (consecutive) time slots

are occupied to deliver one image. An example will be

provided later in Section II-C.
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To deliver the queued images as timely as possible as well as

for fairness among the sources, we are interested in minimizing

the maximum peak age of all scenes. By the definition in

(5), the peak ages of a scene are attained immediately before

the last image of an image block is delivered to its serving

fog node. To express the peak ages, let us denote by tci the

time when image Uci is delivered, and by Tci = tci − t0 the

number of time slots before Uci is delivered, and observe that

Tci is a positive integer in [1,
∑

c∈CKc]. Then by defining

τs0 = t0 − as0, we can express the ith peak age of s as

αi
s = maxc∈c(s)tci − τs,i−1 = t0 + maxc∈c(s)Tci − τs,i−1.

C. Problem Formulation

In order to optimize the worst case performance, we for-

mulate the multi-view age minimization (MVAM) problem as

that of minimizing the maximum peak age of all sources in a

scheduling cycle,

minimize
{Tci∈Z+, lcn∈{0,1}}

max
s∈S, c∈c(s), i=1,...,Kc

αi
s (6a)

subject to (2), (3), and

αi
s = t0 + maxc∈c(s)Tci − τs,i−1 ∀s ∈ S, i = 1, . . . ,Kc,

(6b)

1 ≤ Tc1 < Tc2 < · · · < Tc,Kc
∀c ∈ C, (6c)

gj ∈ Ψ gj = {c ∈ C : Tci = Tj , i = 1, . . . ,Kc},

Tj = 1, . . . ,
∑

c∈C

Kc. (6d)

Observe that solving MVAM requires joint optimization of

the camera to fog node assignment, and of the transmission

schedule of the cameras to their serving fog nodes. We remark

that at the optimum of (6), if the scheduling solution uses

T time slots and T <
∑

c∈CKc, then gj are empty sets

for j = {T + 1, . . . ,
∑

c∈CKc}. Hence in (6d), T can be

overestimated without loss of optimality. The candidate group

set Ψ is determined by the interference model as well as the

camera-node assignment. For the MVAM under the physical

model, following the SINR constraint in (4), the constraint set

(6d) can be written as

SINRn(c, gj) =
PcGcn

∑

ι∈gj ,ι 6=c PιGιn + σ2
n

≥ γc, ∀c ∈ gj ,

n ∈ {N : lcn = 1}, Tj = 1, . . . ,
∑

c∈C

Kc,

gj = {c ∈ C : Tci = Tj , i = 1, . . . ,Kc}.

(7)

We summarize the key notation in Table I.

D. Integer Linear Programming Formulation

The formulation of MVAM in (6) is non-linear and non-

convex. By applying non-trivial linearization techniques we

develop an integer linear programming (ILP) formulation of

the MVAM and present it in Appendix A. The ILP could

be used for performance benchmarking as it enables efficient

computation of global optima for problem instances of small

and moderate sizes using off-the-shelf solvers [21], [22].

We end this section by providing an MVAM instance, for

which in the optimal solution the images from a block are not

TABLE I

Notation Description

S the set of scenes
C the set of cameras
N the set of fog nodes

c(s) The subset of cameras monitoring scene s
g A subset of cameras that can transmit together

Ψ The union of all compatible camera sets, or groups
Mn The maximum number of cameras served by node n
t0 The initial time

tj The time corresponds to the end of the jth time slot
Kc The number of queued images in camera c

Uci The ith image of camera c
τsi The time stamp carried by Uci, ∀c ∈ c(s)
Bsi the ith image block of s
as0 The initial age of s at t0
asj The age of s at tj
αi
s The ith peak age of s

Tci The number of slots before Uci is delivered

s1 

c1 
Images 

n1 

U11 

c2 
U21 

s2 

c3 
Images 

n2 

U31 

c4 
U41 

s3 

c5 
Images 

n3 

U51 
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U61 

Fig. 4. A camera network with scenes S = {s1, s2, s3}, each covered by two
cameras as indicated by the solid lines, and fog nodes N = {n1, n2, n3},
each supporting at most two cameras. The initial ages satisfy a10 > a20 >
a30. Each camera has one image to be delivered. The interference model is
such that the only feasible (and hence optimal) camera-node assignment is as
shown by the dashed lines, and the cameras groups are {c1, c2, c5}, {c3, c4},
and {c6}. One can verify that at the optimum, the transmission schedule is
to transmit the camera groups {c1, c2, c5}, {c3, c4}, and {c6} in sequence,
each occupying one slot. In the optimal solution, correlated images U51 and
U61 are not delivered consecutively.

delivered consecutively, as illustrated in Figure 4. The example

shows that the MVAM is more complex than the case where

the information updates are independent, and further motivates

the theoretical investigation of complexity and the structural

results that follow.

III. MVAM COMPLEXITY

The MVAM is a combinatorial optimization problem. In the

following theorems, we prove the NP-hardness of the MVAM

problem under the two interference models as well as with

given candidate group sets.

Theorem 1. The MVAM under the physical model is NP-hard.

Proof: The decision problem of the MVAM is to de-

termine whether or not there exists a solution such that the

maximum peak age is no more than a given value. We show

that the decision problem is NP-complete by constructing a

polynomial-time reduction from the 3-satisfiability (3-SAT)

problem, which is one of Karp’s 21 NP-complete prob-

lems [23].

For an irreducible instance of the 3-SAT problem, let us

denote by S and S ′ the set of its positive literals and its

negative literals, respectively. The set of clauses is denoted
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by D. We construct an MVAM instance with |S|+ |D| scenes

and the same number of fog nodes. Each scene is covered

by two cameras. Based on the index, we map the members

of S and S ′ (i.e., the literals) to the cameras associated with

the first |S| scenes. Thus, the ith scene is monitored by the

two cameras representing literals si and s̄i. The jth clause in

D, i.e., dj , is mapped to the two cameras with a view of the

(|S|+ j)th scene. We denote these two cameras by d′j and d′′j .

The initial ages of the first |S| scenes and the remaining |D|
scenes are a0 and a0 + 1, respectively. Each camera contains

one image to be delivered. The maximum number of cameras

supported by a fog node is uniformly set to two.

The transmit power of all cameras is uniformly set to one.

For cameras si and s̄i, i = 1, 2, . . . , |S|, the SINR threshold

is γc = 2. For cameras d′j and d′′j , j = 1, 2, . . . , |D|, the SINR

threshold is γc = 1
3 . The noise power is σ2 = 0.5 at the

fog nodes 1 to |S|, and σ2 = 1 at the remaining |D| nodes.

The channel gains between the cameras and the nodes are as

follows.

