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Abstract—Efficient communication and computing resource
allocation is becoming a fundamental issue in wireless networks.
Efficiency is most often defined in terms of throughput, utiliza-
tion and spectral efficiency, while the required computational
effort is often overlooked. In this paper, we focus on efficient
and computationally lightweight downlink scheduling, and we
propose a semi-persistent scheduler based on adaptive short
term traffic prediction. We evaluate the performance of the
proposed scheduler in terms of throughput, fairness, latency,
and scheduling complexity. Our numerical results show that
scheduling with prediction is a promising approach in improving
network performance. The proposed semi-persistent scheduler
performs equally well in terms of throughput, fairness, and
latency as traditional proportional-fair scheduling, but at a
significantly reduced computational cost.

Index Terms—Scheduling, traffic prediction, wireless networks

I. INTRODUCTION

Efficient use of spectrum and computational resources is be-

coming increasingly important in the design of future mobile

networks, so as to cope with increasing traffic demands despite

limited spectrum availability and computational capability. A

fundamental solution for achieving efficiency is scheduling,

which in general refers to processes that determine the amount

of wireless resources that are allocated to each user. The re-

sulting schedule typically depends on many factors including

channel conditions, interference, data rates, delay, and buffer

status, and is chosen so as to optimize performance criteria,

such as throughput, fairness, energy consumption, or their

combination.

Cellular wireless networks employ a variety of schedul-

ing algorithms, including round-robin (RR), proportional fair

(PF) [1], and semi-persistent scheduling (SPS) [2]. RR is

a simple scheduling algorithm following the time division

multiple access (TDMA) scheme, and schedules users one-

by-one in a cyclic order. RR gives equal opportunity to the

users to transmit and thus it ensures fairness, but it may result

in poor overall throughput. PF is a widely used dynamic

scheduler that balances between total network throughput and

fairness. A PF scheduler usually operates on a per transmis-

sion time interval (TTI) basis. Such a dynamic scheduler can

adapt to fast changing channel conditions, but it comes with

high computational cost and control signaling overhead [2].

SPS was initially designed for uplink scheduling for voice

over Internet Protocol (VoIP) [3]. The principle of SPS is

to allocate radio resources to a user for multiple consecutive

TTIs, and thus reducing the computational cost and control

signaling overhead. In comparison to dynamic scheduling,

SPS is more computationally efficient. Nonetheless, the major

drawback of SPS is that it may not be able to adjust the

scheduling decision promptly enough, to accommodate time-

varying traffic demands.

Although SPS was originally proposed for improving uplink

scheduling performance for VoIP, we argue that it could

effectively be used for reducing the computational cost and

the control channel overhead for downlink scheduling as

well. In this paper we propose a novel predictive semi-

persistent scheduler that is computationally efficient and at

the same time achieves high throughput, fairness and low

latency. The proposed semi-persistent downlink scheduler pre-

allocates radio resources to mobile users based on a short-

term prediction of arriving traffic over multiple TTIs. We

propose two priority functions that take into consideration

the instantaneous channel conditions, historical data rates,

the buffer occupancy and the predicted traffic to assign a

scheduling priority to each user. We evaluate the proposed

predictive SPS algorithms by simulations, and our results show

that the SPS scheduler achieves equally good performance

as a dynamic PF scheduler, but at a significantly reduced

computational cost.

The rest of the paper is organized as follows. In Section II

we review the related work for wireless network scheduling.

In Section III we define the scheduling problem and propose

the SPS algorithm. In Section IV we design the priority

functions. In Section V we introduce the traffic predictor and

the proposed architecture of the scheduler, following with

performance evaluation in Section VI. Finally, we summarize

the findings and discuss potential extensions in Section VII.

