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Abstract—Freshness of information is of critical importance
for a variety of applications based on wireless camera networks
where multi-view image processing is required. In this study,
we propose to jointly optimize the use of communication and
computing resources such that information from multiple views
is delivered is obtained in a timely fashion. To this end, we
extend the concept of age of information to capture packets
carrying correlated data. We consider the joint optimization of
processing node assignment and camera transmission policy, so
as to minimize the maximum peak age of information from all
sources. We formulate the multi-view age minimization problem
(MVAM) and prove that it is NP-hard. We provide fundamental
results including tractable cases and optimality conditions. To
solve the MVAM efficiently, we develop a modular optimization
algorithm following a decomposition approach. Numerical results
show that, by employing our approach, the maximum peak age
is significantly reduced in comparison to a traditional centralized
solution with minimum-time scheduling.

I. INTRODUCTION

Wireless camera networks acquire, process, and analyze

digital images of areas or objects of interest. They form an

important building block of future smart cities, and serve a

variety of applications, such as surveillance [1], tracking [2],

healthcare [3], and intelligent transportation [4].

Many of these applications require multiple cameras with

overlapping fields of view (FoV) to monitor a given scene, as

doing so can improve the robustness and accuracy of tracking,

and enables 3D scene reconstruction. Images from cameras

with overlapping FoVs have to be processed jointly, and under

strict delay constraints to enable real-time operation. The

emerging paradigm of fog computing could enable meeting

the strict delay constraints, as it allows to distribute computa-

tion, communication, control and storage to computing nodes

close to the cameras, referred to as fog nodes. Still, real-

time processing of the visual information in a fog computing

enabled wireless camera system requires joint optimization of

the allocation of computing resources and the transmission

scheduling of images from cameras with overlapping FoVs.

A promising metric for quantifying the timeliness of end-to-

end data delivery, including queuing and transmission times,

is the recently introduced age of information, or simply,

age [5]. Age is commonly defined as the time elapsed since

the most recently received message was generated (see [6]

and references therein), as shown in Figure 1. The average

age of information, calculated as the area under the sawtooth

curve in Figure 1, normalized by the observation interval,

Fig. 1. Age evolution of a source. The ith packet with time stamp τi is
received by the destination at ti. The age at ti equals ti − τi. If no packet
is received, the age increases linearly.

was considered in [5], [7] for capturing the average system

behavior in a queueing system fed by a single source and by

multiple sources, respectively. To characterize the worst case

system behavior, the authors of [8] introduced the notion of

peak age, which is the maximum value of the age achieved

immediately before receiving a new packet (e.g., in Figure 1,

the ith peak age of the source is obtained observing the ith

peak value in the sawtooth curve), and proposed strategies for

queue management. Subsequently, [9] considered optimal link

scheduling to drain a given set of packets with respect to the

total age. In all these works, the age of information changes

upon receiving each individual packet. Nonetheless, when

processing requires information from multiple senders, carried

in different packets, age of information should change only

when all packets carrying correlated information are received.

Hence, existing results do not apply for the case of packets

carrying correlated information and delivered by multiple

transmitters, such as the case of cameras with overlapping

FoVs.

In this paper, we adapt the concept of age of information to

correlated information, which allows us to apply this metric to

wireless camera networks as well as to other systems where

an age update is triggered by multiple correlated packets.

We consider the joint optimization of fog node assignment

and transmission scheduling, so as to minimize the age of

the multi-view image data at the fog nodes. We formulate

the optimization problem and derive the fundamental results

about problem complexity, tractable cases, and optimality

conditions. We propose a heuristic algorithm based on problem

decomposition, and use simulations to explore the benefits

of the jointly optimized assignment and transmission strategy



in improving the freshness of information in wireless camera

networks.