Gcn =































1 if c = si or s̄i, n = i, i = 1, . . . , |S|;
1 if c = d′j or d′′j , n = |S|+ j, j = 1, . . . , |D|;

1
|S|−1 if c = si or s̄i, i = 1, . . . , |S|, n =

|S|+ 1, . . . , |S|+ |D|, and c is not one

of the three literals of clause dn−|S|;
0 otherwise.

(8)

In what follows we show that the 3-SAT instance is satis-

fiable if and only if the above constructed MVAM instance

has a feasible solution for the objective value a0 + 2. By

construction, we can observe that in a feasible solution the

literal cameras si and s̄i will be served by the fog node i, and

the clause cameras d′j and d′′j will be served by the fog node

|S|+ j. Due to the SINR constraint, cameras si and s̄i cannot

transmit simultaneously, and consequently, at least two time

slots are needed to deliver all images. Therefore, the minimum

objective value for the MVAM instance is at least a0+2. This

is achieved if and only if a feasible solution with the following

properties exists.

• All images are delivered in two time slots.

• Cameras si and s̄i transmit in different time slots, and

hence |S| literal cameras transmit simultaneously in each

time slot.

• All the 2|D| clause cameras transmit in the first time slot,

together with |S| literal cameras. Due to the choice of

the channel gains and transmit powers, for each clause,

at least one camera representing one of its three literals

transmit in the first time slot. Otherwise, suppose it is

not the case for a clause, then the |S| literal cameras that

transmit in the first time slot would all interfere with the

two corresponding clause cameras. This, together with the

interference they receive from each other, would result in

an SINR = 1
|S|

|S|−1
+1+1

< 1
3 .

Based on the above analysis, we established a mapping from

the solution to that of the corresponding 3-SAT problem by

setting all the literals represented by the cameras transmitting

in the first time slot to be true, and the others to be false. Due

to the third property, for the 3-SAT instance, every clause has

at least one TRUE literal, and hence the 3-SAT instance is

satisfiable. On the contrary, if the 3-SAT instance is satisfiable,

then we map its solution to the corresponding MVAM problem

by scheduling all the cameras representing the clauses and

the TRUE literals in the first time slot, and the rest of the

literal cameras in the second time slot. By doing so, we

obtain a feasible solution of the MVAM instance with the

objective value of a0 + 2. Therefore, the 3-SAT instance is

satisfiable if and only if there is a feasible solution for the

corresponding MVAM with the objective value of a0 + 2.

Hence the decision problem of the MVAM is at least as hard as

the 3-SAT problem. Since the 3-SAT problem is NP-complete,

we conclude that the MVAM is NP-hard.

Observe that the MVAM under the physical model contains

the subproblem of constructing feasible groups, which is akin

to the so called Link Activation (LA) problem. Since LA

itself is a hard problem [24], it is fundamental to understand

whether the hardness of MVAM is merely a consequence of

the hardness of LA. In the following theorem we provide a

negative answer, stating that the MVAM is hard even if the

candidate camera groups are given as problem input.

Theorem 2. The MVAM with given candidate camera groups

is NP-hard.

Proof: We show the decision problem of the MVAM is

NP-complete by constructing a polynomial reduction from the

3-SAT problem. We reuse the notation defined in the proof of

Theorem 1. For an irreducible 3-SAT instance, we map the

ith positive literal si and its negation s̄i to the two cameras

monitoring the ith scene, i = 1, 2, . . . , |S|. The jth clause

is mapped to the two cameras monitoring the (|S| + j)th

scene, j = 1, 2, . . . , |D|. Each camera contains one image to

be delivered. The initial age of all scenes is uniformly set to

a0. The candidate camera groups consist of the following two

subsets:

1) the |S| groups, of which the ith group is formed by

the two literal cameras si and s̄i, as well as the clause

cameras that correspond to the clauses containing si as

one of the three literals;

2) another |S| groups, of which the ith group is formed by

the two literal cameras si and s̄i, as well as the clause

cameras that correspond to the clauses containing s̄i as

one of the three literals.

Since the 3-SAT instance is irreducible by assumption, the two

subsets are disjoint. We remark that for any wireless network

with meaningful physical interpretation, if a group is feasible

then all of its proper subsets are feasible too. Hence the subsets

of the above 2|S| groups are also feasible. However, to achieve

small peak ages, it is preferable to augment the subsets if

possible and thus more images can be delivered in a time slot.

By construction, we observe that for any feasible solution

of the MVAM instance, at least |S| time slots are consumed to

deliver all the images, because images from different scenes

in {1, 2, . . . , |S|} cannot be transmitted in a time slot. Conse-

quently, the maximum peak age is at least a0 + |S|, Suppose

there is a solution achieving this objective value, then all the

images are delivered in |S| time slots by groups belonging

to either subset 1) or 2) defined above. We now establish
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a solution mapping to the corresponding 3-SAT instance by

setting a positive literal to be true if its corresponding camera

transmits in a group of subset 1), and to be false if the

corresponding camera transmits in a group of subset 2). It

can be verified that by this solution, the 3-SAT instance is

satisfiable since every clause contains at least one TRUE

literal. One the contrary, if the 3-SAT instance is satisfiable,

then the decision problem of the MVAM instance with the

objective a0 + |S| must be feasible. Hence we conclude that

the MVAM with given candidate groups is at least as hard as

the 3-SAT problem, and the theorem follows.

Finally, as a consequence of Theorem 2, we can also

formulate the following result.

Corollary 3. The MVAM under the protocol model is NP-

hard.

IV. STRUCTURAL RESULTS

In this section, we consider the MVAM for two baseline

scenarios: a wireless camera network with interference-free

channels and with severely interference-limited channels, re-

spectively. In the first scenario, we consider that for each

camera there exists at least one fog node such that the SINR

exceeds its threshold when all cameras are active, thus the

network allows all cameras to transmit simultaneously. This

can be a reasonable model for emerging millimetre wave

communications, and is also a good model for a system in

which the cameras transmit with low power and each camera

is deployed close to its serving fog node. The second scenario

is the very opposite case in which only one camera is allowed

to transmit in a time slot, i.e., it corresponds to time division

multiple access (TDMA). This can be a reasonable model for

severely interference-limited networks, e.g., when the cameras

and nodes are densely deployed, and hence cameras cause

significant interference to each other.

Not only do the two baseline scenarios represent two

extremes of wireless channel condition, but they also result in

classic channel access schemes that are easy to implement in

practice. We are thus interested in investigating the tractability

and optimality conditions of the MVAM problem for these two

scenarios. We will show later that the structural results also

contribute to the design of algorithms that efficiently compute

or approximate an optimal solution for general MVAM cases.

Note that in our problem setup, the serving fog node

of a camera is a decision variable. Therefore, for the two

above baseline scenarios, all cameras transmitting simultane-

ously and TDMA might be infeasible for their corresponding

MVAM instances, due to the requirement of multi-view pro-

cessing and/or due to the fog node capacity constraint. In the

following theorems we show that MVAM remains hard even

for these two scenarios.