II. RELATED WORK

The scheduling problem in wireless systems has been

studied extensively in the past (see for example [1], [4], [5]

for a detailed exposition). The early works starting in the

1980s adopted network-level approaches with various medium

access control (MAC) protocols that are proposed to achieve

better throughput [6], [7]. Under the so called protocol model,

the interference among links is described by a conflict graph,



where a transmission is successful if no adjacent node of the

receiver is active. To solve the scheduling problem, graph-

based algorithms employing implicit or explicit coloring strate-

gies were widely used (e.g., [8], [9]). Later on, the scheduling

problem was studied under the interference model, which

couples the MAC with the physical layer and leads to a cross-

layer view of transmission rate and access control [10]. This

approach incorporates the effect of power control and channel

conditions on the achievable transmission rates. Furthermore,

existing results indicate that it is possible to integrate the

problems of routing, scheduling, and physical layer effects

leading to structural results such as the back-pressure algo-

rithm [11]. The scheduling problem under the interference

model has been proved to be NP-hard with arbitrary gain

and with geometry-based gain, in [12] and [13], respectively.

A variety of scheduling protocols and algorithms have been

proposed to various wireless systems.

SPS was originally designed to reduce the control channel

overhead for VoIP based services in the uplink of LTE

networks [3]. The core idea of SPS is to significantly reduce

heavy load on physical downlink control channel (PDCCH) by

doing minimum downlink assignment and uplink grant. There

are different approaches to SPS and algorithmic variations in

the related work. For instance, in [14] a predictive SPS scheme

that takes advantage of transmission history is proposed to

effectively reduce the uplink latency of LTE systems. In [15],

the authors designed an adaptive SPS algorithm for Machine-

to-Machine (M2M) communications by utilizing the device

buffer information. Since SPS allocates radio resources for

a longer period of time, a good prediction on the incoming

traffic is of critical importance. In addition, SPS can be

improved if channel prediction is available [16], [17]. We

remark that the channel prediction itself is a challenging

task and here we focus on how to improve the efficiency of

scheduling by traffic prediction. Compared to existing works

that focus mostly on uplink scheduling and channel prediction,

in this paper we investigate the potential of SPS for the cellular

downlink, by proposing traffic prediction-aware extensions of

the widely-used PF scheduler.

III. SEMI-PERSISTENT DOWNLINK SCHEDULING

We consider a cellular downlink serving N user equipments

(UE) over a number C of subcarriers. Let us denote by

C the set of the subcarriers and N the set of users. The

traditional scheduling problem is to decide in each TTI the

subset of UEs that should transmit, and the subcarrier they

should use for transmission. The selection of UEs could be

done based on a user priority function P, which is used for

computing the scheduling priority of each UE. Unlike for

dynamic scheduling, where the user priority Pn for user n

is computed in each TTI, in SPS a scheduler can allocate

radio resources for a sequence of TTIs. Let us denote by m

the number of TTIs over which a scheduling decision will

be made persistent. We denote by CS the set of subcarriers

for which SPS is used, and by C′ = |CS | ≤ C the number

of such subcarriers. Without loss of generality, we index

Algorithm 1 Prediction-based Downlink SPS

Input: N, C, CS, CD, m, P, Bn(t0)

Output: US(t), UD(t)

1: t ← t0, Ca
S
← CS , U ′

S
(t) ← ∅, U ′′

S
(t) ← ∅, UD(t) ← ∅

2: U ← {n ∈ N : Bn(t) , 0} \U ′
S
(t)

3: Compute Pn, ∀n ∈ U, and sort U in the descending order

of Pn

4: U ′′
S
(t)i ← Ui , i = 1, 2, . . . , |Ca

S
|

5: UD(t)j ← Uj+ |Ca

S
|, j = 1, 2, . . . , |CD |

6: US(t) ← U ′
S
(t) ∪U ′′

S
(t), m(n) ← m, ∀n ∈ U ′′

S
(t)

7: U ′
S
(t + 1) ← US(t), U ′′

S
(t + 1) ← ∅

8: t ← t + 1, m(n) ← m(n) − 1, ∀n ∈ U ′
S
(t)

9: Update Bn(t), ∀n ∈ N

10: for n ∈ U ′
S
(t) do

11: if m(n) = 0 or Bn(t) = 0 then

12: U ′
S
(t) ← U ′

S
(t) \ {n}; update Ca

S

13: repeat lines 2-12 until t = T

14: return US(t), UD(t)

by {1, 2, . . . ,C′} the subcarriers using SPS. The subcarriers

C′ + 1, . . . ,C may employ dynamic scheduling in order to

maintain a good service quality for users in fast changing

environments. We define CD = C \ CS to be the set of such

subcarriers.

