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Abstract—The serverless computing paradigm has transformed
cloud service deployment by enabling automatic scaling of
resources in response to varying demand. Building on this,
stateful serverless computing introduces critical capabilities for
data management, fault tolerance, and consistency, which are
particularly relevant in the context of distributed deployments,
notably in edge computing environments. In this work, we
explore the feasibility of stateful serverless computing in resource-
limited edge environments through an empirical study utilizing
a multi-view object tracking application. Our results show
that while these systems perform well in cloud environments,
their effectiveness is severely affected at the edge due to state,
application, and resource management solutions optimized for
cloud environments. Existing solutions are most detrimental to
applications with intermittent workloads, as typical combinations
of concurrency handling and resource reservation can lead to
minutes of unstable system behavior due to cold starts. Our
results highlight the need for a tailored approach in stateful
serverless systems for edge computing scenarios.

Index Terms—Distributed computing, Edge Computing, Fog
computing

I. INTRODUCTION

Serverless computing emerged out of cloud computing in
the last decade, offering a programming interface to cloud
users that replaces virtual machines with short-lived function
instances, and is often referred to as Function-as-a-Service
(FaaS). Serverless platforms today provide tools to compose
cloud applications out of FaaS-deployed functions. The two
major advantages of serverless computing include autoscaling
to fluctuating workloads and a pay-as-you-go pricing model,
i.e., a pricing strategy purely based on usage rather than
uptime. This eliminates the need for pre-allocated compute
capacity or dedicated infrastructure and may lead to signifi-
cant cost savings [1]. Recently, serverless platforms expanded
their capabilities to manage application state natively, in
addition to compute resources, in the serverless model [2],
hence, automating scalability, isolation, and fault-tolerance
when managing applications that use persistent state. This
has greatly expanded the usability and potential of employing
such systems to build general-purpose complex and distributed
applications.

Flexibility, scalability and fault tolerance make stateful
serverless computing a promising service abstraction for edge
computing deployments, where workloads are often dynamic
and require reliable and timely processing. Existing studies on
stateful serverless at the edge have primarily focused on the
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Fig. 1. An overview of MVOT application

geographical distribution of state and computations [3], [4],
and rely either on analytical models, simulations, or modified
solutions for state management that are made locality and
workload aware [5]. It is, however, unclear how cloud-native
serverless frameworks perform under resource constraints,
including limited memory, storage, and computing capacity,
typical of edge deployments.
Motivating example: As a representative example of stateful
serverless at the edge, we consider multi-view 3D object
tracking (MVOT). The use case is of high relevance to today’s
emerging requirements in wireless on-demand services and ad-
dresses modern needs in manufacturing, smart infrastructure,
and smart cities, with the latter being piloted in large cities
for monitoring, security, and traffic management [6].

In MVOT multiple cameras capture parts of a scene from
different angles and the objective is to produce a live 3D
model of moving objects (e.g., pedestrians or cars) across
all input video feeds. Computation must keep up with the
frame rate of the cameras, and, achieving low end-to-end
latency is crucial for applications consuming the 3D model.
Figure 1 illustrates how such an application may be composed
using two functions, one stateless parallelizable task, and one
stateful aggregation. The application may benefit from scale
out over compute resources since different camera feeds can
be pre-processed independently of each other and later be
aggregated together. Conversely, during periods of no activity,
the application is expected to scale down or halt its operation
and release edge resources, such that they may be used by
other applications. Aggregating the live feed for tracking is
a stateful computation, i.e., at each aggregation step, the
preceding computational state must be used together with
the set of new data. The state of the aggregation should be
managed and stored reliably, allowing the computation to



migrate seamlessly across available physical resources and
the system to maintain optimal performance and resource
utilization. The MVOT application is representative of various
latency-sensitive sensor data applications with the following
characteristics: independent pre-processing of events using ML
inference, information fusion, and in-order aggregation.