Theorem 4. The MVAM problem in which all cameras trans-

mit simultaneously is NP-hard.

Proof: We establish a polynomial-time reduction from the

partition problem, which is NP-complete [23]. Given a set of

positive integers I = {I1, I2, . . . , IS}, the partition problem

is to determine whether or not I can be partitioned into two

subsets with equal sum. Without loss of generality, we assume

that
∑

I∈I is even, as otherwise it is trivial that the partition

problem instance is infeasible. Let
∑

I∈I = 2b for some

positive integer b. We construct an MVAM instance with S
scenes S = {1, 2, . . . , S} and two fog nodes N = {n1, n2}.

Each fog node supports at most b cameras. The sth scene is

monitored by Is cameras. Each camera has one image to be de-

livered. The initial ages of the sources are uniformly set to a0.

Reusing the notation in Section II, we set the SINR threshold

for camera c to γc = min{SINRn1(c, C), SINRn2(c, C)}, such

that all cameras are possible to transmit concurrently. Then we

consider the decision problem of the MVAM instance with the

objective a0+1. Define the binary variable ιsn =
∏

c∈c(s) lcn.

That is, if the cameras c(s) are served by fog node n, then

ιsn = 1. Otherwise, ιsn = 0. It is easy to verify that the

objective a0 +1 is achieved if and only if there is an feasible

fog-node assignment satisfying
∑

n∈N

ιsn = 1 ∀s ∈ S, (9a)

∑

s∈S

|Is|ιsn ≤ b ∀n ∈ N . (9b)

If such a solution exists, then (9b) are equalities since
∑

I∈I =
2b. Thus we establish a solution mapping to the corresponding

partition problem instance by partitioning I into two subsets

I1 and I2 according to the value of ιsn. Specifically, I1 =
{Is ∈ I : ιsn1 = 1}, and I2 = {Is ∈ I : ιsn2 = 1}. Clearly,
∑

I∈I1
=

∑

I∈I2
= b. Therefore, the partition problem is

feasible if the decision problem of the MVAM is feasible, and

vice versa. Hence we conclude that the MVAM case defined

in this theorem is at least as hard as the partition problem and

the conclusion follows.

Theorem 5. The MVAM problem in which only TDMA is

allowed is NP-hard.

The proof is omitted as it follows the same flow of ar-

guments as the proof of Theorem 4, except that in con-

structing the corresponding MVAM instance, we set γc =
min{SNR(c, n1), SNR(c, n2)}, and the noise power σn is large

enough such that only TDMA is allowed.

Remark 1. In [6] we considered the age minimization prob-

lem where the number of cameras severed by a fog node

is unlimited, and proved that the problem is computationally

tractable if all cameras transmit simultaneously or if TDMA

is applied. Theorems 4 and 5 show that the MVAM for the two

baseline scenarios becomes NP-hard when imposing the con-

straints (3). The theoretical results also provide the important

insight that the optimization task of camera-node assignment

is not trivial, even for given channel access schemes. �

We now proceed to identifying tractable cases. For the

above two baseline scenarios, we provide sufficient conditions

for MVAM instances to be recognizable and solvable in

polynomial-time.

Theorem 6. Any MVAM instance in which each scene is

monitored by the same number of cameras, i.e., |c(s)| = m,

∀s ∈ S, m ∈ Z+, and all cameras are able to transmit
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simultaneously can be recognized and solved in polynomial-

time.

Proof: To recognize the case defined in this theorem,

given an MVAM instance, we construct a bipartite graph

G = {S,N , E}, whose two disjoint vertex sets are formed by

the scenes S and the fog nodes N , respectively. We calculate

the SINR value for each camera-node pair, with the assumption

that all the cameras are transmitting, i.e., in the denominator

of (4), the interference takes into account the signals from all

other cameras. The computational complexity in this step is

O(CN). If for all cameras c ∈ c(s), the SINR between c and n
exceeds its threshold then we add an edge connecting vertices

s and n in graph G. Obviously, if Mn < m, the problem

instance is infeasible. If not, in graph G, for each n, we add

⌊Mn

m
⌋− 1 dummy vertices, each of which is connected to the

same vertices in S as n. Denote by G′ = {S,N ′, E ′} the new

bipartite graph after adding the dummy vertices and edges. By

doing so, to determine whether or not there is feasible camera-

node assignment such that all cameras are able to transmit

simultaneously is equivalent to solving the maximum matching

problem in the bipartite graph G′. The matching problem reads

max
{ιsn∈{0,1}}

∑

s∈S, n∈N ′

ιsn (10a)

subject to (10b)
∑

n∈N

ιsn ≤ 1 ∀s ∈ S, (10c)

∑

s∈S

ιsn ≤ 1 ∀n ∈ N ′. (10d)

Bipartite matching can be solved in polynomial-time using, for

example, the Hungarian algorithm [25]. If the objective of (10)

equals |S|, then we derive a feasible camera-node assignment

such that all cameras can transmit simultaneously by setting

lcn = ιsn, ∀c ∈ c(s), and the MVAM instance is recognized.

The optimal transmission strategy for this case is straight-

forward, that is, in each time slot, all cameras transmit together

as long as they have images in their queues. By (6), the

optimal objective equals t0 +maxs∈S,i∈Ks
(i− τs,i−1), where

Ks = {1, . . . ,Kc}, c ∈ c(s). The computation can be done in

polynomial-time and hence the conclusion.

For the MVAM with TDMA, i.e., no two cameras can

transmit together, it is easy to see that the MVAM would

be infeasible if TDMA is not allowed because of the multi-

view processing requirement and the fog node capacity limit.

Hence in deriving an optimal solution, we only consider

feasible MVAM cases, where there exists an camera-node

assignment that supports TDMA. Unlike for MVAM with all

cameras transmitting simultaneously, determining the optimal

transmission schedule of MVAM with TDMA is not trivial, we

thus first establish a result concerning an optimal schedule.

Lemma 7. Consider an instance of the MVAM with TDMA.

There exits an optimal transmission schedule where the images

in an image block, i.e., Uci, ∀c ∈ c(s), are delivered in

consecutive time slots.

Proof: To prove the lemma, suppose Ω is an optimal

solution in which images of an image block are not delivered

in consecutive time slots. Denote by Uλ
ci, λ = 1, . . . , |c(s)|,

the λth image of Uci, ∀c ∈ c(s), delivered in Ω. We construct

a new solution by moving all Uλ
ci, λ = 1, . . . , |c(s)|− 1, right

before U
|c(s)|
ci and shifting the other images in between earlier

in time. By doing so, the ith peak age of s remains unchanged

and the other peak ages (of s as well as the other sources)

either remain unchanged or decrease. Hence the maximum

peak age of the new solution is not higher than that of the

previous solution. Repeating the operation for all image blocks

that are not delivered in consecutive time slots we obtain a

schedule Ω′ that satisfies the lemma, and results in an age

less than or equal to that of Ω, which proves the lemma.