The proposed SPS algorithm then works as follows. Upon

every TTI the algorithm updates the set U ⊆ {1, 2, . . . , N} of

users requiring radio resources. The set U contains users that

have data to transmit and are not currently assigned to any

of the subcarriers CS . It then updates the set of subcarriers

Ca
= Ca

S
∪ CD that can be assigned, where Ca

S
⊆ CS is the

set of subcarriers for which SPS is used but are not assigned.

The algorithm then calculates the user priority for each user

u ∈ U, using one of the user priority functions presented in

Section IV. Based on the scheduling priority of each user,

the SPS algorithm allocates the |Ca
S
| highest ranked users to

subcarriers Ca
S

for m TTIs, and the next |CD | highest ranked

users to subcarriers CD for a single TTI. A user u that was

scheduled semi-persistently to a subcarrier c ∈ CS but has

no data to transmit at the end of a TTI is removed from the

subcarrier, and c is added to Ca
S

.

In Algorithm 1 we show the pseudo-code of the proposed

scheduling algorithm. In the pseudo-code we denote by US(t)

the set of users being persistently scheduled in the tth TTI,

by UD(t) the users dynamically scheduled in the tth TTI, and

by Bn(t) the backlogged data of UE n.

IV. PREDICTIVE USER PRIORITY FUNCTIONS

We now propose two predictive user priority functions

for SPS. We start the exposition with the widely used PF

scheduler for cellular downlink scheduling, which maintains

a balance between two competing objectives: maximizing total

throughput of the network and throughput fairness.



A. Proportional Fair Priority Function

The user priority computed by the PF scheduler is inversely

proportional to the anticipated resource consumption of the

user [18], and is computed for UEs for which there is data to

be transmitted as

Pn =
Tα
n

R
β
n

, (1)

where Tn denotes the estimated achievable data rate of UE n

in the present time slot, and Rn is the past average data rate for

UE n computed over a so called latency window, whose length

tc is related to the maximum time that a user can be starved.

The parameters 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 can be used to trade-

off between throughput and fairness. In particular, a high value

of α would result in serving the UE with the best channel

conditions more often and maximize throughput, while a high

value of β would lead to serving the UE with poor channel

condition often enough so that they would have an acceptable

average rate.

Clearly, PF scheduling does not take into consideration

future traffic arrivals and user buffer occupancy. In fact,

the scheduling algorithm makes the assumption that there is

always sufficient backlogged data in the user buffer and the

buffer size is unlimited. As currently video accounts for more

than 80% of global internet traffic [19], the downlink traffic

is likely to be very bursty. Burstiness, in turn could result in

significant delays when the user priority (1) is low. Motivated

by the above, in what follows we propose two novel priority

functions that take into account the predicted traffic arrival

and buffer size.

B. Backlog-stable Predictive Priority Function

The first priority function introduces a multiplicative term

that captures the ratio of the backlog at the end of the

prediction interval and the average past backlog of the user,

PB
n =

Tα
n

R
β
n

(

An + Bn

B̄n

)γ

, (2)

where An is the predicted amount of data that will arrive in

the next m TTIs to UE n, and Bn is the amount of buffered

data for UE n in the current TTI. Thus, the numerator An+Bn

corresponds to the expected backlog after m TTIs if this user

is not scheduled. B̄n is the average past buffer size for the UE

computed based on a sliding window, similar to Rn. Finally,

γ is a tuning parameter. We refer to the SPS algorithm using

the priority function defined in (2) as SPS-I.