The rest of the paper is organized as follows. In Section

II, we define the system model and formulate the problem,

followed by the complexity analysis in Section III. In Section

IV, we present structural results, which motivate the optimiza-

tion algorithm in Section V. Numerical results are provided in

Section VI. In Section VII, we conclude the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a wireless camera network that consists of

a set of cameras C = {1, 2, . . . , C}, a set of scenes S =
{1, 2, . . . , S}, which we also refer to as sources, and a set

of fog (computing) nodes N = {1, 2, . . . , N}. The cameras

have overlapping FoV, and each scene is covered by multiple

cameras. We denote by c(s) the set of cameras that have a

view of scene s, and we assume that cameras monitoring the

same scene capture images simultaneously. The cameras send

the images to their respective serving fog node for processing,

and we define

lcn =

{
1 if camera c is served by node n;

0 otherwise.
(1)

To allow the processing of multi-views, the cameras c(s) that

cover scene s need to transmit their images to the same fog

node, hence we have∑
n∈N

∏
c∈c(s)

lcn = 1, ∀s ∈ S. (2)

The images are delivered to the fog nodes via a shared

wireless channel. To determine whether or not a subset of the

cameras are allowed to transmit simultaneously, we follow the

physical model, aka, the signal-to-interference-and-noise ratio

(SINR) model. For a subset of cameras g ⊆ C to be able to

transmit together, given SINR thresholds must be met at each

fog node serving the cameras,

SINRn(c, g ) �
PcGcn∑

ι∈g ,ι �=c PιGιn + σ2
n

≥ γc,

∀c ∈ g , n ∈ {N : lcn = 1},

(3)

where Pc is the transmit power of camera c and Gcn is the

channel gain between camera c and fog node n, incorporating

the effects of path loss, shadowing and fading, and σ2
n is the

noise variance.

We consider that time is slotted and is divided into subse-

quent scheduling cycles. In each scheduling cycle, we schedule

the transmission of the images queued at the beginning of the

cycle. We denote by Uci the ith image in the queue of camera

c. The images that arrive during the cycle are queued by the

cameras under the first-come-first-served (FCFS) discipline,

and will be scheduled in the next cycle. The transmission rate

of a camera-fog node pair is one image per time slot if the

SINR threshold is met.

Let us denote by t0 the starting time of the current schedul-

ing cycle, and by Kc the number of queued images of camera

c at t0. Furthermore, we denote by tj the time at the end

of the jth slot of the scheduling cycle. Since the image data

are queued using FCFS and the cameras monitoring the same

scene capture images simultaneously, the ith image in the

queue of each camera c ∈ c(s) carries time stamp τsi. We

refer to the set of images {Uci, ∀c ∈ c(s)}, as the ith image

block of s.

Let us denote by as0 the initial age of scene s at time t0. Due

to the requirement of multi-view processing, the information

of scene s will not be updated until all the images of an image

block are delivered to the fog node n serving cameras c(s).
Therefore, at time tj the age of a source s is defined as

asj =

⎧⎪⎪⎨
⎪⎪⎩

tj − τsi if all the images of the ith image

block of s have been delivered to

node n exactly by tj ;

as,j−1 + 1 otherwise.
(4)

Note that the age calculation in (4) differs from the case

where the age is updated upon the delivery of each packet, as

considered in [5]–[12]. This also affects the definition of the

peak age, as the peak ages of a scene are attained immediately

before the last image of an image block is delivered to the

fog node. To express the peak ages, let us denote by tci the

time when image Uci is delivered, and by Tci = tci − t0 the

number of time slots before Uci is delivered, and observe that

Tci is a positive integer in [1,
∑

c∈C Kc]. Then by defining

τs0 = t0 − as0, we can express the ith peak age of s as

αi
s = maxc∈c(s)tci − τs,i−1 = t0 + maxc∈c(s)Tci − τs,i−1.

In order to optimize the worst case performance, we for-

mulate the multi-view age minimization (MVAM) problem as

that of minimizing the maximum peak age of all sources,

minimize
{Tci∈Z+}

max
s∈S, c∈c(s), i=1,...,Kc

αi
s (5a)

subject to (2), (3), and

αi
s = t0 + maxc∈c(s)Tci − τs,i−1, (5b)

1 ≤ Tc1 < Tc2 < · · · < Tc,Kc
∀c ∈ C, (5c)

SINRn(c, gj) ≥ γc, ∀c ∈ gj , Tj = 1, . . . ,
∑
c∈C

Kc,

gj = {c ∈ C : Tci = Tj, i = 1, . . . ,Kc}. (5d)

Observe that solving MVAM requires joint optimization of

the camera to fog node assignment, and of the transmission

schedule of the cameras to their serving fog nodes. We remark

that at the optimum of (5), if the solution uses T <
∑

c∈C Kc

slots, then gj are empty sets for j = {T + 1, . . . ,
∑

c∈C Kc}.