We now use the optimal transmission schedule to show that

the following MVAM case is tractable.

Theorem 8. Any MVAM instance in which only TDMA is

allowed and each scene is monitored by the same number of

cameras, i.e., |c(s)| = m, ∀s ∈ S, m ∈ Z+, can be recognized

and solved in polynomial-time.

Proof: To recognize a TDMA instance, we first verify that

no two cameras can transmit together. In the worst case, this

can be done in O(C2N2). To check whether there exists an

feasible camera-node assignment to support TDMA, we follow

an approach similar to the one in the proof of Theorem 6.

Specifically, if Mn

m
< 1, then the problem instance is infeasi-

ble. Otherwise, we construct a bipartite graph G = {S,N , E}
in which two vertices (s, n) are connected if for all cameras

c ∈ c(s), the SNR between c and n is above the threshold γc.

If Mn

m
= 1, then we solve the maximum matching problem in

G and check if the result equals |S|. If Mn

m
> 1, then for each

n, we add ⌊Mn

m
⌋−1 dummy vertices that are connected to the

same nodes in S. An feasible assignment solution (if exists)

is computed by solving the bipartite matching problem in the

new graph, as defined in (10).

To construct an optimal transmission schedule, recall that

by Lemma 7 there is an optimal solution in which the

images in an image block are delivered consecutively. We

now construct a schedule Ω, in which the image blocks Bsi,

∀s ∈ S, i = 1, . . . ,Kc, c ∈ c(s), are scheduled in ascending

order of the time stamps τs,i−1. The transmission order of

the images in each image block is arbitrary. To show that

Ω is optimal, we provide an indirect proof. Assume that

Ω is not optimal. Then there is an optimal solution Ω1, in

which there exist two adjacent image blocks Bsi and Bs′i′

with time stamps τsi and τs′i′ , respectively, not transmitted

in the defined order. That is, if τs,i−1 > τs′,i′−1, then Bsi is

transmitted before Bs′i′ in Ω1. Denote by T0 the time when the

transmission of Bsi starts, and by |Bsi| and |Bs′i′ | the number

of images in Bsi and Bs′i′ , respectively. By (6b) and because

of TDMA, the achieved peak ages by the two blocks are

α1 = T0+|Bsi|−τs,i−1 and α2 = T0+|Bsi|+|Bs′i′ |−τs′,i′−1.

Assume now that we swap the transmission of Bsi and

Bs′i′ , obtaining a schedule Ω2. Clearly, Ω2 is feasible as it

does not violate the FCFS discipline, and the peak ages of

Bsi and Bs′i′ change to α3 = T0 + |Bs′i′ | − τs′,i′−1 and

α4 = T0 + |Bs′i′ |+ |Bsi| − τs,i−1. Since τs,i−1 > τs′,i′−1, it

can be easily verified that α2 is maximal one among these four

peak ages. Hence the maximal peak age in Ω2 is either equal to
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or less than that in Ω1. Repeating the process for all adjacent

image blocks that are not delivered in the defined order (cf.

bubble sorting), after a finite number of steps, we obtain the

transmission schedule Ω. According to the above analysis, the

maximum peak age of Ω cannot be greater than that of Ω1.

This contradicts the assumption that Ω is not optimal, and

hence the conclusion.

To construct the optimal transmission schedule, the bottle-

neck is to sort τsi, ∀s ∈ S, i = 0, 1, . . . ,Kc−1, c ∈ c(s). The

computational complexity is hence O(SK log(SK)), where

K = maxc∈CKc. As all the steps can be done in polynomial-

time, the theorem follows.

Note that by Theorem 8 and its proof, the optimal transmis-

sion strategy is determined solely by the values of the time

stamps but not the number of images in each image block,

i.e., |Bsi|. Motivated by this observation, following a similar

proof, we can extend the result of the optimal transmission

schedule to a scenario in which only cameras monitoring the

same scene can transmit simultaneously.

Corollary 9. If no two cameras c ∈ c(s) and c′ ∈ c(s′),
s, s′ ∈ S, s 6= s′, can transmit simultaneously, then in the

optimal solution the images are delivered in ascending order

of their last time stamps, and images of an image block are

delivered in the same or consecutive time slots, depending

on whether or not the corresponding cameras can transmit

simultaneously.

We can use this result for deriving a polynomial-time

algorithm for MVAM instances where all cameras monitoring

the same scene can transmit together.

Corollary 10. Any instance of the MVAM in which only

cameras c ∈ c(s), ∀s ∈ S, are capable of transmitting

together and each scene is monitored by the same number

of cameras can be solved in polynomial-time.

Proof: To assign the optimal fog node to each camera,

we can follow a similar process as for the TDMA case. For

each pair of c ∈ C and n ∈ N , since c(s) are able to transmit

together, we calculate the SINR value in which the interference

is the sum of the signals from c(s) \ {c}. Then the steps in

the proof of Theorem 6 are used to derive the camera-node

assignment. As for the case defined in the corollary, only c(s),
∀s ∈ S, are feasible groups, i.e., no two cameras c ∈ c(s) and

c′ ∈ c(s′), s, s′ ∈ S, s 6= s′, can transmit simultaneously, and

thus by Corollary 9, the optimal transmission schedule follows

directly.

Finally, we provide a general optimality condition of the

transmission schedule that applies to all MVAM instances.

Theorem 11. Given a transmission schedule, let us denote by

Λj the set of images delivered in time slot j, by T the schedule

length, and let νj = min{τs,i−1 : Uci ∈ Λj, c ∈ c(s)}. Then

for any instance of the MVAM, there exists an optimal schedule

in which νj , j = 1, 2, . . . , T , are non-decreasing.

Proof: See Appendix B.

In Table II, we give a summary of the structural results.

TABLE II
SUMMARY OF STRUCTURAL RESULTS FOR THE MVAM PROBLEM.

MVAM case Arbitrary number of Same number of Ref.

cameras per scene cameras per scene

Under the physical model NP-hard NP-hard Theorem 1

Under the protocol model NP-hard NP-hard Corollary 3

With given candidate groups NP-hard NP-hard Theorem 2

With all cameras NP-hard tractable For hardness: Theorem 4.

transmitting together For tractability: Theorem 6

With TDMA NP-hard tractable For hardness: Theorem 5

For tractability: Lemma 7 and

Theorem 8

Only cameras monitoring the NP-hard tractable For hardness: Theorems 5.

same scene are capable of

transmitting together

For tractability: Corollary 9

and Theorem 10

V. CORRELATED MAXIMUM AGE FIRST (CMAF)

ALGORITHM

Inspired by the above structural results, in what follows we

propose an efficient heuristic for the MVAM problem, called

the correlated maximum age first (CMAF) algorithm. CMAF

is based on a decomposition of the MVAM problem: it first

solves the camera to node assignment problem, and for a given

assignment it computes a transmission schedule.