The scheduler can be tuned by adjusting the values of α, β,

and 0 ≤ γ ≤ 1. Clearly, for γ = 0 the priority function is the

same as (1). On the contrary, for α = β = 0 the scheduler

ignores the instantaneous rate and the channel conditions,

and the UE’s scheduling priority will solely depend on the

incoming traffic and buffer size, akin to longest-queue-first

scheduling.

Figure 1. The meta-learning scheme used for short-term traffic prediction.
The master policy uses reinforcement learning for choosing the sub-policy
that is expected to predict most accurately for the next time interval [20].

C. Rate-stable Predictive Priority Function

The second priority function is inspired by the idea of “rate

stability", i.e., in order for the user backlogs to be stable, the

amount of buffered data during the scheduling period should

not vary too much. The priority of UE n is thus computed as

PR
n =

Tα
n

R
β
n

(

An

R′nτ

)γ

, (3)

where R′n is the predicted average rate over the next τ amount

of time, where τ is the time length for which the scheduling

decision will be executed (i.e., m TTIs in the considered SPS).

We refer to the SPS algorithm using the priority function

defined in (3) as SPS-II.

The scheduler can be tuned by adjusting the values of α,

β, and 0 ≤ γ ≤ 1. Unlike the backlog-stable priority function

above, for α = β = 0 the UE’s scheduling priority will depend

on the relationship between the arriving traffic and the traffic

that is expected to be served based on the predicted average

rate.

V. SCHEDULING WITH TRAFFIC PREDICTION

Network traffic prediction is known to be challenging,

especially at the level of individual users over short periods of

time, because the traffic characteristics emerge from a complex

interaction of the user behavior and various application layer

protocols. Motivated by recent works on robust adversarial

learning, in [20] we propose a meta-learning scheme that

enables the design of an adaptive traffic predictor. The meta-

learning scheme consists of a set of sub-policies, each opti-

mized to predict a particular kind of traffic, and of a master

policy that is trained for choosing the best fit predictor

dynamically based on recent prediction performance, using

deep reinforcement learning.

Fig. 1 shows the meta-learning scheme, where a deep Q-

network (DQN) agent is trained as the master policy and

seven sub-policies are employed. Based on the internet traffic

analysis reported in [19], we categorize network traffic into

four types, namely long dynamic adaptive streaming over

HTTP (DASH), short DASH, live video, and non-video. For



each kind of traffic, we train a predictor using a long short-

term memory (LSTM) neural network, and thus obtaining

the first four sub-polices in the meta-learning scheme [21].

Besides that, we introduced three computationally inexpensive

predictors: persistence model forecast (PMF), zero predictor

(ZP), and average value predictor (AVP). PMF assumes the

time series is persistent, and hence it uses the last observed

value as the prediction. ZP outputs a constant value of zero

and is expected to be used during idle periods. AVP outputs

the average number of bytes that arrived during the last pre-

defined period. Further details about the meta-learning scheme

are provided in [20].

We evaluated the proposed meta-learning scheme on a

variety of traffic traces consisting of video and non-video

traffic. Our results show that it consistently achieves a high pre-

diction accuracy despite changing traffic characteristics [20].

Therefore, in this study we integrate the predictor with the

scheduler, as illustrated in Fig. 2, such that the predictions of

the incoming traffic can be utilized to make proper scheduling

decisions.

Figure 2. Block diagram of predictive semi-persistent scheduler.

VI. PERFORMANCE EVALUATION

In this section we evaluate the proposed scheduling algo-

rithm through simulations. We first describe the simulation

methodology, and then we provide numerical results.

A. Simulation Methodology

We consider a cellular network with 20 users uniformly

distributed in its serving area, as shown in Fig. 3. The inter-

site distance is 500 m. The network has two channels with 0.7

MHz bandwidth each. The transmit power for downlink is 30

dBm and the noise power is set to -100 dBm for all users. The

channel gain is modeled as the composite effect of path loss

with exponent 4, Rayleigh fading and log-normal shadowing

with standard deviation of 8 dB [22].