Hence in the formulation, T can be overestimated without loss

of optimality. We summarize the key notation in Table I.

III. MVAM COMPLEXITY

Theorem 1. The MVAM, as defined in (5), is NP-hard.

Proof: The decision problem of the MVAM is to de-

termine whether or not there exists a solution such that the

maximum peak age is no more than a given value. We show

that the decision problem is NP-complete by constructing a



TABLE I

Notation Description

S the set of scenes
C the set of cameras
N the set of fog nodes

c(s) The subset of cameras monitoring scene s
g A subset of cameras that can transmit together

t0 The initial time

tj The time corresponds to the end of the jth time slot
Kc The number of queued images in camera c

Uci The ith image of camera c
τsi The time stamp carried by Uci, ∀c ∈ c(s)
as0 The initial age of s at t0
asj The age of s at tj
αi
s The ith peak age of s

Tci The number of slots before Uci is delivered

polynomial-time reduction from the 3-satisfiability (3-SAT)

problem, which is known to be NP-complete [13].

For an instance of the 3-SAT problem, denote by S and

S ′ the set of its positive literals and its negative literals,

respectively. The set of clauses is denoted by D. We construct

an MVAM instance with |S|+|D| scenes and the same number

of fog nodes. Each scene is covered by two cameras. Based on

the index, we map the members of S and S ′ (i.e., the literals)

to the cameras associated with the first |S| scenes. Thus, the

ith scene is monitored by the two cameras representing literals

si and s̄i. The jth clause in D, i.e., dj , is mapped to the

two cameras with a view of the (|S|+ j)th scene. We denote

these two cameras by d′j and d′′j . The initial ages of the first

|S| scenes and the remaining |D| scenes are a0 and a0 + 1,

respectively. Each camera contains one image to be delivered.

The transmit power of all cameras is uniformly set to one.

For cameras si and s̄i, i = 1, 2, . . . , |S|, the SINR threshold

is γc = 2. For cameras d′j and d′′j , j = 1, 2, . . . , |D|, the SINR

threshold is γc = 1
3 . The noise power is σ2 = 0.5 at the

fog nodes 1 to |S|, and σ2 = 1 at the remaining |D| nodes.

The channel gains between the cameras and the nodes are as

follows.

Gcn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if c = si or s̄i, n = i, i = 1, . . . , |S|;
1 if c = d′j or d′′j , n = |S|+ j, j = 1, . . . , |D|;

1
|S|−1 if c = si or s̄i, i = 1, . . . , |S|, n = |S|+ 1,

. . . , |S|+ |D|, and c is not one of the

three literals of clause dn−|S|;

0 otherwise.
(6)

Below we show that the 3-SAT instance is satisfiable if and

only if the above constructed MVAM instance has a feasible

solution for the objective value a0 + 2. By construction, we

observe that, in a feasible solution, the literal cameras si and

s̄i will be served by the fog node i, and the clause cameras d′j
and d′′j will be served by the fog node |S|+j. Due to the SINR

constraint, cameras si and s̄i cannot transmit simultaneously,

and consequently, at least two time slots are needed to deliver

all images. Therefore, the minimum objective value for the

MVAM instance is at least a0 + 2. This is achieved if and

only if a feasible solution with the following properties exists.

• All images are delivered in two time slots.

• Cameras si and s̄i transmit in different time slots, and

hence |S| literal cameras transmit simultaneously in each

time slot.