A. Camera-node Assignment Algorithms

The CMAF uses two polynomial-time camera-node as-

signment algorithms. The first algorithm is based on the

observation that in order to obtain the minimum peak age, in

(6), Tci, ∀c ∈ C, i = 1, . . . ,Kc, should be as low as possible.

This can be achieved if as many as possible cameras are active

in each time slot. Therefore, the first algorithm aims at finding

an assignment that maximizes the number of cameras that can

transmit simultaneously.

It is worth noting that different from the classical maximum

link activation problem [26], where only the SINR condition

is considered, to support multi-view processing a feasible

assignment solution must satisfy (2). In view of this, we start

with constructing the weighted bipartite graph G = {S,N , E}.

To create the edge set E , we first check the “feasibility”

of connecting each s and n in the graph G. To do so, for

each camera-node pair we calculate the SNR value. If for all

c ∈ c(s) the SNR value exceeds its respective SINR threshold

γc and node n is capable of supporting c(s), i.e., Mn ≥ |c(s)|,
then we add an edge connecting s and n. Otherwise, the two

vertices are disconnected, implying that either at least one

camera that monitors s cannot transmit to n successfully even

if it transmits alone or node n cannot serve all cameras for s.

Next, in order to construct an assignment that maximizes the

number of cameras that can transmit simultaneously, we define

the weight wsn =
∏

c∈c(s) min{1, SINRn(c, C)/γc} for each

edge (s, n) ∈ E . Intuitively, a higher value of wsn implies that

more cameras can be activated simultaneously. Based on the

graph G we can formulate the following assignment problem.

max
{ιsn∈{0,1}}

∑

s∈S, n∈N

wsnιsn (11a)

subject to (11b)
∑

n∈N

ιsn = 1 ∀s ∈ S, (11c)

∑

s∈S

|c(s)|ιsn ≤ Mn ∀n ∈ N . (11d)
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The problem of (11) is the Generalized Assignment

Problem, which is APX-hard [27], and even though a 2-

approximation for GAP exists [28], it may not lead to a 2-

approximation for the MVAM. We thus proceed with identify-

ing two tractable cases. First, if
∑

s∈S |c(s)| ≤ Mn, ∀n ∈ N ,

then the conditions in (11d) are redundant. For this case, the

optimal solution can be constructed by selecting the node

n = argmaxn{wsn, n ∈ N} as the serving node of cameras

c ∈ c(s). Second, if |c(s)| is equal for all scenes, then (11)

can be solved as a maximum bipartite matching following

the approach stated in the proof of Theorem 6. To efficiently

solve the general case, we apply the LR-Heuristic [29], which

consists of the following steps.

1) For any s ∈ S, if |c(s)| > Mn, then we set the variable

ιsn to zero.

2) Solve the linear relaxation of (11).

3) Fix all variables that have value one and update (11). If

any variable left, then go back to Step 1).

We refer to this algorithm as the SINR-based assignment

algorithm.

The second algorithm is based on the observation that in

the age calculation in (5), or equivalently, in (6b), small

time stamps result in large peak ages. Thus, it is intuitively

preferable to schedule “old” images as soon as possible, and

the assignment should facilitate doing so. Consequently, we

construct an assignment such that cameras containing images

with small time stamps can transmit together. For a given

MVAM instance, we first construct the weighted bipartite

graph G = {S,N , E}, as before. For each s ∈ S, we define

the weight w′s =
τ
τs1

, where τ = mins∈Sτs1. Thus, the weight

is the scaled reciprocal of the minimum time stamp of all

images taken for s. Finally, we update the weight of each

edge (s, n) ∈ E to wsn = w′swsn. Given G, we construct

the assignment by solving the problem of (11), as in the case

of SINR-based assignment. We refer to this as the age-aware

assignment algorithm.

B. Transmission Scheduling Algorithm

Motivated by the structural results in Section IV, to deliver

the images in a timely fashion, the cameras with images from

an older source and carrying a smaller time stamp should

be scheduled first. We thus propose a greedy strategy for

the transmission schedule, which in each time slot chooses

a camera group such that the image with the smallest time

stamp and derived from the currently oldest scene is delivered

together with as many other images as possible.

The algorithm works as follows. In each time slot, the

camera group is initially empty. The algorithm first sorts the

scenes S in the descending order of their current ages. Then

the cameras monitoring each scene, i.e., c(s), are sorted in

the ascending order of the time stamps of the images to be

delivered, i.e., on the top of the queues. Ties, if any, are

broken by the ascending order of scene/camera index. The

algorithm adds the camera on the top of the list, that is, the

camera associating with the most “aged” scene and carrying

the image with the lowest time stamp, to the camera group. It

then iterates through the ordered list of cameras, and adds one

camera at a time. In each step, denote by g ′ the camera group

with the new added camera c′. If SINRn(c, g
′) ≥ γc, ∀c ∈ g ′,

then the camera c′ is kept; otherwise, c′ is removed from the

group. The algorithm schedules the computed camera group

for transmission, after which it continues with the next time

step, until all queues are empty.

C. Optimality of the CMAF Algorithm

The proposed CMAF algorithm uses the SINR-based assign-

ment and age-aware assignment algorithms for computing two

camera-node assignments. For both assignments, it executes

the greedy scheduling algorithm described in Section V-B, and

calculates the obtained maximum peak ages. The algorithm

then chooses the camera-node assignment that results in lower

maximum peak age. The pseudo-code of the CMAF algorithm

is shown in Algorithm 1.

Algorithm 1 CMAF algorithm

Input: S, C, N , Mn, c(s), Kc, τsi, as0

Output: χ1, χ2

1: feasible ← true, τs0 ← t0 − as0, ∀s ∈ S, χ← ∅
2: if

∑
n∈N Mn <

∑
c∈C Kc then

3: feasible ← false, return

4: G ← {S,N , E}, E ← ∅ // construct bipartite graph G
5: for c ∈ C and n ∈ N do // SINR-based assignment

6: calculate SNR(c, n) and SINRn(c, C)

7: for s ∈ S and n ∈ N do
8: if SNR(c, n) ≥ γc, ∀c ∈ c(s) and Mn ≥ |c(s)| then

9: E ← E ∪ {(s, n)}, wsn ←
∏

c∈c(s) min{1, SINRn(c,C)
γc

}

10: if Mn ≥
∑

s∈S |c(s)|, ∀n ∈ N then

11: χ(c)← argmaxn{wsn, n ∈ N}, ∀c ∈ c(s)
12: else if Mn = m, ∀n ∈ N then
13: update G to G′ by adding dummy nodes and edges; solve (10) using the