Figure 3. Cellular network topology.

Figure 4. Data traffic per TTI arriving to User 1

In the considered system we set the TTI length to 1ms

and calculate the scheduling solution over a period of 5

minutes (300000 TTIs). The initial backlog of each user is

uniformly set to be 10000 bytes, and buffers are considered

to be unlimited. The incoming traffic of each user is generated

based on traffic traces collected using Wireshark, and consists

of short video, long video, live video and web traffic. Thus, the

simulation is trace-based. For most of the users the incoming

traffic is dominated by video data and is thus highly bursty. As

an example, we show the data traffic to User 1 in Fig. 4. The

arriving traffic of the 20 users during the scheduling period

ranges from 8.6 MB to 28.3 MB, with an average of 15.1 MB.

To evaluate the scheduling solutions, we consider user-

level and network-level performance metrics. For user-level

performance we calculate the per-user throughput, the per-user

delay, and the number of occupied slots. For network-level

performance we consider the sum throughput, the average of

the per-user delay, channel utilization, and computational cost,

which is defined as the number of scheduling decisions that

are made by the scheduler during the given time period. In

addition, we consider Jain’s fairness index computed based

on the number of active slots of each user (Fairness-I), and

Jain’s fairness index computed based on the per-user delay

(Fairness-II). Simulations and result analyses are done using

Python and Matlab.

B. Performance Evaluation

We apply SPS in the first channel and set m = 100 TTIs. In

the second channel, a dynamic PF scheduler operating on a per

TTI basis is employed. The reason of doing so is to achieve a

computationally efficient scheduling solution and meanwhile

to maintain a good service quality for users in fast changing

environments. We test the proposed scheduling algorithms

SPS-I (using the backlog-stable predictive priority function)

and SPS-II (using the rate-stable predictive priority function),

respectively. In both priority functions we set the parameters

α = β = γ = 1, and a latency window of tc = 100. The

incoming traffic is predicted by our proposed meta-learning

scheme, as discussed in Section V. In order to evaluate how

the prediction accuracy will impact the scheduling solution,



Figure 5. Network throughput, delay, fairness and computational cost for
PF-base, SPS-I with true info, SPS-I with prediction, SPS-I w/o prediction,
SPS-II with true info, and SPS-II with prediction.

we also run the test of the two scheduling algorithms with the

true value of incoming traffic, which provides an upper bound

of the scheduling performance. In addition, we test the case

when SPS-I has no information of the arrivals, that is, in the

priority function defined in (2), An is set to zero. We run all

the tests and compare the scheduling solutions with the case

where dynamic PF is used for both channels. Due to the page

limit, in Table I we only show the network-level results of the

two channels.

To ease comparison, we set the scheduling solution obtained

by applying dynamic PF in both channels as the baseline (PF-

base), and show the normalized results of the network-level

throughput, delay, and fairness of the six schedulers in Fig. 5.

Note that here we show results for Fairness-II, because users

may have an empty buffer during the scheduling period due to

the bursty nature of traffic, and hence comparing the number

of active slots of each user may not lead to a reasonable result

in terms of fairness. For the metric of delay, a higher value

implies longer delay and hence worse performance.

Fig. 5 allows us to make a number of important observa-

tions. First, for the three classic performance metrics, i.e.,

throughput, delay, and fairness, both SPS-I with true and

predicted traffic information achieve comparable performance

as the baseline solution. Comparing to the two SPS-I sched-

ulers, SPS-II schedulers perform worse in all three metrics,

especially in the average delay. The observation implies that

in the priority function the current buffer size Bn should be

considered. In addition, in the rate-stable predictive priority

function (3) the value of R′n is estimated by the average

historical rate, which may lead to inaccurate result if the

channel conditions change fast. Secondly, we observe that the

corresponding results of SPS-I without prediction information

are clearly worse than those of SPS-I with prediction, indi-

cating that traffic prediction could contribute to computing an

effective scheduling solution.