• All the 2|D| clause cameras transmit in the first time slot,

together with |S| literal cameras. Due to the choice of

the channel gains and transmit powers, for each clause,

at least one camera representing one of its three literals

transmit in the first time slot. Otherwise, suppose it is

not the case for a clause, then the |S| literal cameras that

transmit in the first time slot would all interfere with the

two corresponding clause cameras. This, together with the

interference they receive from each other, would result in

an SINR = 1
|S|

|S|−1
+1+1

< 1
3 .

Based on the above analysis, we establish a mapping from

the solution to that of the corresponding 3-SAT problem by

setting all the literals represented by the cameras transmitting

in the first time slot to be true, and the others to be false. Due

to the third property, for the 3-SAT instance, every clause has

at least one TRUE literal, and hence the 3-SAT instance is

satisfiable. On the contrary, if the 3-SAT instance is satisfiable,

then we map its solution to the corresponding MVAM problem

by scheduling all the cameras representing the clauses and

the TRUE literals in the first time slot, and the rest of the

literal cameras in the second time slot. By doing so, we

obtain a feasible solution of the MVAM instance with the

objective value of a0 + 2. Therefore, the 3-SAT instance is

satisfiable if and only if there is a feasible solution for the

corresponding MVAM with the objective value of a0 + 2.

Hence the decision problem of the MVAM is at least as hard as

the 3-SAT problem. Since the 3-SAT problem is NP-complete,

we conclude that the MVAM is NP-hard.

IV. STRUCTURAL RESULTS

Since the MVAM is hard in general, it is of interest to

identify tractable cases. We first consider an “ideal” case where

the network allows all cameras to transmit together.

Theorem 2. Any MVAM instance in which all cameras are

able to transmit simultaneously can be recognized and solved

in polynomial-time.

Proof: To recognize the case defined in this theorem,

given an MVAM instance, we calculate the SINR value for

each camera-node pair, with the assumption that all the cam-

eras are active, i.e., in the denominator of (3), the interference

takes into account the signals from all other cameras. The

computational complexity in this step is O(CN). For each

s ∈ S, we set the binary variable ιsn = 1 if and only if for

each camera c ∈ c(s), the SINR between c and n exceeds

its threshold. If for each s ∈ S, there exists n ∈ N such that

ιsn = 1 holds, then we conclude that for this MVAM instance,

all cameras can transmit together. This step takes time O(SN),
and the solution of the fog-node assignment task is derived by

setting lcn = ιsn, ∀c ∈ c(s).
The optimal transmission strategy for this case is straight-

forward, that is, in each time slot, all cameras transmit together



as long as they have images in their queues. By (5), the

optimal objective equals t0 +maxs∈S,i∈Ks
(i− τs,i−1), where

Ks = {1, . . . ,Kc}, c ∈ c(s). The computation can be done in

polynomial-time and hence the result.

Next, we consider the opposite case in which only one

camera is allowed to transmit in a time slot, i.e., a time divi-

sion multiple access (TDMA) transmission policy. This case

corresponds to severely interference-limited networks, e.g.,

when the cameras and nodes are densely located, and hence

each camera causes significant interference to all nodes. We

first establish a theoretical result concerning the transmission

schedule.

Lemma 3. Consider an instance of the MVAM with TDMA.

There exits an optimal transmission schedule where the images

in an image block, i.e., Uci, ∀c ∈ c(s), are delivered in

consecutive time slots.

Proof: To prove the lemma, suppose Ω is an optimal

solution in which images of an image block are not delivered

in consecutive time slots. Denote by Uλ
ci, λ = 1, . . . , |c(s)|,

the λth image of Uci, ∀c ∈ c(s), delivered in Ω. We construct

a new solution by moving all Uλ
ci, λ = 1, . . . , |c(s)|− 1, right

before U
|c(s)|
ci and shifting the other images in between earlier

in time. By doing so, the ith peak age of s remains unchanged

and the other peak ages (of s as well as the other sources)

either remain unchanged or decrease. Hence the maximum

peak age of the new solution is not higher than that of the

previous solution. Repeating the operation for all image blocks

that are not delivered in consecutive time slots we obtain a

schedule Ω′ that satisfies the lemma, and has the age less than

or equal to that in Ω, which proves the lemma.

Theorem 4. Any MVAM instance in which only TDMA is

allowed can be recognized and solved in polynomial-time.