Hungarian algorithm; update χ
14: else

15: solve (11) using the LR-Heuristic; update χ

16: χ1 ← χ
17: for s ∈ S and n ∈ N do
18: χ ← ∅, τ ← mins∈Sτs1, w

′(s) ← τ
τs1

, wsn ← w′(s)wsn; repeat

lines 10 to 15; χ2 ← χ // age-aware assignment

Input: S, C, N , c(s), Kc, τsi, as0, t0, χ1, χ2

Output: χ∗, Ω∗, α∗

19: χ← χ1, Ω1 ← ∅, α1 ← 0
20: j ← 0, complete ← false, empty(c) ← false, ρ(c) ← 1, A(1) ←
{as0, s ∈ S} // maximum age first schedule

21: while complete = false do
22: j ← j + 1, t← t0 + j, gj ← ∅
23: C′ ← C sorted first in descending order of A(j) and then in ascending order

of τs,ρ(c)
24: gj = {C′(1)}
25: for r = 2, . . . , |C| do
26: if SINRn(c, gj ∪ {C

′(r)}) ≥ γc then

27: gj ← gj ∪ {C
′(r)}

28: Ω(j) ← gj , A(j + 1)← {asj , s ∈ S} computed by (5)

29: for c ∈ gj do

30: if ρ(c) < Kc then

31: ρ(c)← ρ(c) + 1
32: else
33: empty(c)← true

34: if empty(c) = true ∀c ∈ C then

35: complete← true

36: α1 ← max(A)
37: χ← chi2, Ω2 ← ∅, α2 ← 0; repeat lines 20 to 35; α2 ← max(A)
38: if α1 ≤ α2 then

39: α∗ ← α1, Ω∗ ← Ω1, χ∗ ← χ1

40: else

41: α∗ ← α2, Ω∗ ← Ω2, χ∗ ← χ2

42: return (α∗, Ω∗)

Lemma 12. The CMAF algorithm achieves the global opti-

mum for the MVAM instances defined in Theorems 6 and 8,

and in Corollary 10.



10

Proof: For the three tractable cases, i.e., MVAM with

compatible C, MVAM with TDMA, and MVAM with com-

patible c(s) only, each stratifying |c(s)| = m, ∀s ∈ S,

m ∈ Z+, by construction, both SINR-based assignment and

age-aware assignment algorithms provide an optimal camera-

node assignment. Together with the transmission scheduling

algorithm, the CMAF gives the same result as the one we

derived in the respective proof of the three theorems.

VI. NUMERICAL RESULTS

In this section we show simulation results to assess the

potential benefit of adopting the fog architecture and of

the proposed CMAF algorithm in terms of decreasing the

maximum peak age of information.

A. Evaluation methodology

We consider a camera network monitoring an area of

100 × 100 meters, corresponding to an urban surveillance

scenario. The area is divided into 16 sub-areas, each occupying

25 × 25 meters and consisting of one scene. The number of

cameras that cover one scene is uniformly chosen on [2, 6]. For

each scene s, the cameras c(s) are uniformly distributed in the

respective sub-area. The transmit power of the cameras and the

noise variance at the fog nodes are uniformly set to 20 dBm

and to −100 dBm, respectively. The channel gain follows a

distance-based propagation model with a path loss exponent of

4, Rayleigh fading, and log-normal shadowing with standard

deviation of 6 dB [30]. The starting time is t0 = 500. The

initial ages as0, ∀s ∈ S, are uniformly distributed in [50, 200].
Each camera has 10 images to be delivered. The time stamps of

the images capturing scene s are integers uniformly distributed

in (t0 − as0, t0).

We generated 100 network instances with the above param-

eters for simulation. For each network instance, we deployed

N ∈ {1, 2, 4, 8, 16} fog nodes by splitting the area into

N equal sized rectangles, and placing one fog node per

rectangle. Depending on the location of the fog nodes with

the rectangles, we distinguish between two topologies. In the

regular topology, the fog node is located in the geometric

center of the rectangle. In the random topology, the location of

each fog node is chosen uniform at random in the respective

rectangle. We set the maximum number of cameras that each

fog node can support uniformly to Mn = 96
N

, ∀n ∈ N . In

Figure 5, we show the regular and the random topologies for

N = 16 fog nodes in a network with C = 59 cameras.

As a baseline for comparison, we use the location-based

greedy (LBG) algorithm. In LBG, the cameras are served by

the nearest fog node, and for camera transmissions, a greedy

algorithm for minimum time scheduling [31] is used. This

greedy algorithm selects in each time slot the camera with

maximal number of images left in queue and pairs it with other

cameras that it can transmit together with. For performance

comparison as well as for assessing the joint benefit of CMAF

and fog computing in peak age reduction, we normalize all

results by the maximum peak age achieved by LBG with N =
1, which corresponds to a traditional centralized network.
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Fig. 5. A camera network with N = 16 fog nodes and C = 59 cameras.

B. Simulation Results

We first consider networks with low SINR thresholds. A low

SINR threshold allows low bitrates, and since each camera

in an active group transmits one image per time unit, this

corresponds to camera networks where low image resolution

is sufficient. In Figures 6a and 6c, we present the cumulative

distribution function (CDF) of the normalized maximum peak

age for networks with γ = −3 dB and N ∈ {1, 4, 16}, for

the random and the regular topology, respectively. Each curve

shows the results of 100 simulation runs.

Figures 6a and 6c show that CMAF outperforms LBG in

terms of maximum peak age reduction for all values of N
and for both topologies, by up to around 25%, depending on

the network instance. Interestingly, for networks with a regular

topology, shown in Figure 6c, the curves for CMAF for N = 4
and N = 16 almost overlap, indicating that a remarkable age

reduction can be achieved by using only a small number of

fog nodes if combined with CMAF, but the marginal gain of

adding fog nodes decreases fast. Furthermore, the maximum

peak age obtained using CMAF and N = 4 fog nodes is less

than that obtained using LBG and N = 16 fog nodes.

Figures 6b and 6d show the average of the normalized

maximum peak age as a function of the number of fog

nodes for the two network topologies. The averages shown are

computed based on the 100 network instances; we omitted the

confidence intervals in the figures as they are within ±2% of

the averages at 95% confidence level. The figures confirm the

above observation, and show that adding fog nodes reduces the

maximum peak age, but with a fast decreasing marginal gain.

Comparing the results for CMAF and LBG, we can conclude

that significantly less fog nodes are needed if using CMAF

for achieving a given maximum peak age, allowing significant

infrastructure savings compared to using LBG. Comparing the
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Fig. 6. Normalized maximum peak ages for networks with γ = −3 dB for random and regular topology.

results for the two topologies we can also observe that the age

reduction is in general lower in case of the random topology.