Next, we focus on the performance evaluation on SPS-I.

To this end, we further investigate the results of SPS-I with

true and predicted traffic information in Fig. 6, which shows

the empirical cumulative distribution functions (CDFs) of the

(a) CDF of throughput in each TTI

(b) CDF of user delay

(c) CDF of number of occupied slots

Figure 6. Scheduling performance obtained using PF-base, SPS-True, and
SPS-prediction.

network throughput in each TTI, the delay of each user, and

the number of occupied slots by each user.

Observing from Fig. 5 and Fig. 6, the throughput of PF-base

is slightly better than that of the two SPS-I schedulers, but the

difference is negligible. PF-base performs better than SPS-I

with true or predicted traffic information in terms of delay,

with a difference of less than 10%. Considering the fact that

PF-base dynamically adjusts its decision in every TTI, while

SPS-I is expected to do that in every 100 TTIs (unless the

buffer of the active user becomes empty), the performance

of SPS is rather satisfactory. Moreover, SPS provides more

“fair" treatment to each user in transmission delay than the

baseline solution does. Notable in Fig. 5 is the comparison

of computational cost, by employing SPS in one channel, the

computational cost of the two channels decreases almost by

a factor of two, meaning that we can free up a consider-

able amount of computational resources for other purposes.

The result of computational cost also gives information on

the actual number of TTIs that SPS schedules. Using SPS-



Table I
Network Performance of dynamic PF, SPS-I with and w/o traffic information, and SPS-II with traffic information

Scheduler Throughput (MB/s) Delay (s) Fairness-I Fairness-II Channel Computational

Utilization Cost

Dynamic PF 1.2164 1.0423 0.89 0.81 0.65 600000

SPS-I with true info 1.2074 1.1405 0.88 0.85 0.67 303751

SPS-I with prediction 1.2073 1.1423 0.88 0.85 0.67 303745

SPS-I w/o prediction 1.2072 1.1561 0.88 0.85 0.67 303780

SPS-II with true info 1.1809 1.2453 0.88 0.82 0.66 303765

SPS-II with prediction 1.1807 1.2472 0.88 0.82 0.66 303792

I with true traffic arrival information, the scheduler made

3751 scheduling decisions for 300000 TTIs, so the average

persistence time of each scheduling decision is around 80

TTIs. For SPS with prediction, the average is almost the same,

80 TTIs. For the three CDFs shown in Fig. 6, we observe that

the green curve (SPS-I Prediction) almost overlaps with the

pink one (SPS-I True), implying that the proposed SPS scheme

is reasonably resilient to noisy predictions. Overall, the results

indicate that the proposed SPS-I performs well and it could

be a promising approach for efficient downlink scheduling in

cellular networks.

VII. CONCLUSIONS AND OUTLOOK

We have proposed a semi-persistent downlink scheduler

integrating with an adaptive traffic predictor so as to efficiently

compute an effective scheduling solution. We have proposed

novel user priority functions that account for the predicted in-

coming traffic per user and the user buffer occupancy. We have

evaluated the proposed scheduling algorithms by simulations.

The numerical results show that the semi-persistent scheduler

performs well at a significantly reduced computational cost in

comparison to a dynamic scheduler. Overall, our results show

that combined with computationally efficient traffic predictors,

e.g., in tensor processing unit (TPU) hardware, prediction-

aware semi-persistent scheduling could reduce the compu-

tational burden for downlink scheduling without affecting

throughput and fairness.

We remark that both the scheduler and the predictor have

high potential to be further improved or to be tailored for

specific applications/services. Moreover, it would be of inter-

est to investigate the optimal length that a scheduling decision

should be persistent, and the number of subcarriers that should

be used for SPS. An additional promising direction for future

research could be to investigate scheduling schemes based

on predicted channel conditions, while also considering the

buffered data and the predicted data arrivals.
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