Proof: To recognize a TDMA instance, we only need

to verify that no two cameras can transmit together. In the

worst case, this can be done in O(C2N2). For the camera

assignment, the solution is derived by following an approach

similar to the one in the proof of Theorem 2, where we need

to verify that for each camera c ∈ c , there exists at least one

fog node n, such that the SNR is above the threshold γc.
To construct an optimal transmission schedule, recall that by

Lemma 4 there is an optimal solution in which the images in

an image block are delivered consecutively. We now construct

a schedule Ω, in which the image blocks are scheduled in as-

cending order of their time stamps τsi, ∀s ∈ S, i = 1, . . . ,Kc,

c ∈ c(s). The transmission order of the images in each image

block is arbitrary. To show that Ω is optimal, we provide an

indirect proof. Assume that Ω is not optimal. Then there is an

optimal solution Ω1, in which there exist two adjacent image

blocks B1 and B2 with time stamps τ1 and τ2, respectively,

not transmitted in the defined order. That is, if τ1 > τ2, then

B1 is transmitted before B2 in Ω1. Denote by T0 the time

when the transmission of B1 starts, and by |B1| and |B2| the

number of images in B1 and B2, respectively. By (5b) and

because of TDMA, the achieved peak ages by the two blocks

are α1 = T0 + |B1| − τ1 and α2 = T0 + |B1| + |B2| − τ2.

Assume now that we swap the transmission of B1 and B2,

obtaining a schedule Ω2. Clearly, Ω2 is feasible as it does not

violate the FCFS discipline, and the peak ages of B1 and B2

change to α3 = T0+ |B2|−τ2 and α4 = T0+ |B2|+ |B1|−τ1.

Since τ1 > τ2, it can be easily verified that α2 is maximal one

among these four peak ages. Hence the maximal peak age in

Ω2 is either equal to or less than that in Ω1. Repeating the

process for all adjacent image blocks that are not delivered

in the defined order (cf. bubble sorting), after a finite number

of steps, we obtain the transmission schedule Ω. According

to the above analysis, the maximum peak age of Ω cannot be

greater than that of Ω1. This contradicts the assumption that

Ω is not optimal, and hence the conclusion.

To construct the optimal transmission schedule, the bottle-

neck is to sort τsi. The computational complexity is hence

O(SK log(SK)), where K = maxc∈CKc. As all the steps

can be done in polynomial-time, the theorem follows.

Note that by Theorem 3 and its proof, the optimal transmis-

sion strategy is determined solely by the values of the time

stamps but not the number of images in each image block, i.e.,

|c(s)|. Motivated by this observation, following the same flow

of arguments, we extend the result of the optimal transmission

schedule to a scenario in which only cameras monitoring the

same scene are possible to transmit together.

Corollary 5. If no two cameras c ∈ c(s) and c′ ∈ c(s′),
s, s′ ∈ S, s �= s′, can transmit simultaneously then in the

optimal solution the images are delivered in ascending order of

their time stamps, and images of an image block are delivered

in the same or consecutive time slots, depending on whether or

not the corresponding cameras can transmit simultaneously.

We can use this result for devising a polynomial-time

algorithm for MVAM instances where all cameras monitoring

the same scene can transmit together.

Corollary 6. Any instance of the MVAM in which only

cameras c ∈ c(s), ∀s ∈ S are capable of transmitting together,

can be solved in polynomial-time.

Proof: To assign the optimal node to each camera, a

similar process as for the TDMA case can be followed. For

each pair of c ∈ C and n ∈ N , since c(s) are able to transmit

together, we calculate the SINR value in which the interference

is the sum of the signals from c(s)\{c}. Then the steps in the

proof of Theorem 2 are used to derive the fog node assignment.

As for the case defined in the corollary, only c(s), ∀s ∈ S, are

compatible sets, i.e., no two cameras c ∈ c(s) and c′ ∈ c(s′),
s, s′ ∈ S, s �= s′, can transmit simultaneously, and thus by

Corollary 5, the optimal schedule follows directly.

Finally, we provide a general optimality condition of the

transmission schedule that applies to all MVAM instances.