This is reasonable since the maximum peak age captures the

worst case, which can be affected already by a few distant or

co-located fog nodes, and suggests that if the number of fog

nodes is relatively small then the placement of the fog nodes

becomes very important.

Next, we consider systems with high SINR thresholds, i.e.,

camera networks that support services requiring high quality

images. Figures 7a and 7c show the CDF of the normalized

maximum peak age for the two network topologies with

γ = 13 dB. In Figures 7b and 7d, we show the corresponding

averages of the normalized maximum peak ages. The results

are similar to the low SINR case in that CMAF achieves better

performance in reducing the maximum peak age than LBG, in

general, and allows significant savings in terms of the number

of fog nodes to be deployed for guaranteeing a given maximum

peak age. Comparing the results for different SINRs, we can

observe that the gap between the results for N = 4 and

N = 16 in the high SINR case (Figure 7) is larger than that

in the low SINR case (Figure 6). The reason is that under

high SINR requirements the fog nodes need to be closer to

the cameras in order to allow simultaneous transmissions, and

consequently a low age of information. Hence in comparison

to the low SINR case, a dense fog node deployment would

be more beneficial in high-speed camera networks. Overall,

for both low and high SINR cases, the results show that

the fog architecture combined with the proposed assignment

and transmission strategy result in a synergy that significantly

improves the freshness of information.

VII. CONCLUSIONS AND OUTLOOK

We have considered the joint optimization of serving node

assignment and camera transmission scheduling with respect

to age of information in wireless camera networks with fog

computing. We have extended the age calculation in the pres-

ence of multi-view processing and mathematically formulated

the multi-view age minimization problem. Fundamental results

including problem complexity, tractable cases, and optimal-

ity condition have been derived. An optimization algorithm

based on a modular structure has been proposed to solve the

problem in polynomial time. Our numerical results show that

the optimal assignment and transmission strategy reduces the

maximum peak age significantly compared to the traditional

centralized approach.

Our work has a number of interesting potential exten-

sions, including optimizing the number and the placement

of fog nodes, as well as determining the proper length of

a scheduling cycle. It could also be interesting to consider

images that arrive during a scheduling cycle for deriving

an online optimal solution. If the cameras capture images

periodically, or according to a known stochastic process, it

may be feasible to jointly optimize the image update frequency

and the transmission scheduling. As an example, in [14] the

authors derived a separation principle to minimize the age of

independent information for a Bernoulli arrival process. As

an alternative, in lack of an arrival process model, one could

develop a rolling horizon strategy where re-scheduling can

take place during a cycle.

Our work also serves as a useful step towards designing a

complete solution that minimizes age in an end-to-end sce-
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Fig. 7. Normalized maximum peak ages for networks with γ = 13 dB for random and regular topology.

nario, which involves the joint optimization of status update,

queue management strategy, transmission scheduling, and data

processing. These optimization tasks may take place at dif-

ferent locations, which makes the end-to-end optimization

particularly challenging.

APPENDIX A

ILP FOR MVAM

We introduce the following binary variables.

xcij =

{

1 if image Uci is delivered at tj ,

0 otherwise.

ysij =

{

1 if any image Uci, ∀c ∈ c(s), is delivered at tj ,

0 otherwise.

zsj =







1 if all images of cameras c(s) have been

delivered before/at tj ,

0 otherwise.

vsij =







1 if the last update of Uci, ∀c ∈ c(s), is

delivered at tj ,

0 otherwise.

ιsn =

{

1 if the cameras c ∈ c(s) are served by node n,

0 otherwise.

Following the system model defined in Section II, one active

camera delivers one image per time slot, hence the total time

to deliver all queued images is at most T =
∑

c∈CKc. Letting

J = {1, 2, . . . , T }, Kc = {1, 2, . . . ,Kc}, and Ks = Kc, c ∈
c(s), we formulate the MVAM as the ILP in (12).

Since peak ages are maximal points in the age evolution

(see Figure 1), the objective is equivalent to minimizing the

maximal achievable age for all sources during the schedule

cycle, as defined in (12a) and (12b). The constraint sets (12c)

and (12d) are linearizations of the age calculation stated in

(5). By definition, if the last image of an image block Bsi is

not delivered at tj , then vsij = 0. For this source, if not all

the images are emptied at the moment, i.e., zsj = 0, then the

corresponding constraint (12c) reads asj ≥ as,j−1+1. If either

vsij or zsj (or both) equals one, the right-hand side of (12c)

is negative because as0+T is an upper bound of the age of s.

In this case, the constraints in (12c) take no effect. If the last

image of an image block Bsi is delivered at tj , vsij takes the

value one and (12d) is written as asj ≥ tj − τsi when zsj is

zero. If zsj = 1, i.e., all the images of s have been delivered,

both (12c) and (12d) become satisfied. Note that there are

no constraints on asj in (12e) - (12o) and the objective is to

minimize the maximal value of asj . Therefore, at the optimum,

for any constraint in (12c) and (12d) taking effect, equality

holds. Hence, the constraint sets (12c) and (12d) together give

the same result as defined in (5). The constraints in (12e)

ensure the FCFS order of the queues, that is, the image Uc,i+1

can be transmitted only if Uci has been delivered. In addition,

by (12e), one camera delivers at most one image in each slot

j = 2, . . . , T . The transmission rate in the first time slot is

governed by (12f). The inequalities in (12g) - (12j) achieve

the effect that the auxiliary variables ysij , zsj , and vsij indeed

take the desired values. By (12g), ysij takes value one if and

only if at least one camera c ∈ c(s) delivers its ith image

at tj . The value of vsij is defined by (12h) and (12i). By

definition, vsij = 1 indicates that all the images of the ith view

of s have been delivered by tj and there is Uci, ∀c ∈ c(s),
being delivered at tj . Only when both conditions are fulfilled,

the right-hand side of (12h), i.e.,
∑

c∈c(s)

∑j
j′=1 xcij′ + ysij

achieves its maximal value |c(s)| + 1. Otherwise, it is less
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than this value, resulting that vsij takes value zero. If the two

conditions are satisfied, vsij must be one to fulfil (12i). The

values of zsj are set by (12j), that is, zsj = 1 if and only if

all images of source s are delivered by tj . The constraints in

(12k) state the fact that all the images are delivered eventually.

minimize
{xcij , ysij, zsj , vsij , ιsn, lcn∈{0,1}, asj∈Z∗}

α (12a)

subject to

asj ≤ α ∀s ∈ S, ∀j ∈ {0} ∪ J , (12b)

asj ≥ as,j−1 + 1− (
∑

i∈Ks

vsij + zsj)(as0 + T )