Theorem 7. Given a transmission schedule, let us call the

minimum time stamp of the images that are delivered in a

time slot as the slot time stamp. Then for any instance of the

MVAM, there exists an optimal schedule in which the slot time



stamps are non-decreasing.

Proof: The proof is indirect, based on swapping the

transmission of cameras in adjacent time slots, but we omit

the proof due to lack of space.

V. CORRELATED MAXIMUM AGE FIRST (CMAF)

ALGORITHM

Inspired by the above structural results, in what follows we

propose an efficient heuristic algorithm for the MVAM. The

correlated maximum age first (CMAF) algorithm is based on

a decomposition of the MVAM into a camera to node assign-

ment, and for a given assignment it computes a transmission

schedule.

A. Camera-node Assignment Algorithms

The CMAF uses two polynomial-time camera-node as-

signment algorithms. The first algorithm is based on the

observation that in order to obtain the minimum peak age, in

(5), Tci, ∀c ∈ C, i = 1, . . . ,Kc, should be as low as possible.

This can be achieved if as many as possible cameras are active

in each time slot. Therefore, the first algorithm aims at finding

an assignment that maximizes the number of cameras that can

transmit simultaneously.

It is worth noting that different from the classical maximum

link activation problem [14], where only the SINR condition

is considered, to support multi-view processing, a feasible

assignment solution must satisfy (2). In view of this, we

construct the weighted bipartite graph G = (S,N , E). To

create the edge set E of the bipartite graph, we first check

the “feasibility” of connecting each s and n in the graph.

To do so, for each camera-node pair we calculate the SNR

value (i.e., assuming TDMA), and we add an edge connecting

s and n if for all c ∈ c(s) the SNR value exceeds its

respective SINR threshold γc. Next, in order to construct an

assignment solution that maximizes the number of cameras

transmitting simultaneously, we define the weight wsn =∏
c∈c(s) min(1, SINRn(c, C)/γc) for each edge (s, n) ∈ E .

Intuitively, a higher value of wsn implies that more cameras

can be activated simultaneously. Based on the weighted bipar-

tite graph, we construct an assignment by selecting the node

n = argmaxn{wsn, n ∈ N} as the serving node of cameras

c ∈ c(s). Ties are broken by selecting the node with smaller

index. We refer to this algorithm as the SINR-based assignment

algorithm.

The second algorithm is based on the observation that in

the age calculation in (4), or equivalently, in (5b), small

time stamps result in large peak ages. Thus, it is intuitively

preferable to schedule “old” images as soon as possible, and

the assignment should facilitate doing so. Consequently, we

construct an assignment such that cameras containing images

with small time stamps can transmit together. For a given

MVAM instance, we first construct the weighted bipartite

graph G = (S,N , E), as before. For each s ∈ S, we define

the weight w′
s =

τ
τs1

, where τ = mins∈Sτs1. Thus, the weight

is the scaled reciprocal of the minimum time stamp of all

images taken for s. Finally, we update the weight of each

edge (s, n) ∈ E to wsn = w′
swsn. Given G, we construct

the assignment by selecting the maximum weight links, as in

the case of SINR-based assignment. We refer to this as the

age-aware assignment algorithm.

B. Transmission Scheduling Algorithm

Motivated by the structural results in Section IV, to deliver

the images in a timely fashion, the cameras with old images

should be scheduled first. We thus propose a greedy strategy

for the transmission schedule, which in each time slot chooses

a camera group such that the oldest image is delivered together

with as many other images as possible.

The algorithm works as follows. In each time slot, the

camera group is initially empty. The algorithm sorts the

cameras in ascending order of the time stamps of the images

at the head of their FCFS queues, and adds the camera with

the lowest time stamp to the camera group. It then iterates

through the ordered list of cameras, and adds one camera at

a time. In each step, denoted by g ′ the camera group with

the new added camera c′. If SINRn(c, g
′) ≥ γc, ∀c ∈ g ′,

then the camera c′ is kept; otherwise, c′ is removed from the

group. The algorithm schedules the computed camera group

for transmission, after which it continues with the next time

step, until all queues are empty.

C. CMAF Algorithm and its Optimality

The proposed CMAF algorithm uses the SINR-based assign-

ment and age-aware assignment algorithms for computing two

camera-node assignments. For both assignments, it executes

the greedy scheduling algorithm described in Section V-B, and

calculates the obtained maximum peak ages. The algorithm

then chooses the camera-node assignment that results in lower

maximum peak age of information.

We further verify the rationale of the CMAF algorithm by

applying it to the tractable cases identified in Section IV.

Lemma 8. The CMAF algorithm achieves the global optimum

for all MVAM instances defined in Theorems 2 and 3, and in

Corollary 6.

Proof: For the three tractable cases, i.e., MVAM with

compatible C, MVAM with TDMA, and MVAM with com-

patible c(s) only, by construction, both SINR-based assign-

ment and age-aware assignment algorithms provide an opti-

mal camera-node assignment. Together with the transmission

scheduling algorithm, the CMAF gives the same result as the

one we derived in the respective proof of the three theorems.

Hence the conclusion.

VI. NUMERICAL STUDY

A. Network Setting

We consider a camera network monitoring an area of

100 × 100 meters. The network area is divided into 16 sub-

areas, each occupying 25 × 25 meters and consisting of

one scene. The number of cameras that cover one scene is

uniformly chosen on [2, 6]. For each scene s, the cameras

c(s) are uniformly distributed in the respective sub-area. In
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Fig. 2. A sample network with N = 16 nodes and C = 59 cameras.

the network, we deploy N fog nodes, where N ∈ {1, 16},

representing a centralized and a distributed network architec-

ture, respectively. The fog node(s) are located in the geometric

center after splitting the network area into N sub-areas. In

Figure 2, we show the topology of a sample network with

N = 16 nodes and C = 59 cameras.

The transmit power of the cameras and the noise variance

at the fog nodes are uniformly set to 20 dBm and to −100
dBm, respectively. The channel gain follows a distance-based

propagation model with a path loss exponent of 4, Rayleigh

fading, and log-normal shadowing. The SINR threshold γc =
−3 dB. The starting time is t0 = 500. The initial ages as0,

∀s ∈ S, are uniformly distributed in [50, 200]. Each camera

has up to 10 images to be delivered. The time stamps of images

capturing scene s are random integers uniformly distributed in

(t0 − as0, t0). For each setup, 100 instances are generated.

B. Simulation Results

We apply the proposed CMAF algorithm to solve the

MVAM instances. For performance comparison, we define the

baseline solution as the one derived from the centralized net-

work, i.e., N = 1, and following a greedy method of minimum

time scheduling [15], i.e., in each time slot, we select the

camera with maximal number of images left in queue and pair

it with other cameras that it can transmit together with. All

results are normalized by the maximum peak age achieved by

the corresponding baseline solution. In Figure 3, we present

the normalized maximum peak age in form of empirical cu-

mulative distribution functions (CDFs). The numerical results

show that CMAF obtains a significant peak age reduction; for

N = 1 it achieves an average improvement of 12% over the

baseline solution, and for N = 16 the average improvement

is 45%. Overall, the results show that the fog architecture

and the proposed optimized assignment/transmission strategy

result in a synergy that significantly improves the freshness of

information.

VII. CONCLUSIONS

We have considered the joint optimization of serving node

assignment and camera transmission scheduling with respect

to age of information in wireless camera networks with fog

computing. We have extended the age calculation in the pres-

ence of multi-view processing and mathematically formulated

the multi-view age minimization problem. Fundamental results
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Fig. 3. Empirical CDFs of maximum peak ages for networks with N = 1, 16.

including problem complexity, tractable cases, and optimal-

ity condition have been derived. An optimization algorithm

based on a modular structure has been proposed to solve the

problem in polynomial time. Our numerical results show that

the optimal assignment and transmission strategy reduces the

maximum peak age significantly compared to the traditional

centralized approach. Our work has a number of interesting

potential extensions, including balancing the number of cam-

eras being served by one fog node and optimizing the length

of a scheduling cycle.
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