∀s ∈ S, ∀j ∈ J , (12c)

asj ≥ tj −
∑

i∈Ks

τsivsij − (1−
∑

i∈Ks

vsij + zsj)tj

∀s ∈ S, ∀j ∈ J , (12d)

xc,i+1,j ≤

j−1
∑

j′=1

xcij′ ∀c ∈ C, ∀i ∈ Kc \ {Kc}, ∀j ∈ J \ {1},

(12e)
∑

i∈Kc

xci1 ≤ 1 ∀c, (12f)

∑

c∈c(s)

xcij ≤ |c(s)|ysij ≤ |c(s)|
∑

c∈c(s)

xcij

∀s ∈ S, ∀i ∈ Kc, ∀j ∈ J , (12g)

(|c(s)|+ 1)vsij ≤
∑

c∈c(s)

j
∑

j′=1

xcij′ + ysij

∀s ∈ S, ∀i ∈ Kc, ∀j ∈ J , (12h)

(|c(s)|+ 1)vsij ≥
∑

c∈c(s)

j
∑

j′=1

xcij′ + ysij − |c(s)|

∀s ∈ S, ∀i ∈ Kc, ∀j ∈ J , (12i)

zsj =

j
∑

j′=1

vs,Kc,j′ ∀s ∈ S, ∀j ∈ J , c ∈ c(s), (12j)

zsT = 1 ∀s ∈ S, (12k)
∑

n∈N

ιsn = 1 ∀s ∈ S, (12l)

lcn = ιsn ∀s ∈ S, ∀c ∈ c(s), ∀n ∈ N , (12m)
∑

c∈C

lcn ≤ Mn ∀ n ∈ N , (12n)

PcGcn + (2− lcn −
∑

i∈Kc

xcij)Qcn ≥

γc(
∑

c′ 6=c

(P ′cGc′n

∑

i∈Kc′

xc′ij) + σ2
n) ∀c ∈ C, ∀c ∈ N , ∀j ∈ J .

(12o)

The optimization task of camera-node assignment is con-

strained by (12l) - (12n). The equalities in (12l) ensure that

each camera set c(s) is served by a node. By the constraints

in (12m) and the definition of lcn in (1), all cameras in

c(s) are connected to the same node. In (12n) we define

the capacity limit for each fog node. The SINR constraints

are defined by the inequalities in (12o), where Qcn is a

positive parameter that is large enough to guarantee that the

corresponding constraint is satisfied if camera c does not

transmit at this time slot, i.e.,
∑

i∈Kc
xcij = 0, or n is not

the intended node for c, i.e., lcn = 0. For this purpose, we set

Qcn = γc(
∑

c′ 6=c P
′
cGc′n+σ2

n). When any constraint of (12o)

becomes active, i.e.,
∑

i∈Kc
xcij = lcn = 1, the corresponding

inequality reads PcGcn ≥ γc(
∑

c′ 6=c(P
′
cGc′n

∑

i∈Kc′
xc′ij) +

σ2
n), of which the left-hand side is the signal strength of c and

the right-hand side is the SINR threshold multiplied by the

interference and noise at node n in the jth time slot.

APPENDIX B

PROOF OF THEOREM 11

Proof: Suppose Ω1 is an optimal schedule where ν1j ,

j = 1, 2, . . . , T , are not in the non-decreasing order. Then

there exist at least two adjacent slots, say the jth and j + 1th

slots, satisfying ν1j > ν1j+1. The FCFS queue policy implies

that ν1j and ν1j+1 are not time stamps of two images from the

same camera, because otherwise Ω1 is infeasible. Denote by

S1
j and S1

j+1 the sets of scenes whose images are delivered

in the two time slots, respectively. By definition, at tj the

maximal age (not necessarily a peak age) of the scenes S1
j is

at least tj−ν1j . Likewise, the maximal age of S1
j+1 at tj+1 is at

least tj+1−ν1j+1. Clearly, tj+1−ν1j+1 > tj−ν1j holds because

ν1j > ν1j+1. Therefore, the maximum peak age of Ω1 cannot be

less than tj +1− ν1j+1. We swap the two groups g 1
j and g 1

j+1

to get a new solution Ω2. As the swapping takes place for two

adjacent groups (instead of images), one can verify that Ω2 is

feasible and the same sets of images are delivered in the two

time slots for both Ω1 and Ω2. Therefore, there is no impact

on the peak ages of the scenes S \ {S1
j ∪ S1

j+1}, who have

no image delivered in the two time slots. Moreover, since ν1j
and ν1j+1 are not time stamps of two images from the same

camera, after the swapping, in Ω2, we have ν2j ≤ ν2j+1. We

now consider the possible changes in age for scenes with an

image delivered in one slot only, i.e., S1
j \S

1
j+1 and S1

j+1 \S
1
j .

For any s ∈ {S1
j+1 \ S

1
j }, clearly, its age won’t be increased

in Ω2 since its images are delivered either at the same slot

as in Ω1 or earlier. For any s ∈ {S1
j \ S1

j+1}, the image

Uci ∈ {Λ1
j : c ∈ c(s)}, is scheduled one slot later after

swapping. If Uci is not the last delivered image of image

block Bsi, then there is no impact on peak age calculation. If

it is the last delivered one in the image block, then in Ω2,

one peak age of s is achieved at tj+1. By definition, the

peak equals tj+1 − τs,i−1. Obviously, in Ω2, for the scenes

S1
j \ S1

j+1, there is no peak age at tj as they don’t have any

image delivered in the jth time slot. Since the objective is

the maximum age, we only need to compare the following

(potential) peak ages in the two schedules. Recall that, in Ω1,

there is at least a maximal age ma1 ≥ tj+1 − ν1j+1. In Ω2,

the peak age at tj+1 is ma2 = tj+1 − τs,i−1. By definition

and the assumption, we have Uci ∈ Λ1
j and ν1j > ν1j+1, hence

τs,i−1 ≥ ν1j > ν1j+1 holds, indicating ma1 > ma2. Next, we

consider the scenes S1
j ∩ S1

j+1, which have images delivered

in both slots. If g 1
j ∩ g 1

j+1 = ∅, then the above analysis for

the scenes with image delivered only in one slot applies. If

not, denote by Uci and by Uc,i+1, ∀c ∈ {g 1
j ∩ g 1

j+1}, the two
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images delivered in the two slots, respectively. Depending on

whether or not Uci and/or Uc,i+1 are the last delivered image

in their respective image block, as well as whether or not

τs,i−1 = ν1j and/or τs,i = ν1j+1 hold, we check all possible

combinations and calculate the potential changes in maximal

age after the swapping. Following a similar approach as above,

we conclude that in the new schedule Ω2, the maximum peak

age is either the same or less than that in Ω1. Starting from

Ω1 and continuously swap any two adjacent groups that are

not ordered as in the theorem, in each step, the objective

is not getting worse and the new solution is feasible. The

final solution we obtained follows the defined order and it is

optimal. Hence the conclusion follows.
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