Ideally, an edge deployment of the application would
combine the elasticity and simplicity of common serverless
cloud platforms, with low-latency, localized computing at the
edge. To that end, we present Cliffhanger, an experimental
evaluation study to identify performance characteristics show-
casing the limitations of existing serverless software in edge
deployments. We make use of the MVOT workload as a mini-
benchmark and evaluate the performance impact of key config-
uration parameters related to edge serverless resource manage-
ment. These include concurrency provisioning (parallelism),
reserved compute resources per instance (vCPUs), and state
configuration mode (externally vs internally managed state).
We assess the capabilities of existing serverless frameworks
and discuss challenges, establishing a basis for future research
toward realizing performant stateful serverless at the edge.
Our main contributions are as follows:

• We analyze existing studies in stateful serverless and
identify the need for a comprehensive performance eval-
uation of existing cloud serverless software at the service
of edge application needs, with a focus on constrained
resources (section II).

• We identify a set of key configuration parameters and
deployment options for stateful serverless at the edge and
construct a set of experiments based on a representative
edge application, focusing on end-to-end latency and
resource utilization (section III).

• We present a thorough analysis of the results revealing
the importance of previously overlooked aspects related
to local optimizations for stateful edge serverless such as
resource sharing, rate limiting, and batching (section IV).

• We discuss the implications of the results with regards
to future stateful serverless systems for the edge, and in
relation to related work in the wider context of serverless
computing (section V).

II. BACKGROUND

A. System Architectures for Stateful Serverless

We consider stateful serverless as a combination of three
components: application orchestration, state management, and
compute management. The application layer deals with I/O
to external systems, and orchestrations of functions (also
called workflows). The state layer manages the persistence and
consistency of the state. The compute layer is where the actual
physical computation occurs. In any stateful serverless system
delivering strong guarantees on the semantics of state updates
and function invocations (e.g. exactly-once processing) state-
and application- management are intimately intertwined.

Existing stateful serverless systems can be broadly divided
into two categories: (1) On-top-of serverless, and (2) Self-
contained. On-top-of serverless systems (e.g., Flink Statefun

[7] and Kappa [8]) orchestrate stateful applications on top
of serverless systems, effectively only managing the State
and Application-level of the deployment, while relying on
an independent deployment of a FaaS-system to manage the
Compute resources. Self-contained stateful serverless systems
(e.g. Durable Functions [9] and Cloudburst [10]) manage
all three layers, enabling joint optimizations and physical
colocation of state and compute, at the cost of greater system
complexity.

B. Related Work

Surveying existing systems: Raith, Nastic and Dustdar [11]
conducted a survey of 45 existing frameworks for serverless
at the edge from both industry and academia. The survey
provides a comprehensive overview of the state of serverless
edge computing frameworks and assesses the maturity levels,
revealing that many current solutions lack sophistication in
terms of performance and infrastructure optimization.
Workload placement at the edge: Cicconetti, Conti, and
Passarella [4] explore the topic of stateful serverless at the
edge, evaluating different state management strategies. They
show that by keeping the state local and, more importantly,
minimizing state propagation over the network, stateful server-
less edge systems can improve application latencies and reduce
traffic volumes. On the same note, Xu et al. [3] present effi-
cient algorithms for optimal serverless application placements
in edge computing, their final algorithm uses online learning
which performs application placements reactively. Through
simulations comparing their algorithm to naive counterparts,
they find that they can reduce the total cost by 32% and achieve
a 27% average reduction in latency by optimizing function
placements on distributed resources.
Resource utilization in the cloud: While the aforemen-
tioned workload placement strategies demonstrate significant
improvements in serverless applications, yielding up to a
32% reduction in total cost and a 27% average reduction in
latency, these approaches predominantly focus on high-level
optimizations for geographically distributed resources and
workloads. In contrast, Li et al. [12] show that performance-
aware resource-efficient scheduling in cloud-serverless sys-
tems can reduce costs by 42%. Their solution optimizes
CPU utilization per instance by using SLO-aware scheduling
on top of an external FaaS system, emphasizing detailed
resource management at the server level. This distinction is
crucial; while optimization strategies focusing on geographical
distribution provide a broad framework for efficiency, the
detailed, resource-efficient scheduling techniques by Li et al.
delve deeper into the fine-grained aspects of serverless system
performance and achieve a 42% reduction in operational costs.
This suggests that while geographical distribution strategies
lay a solid foundation for efficiency, integrating them with
detailed, resource-specific scheduling could further enhance
the performance and cost-effectiveness of stateful serverless
systems at the edge.

Edge environments, unlike cloud deployments, are inher-
ently resource-constrained, and utilization of the edge re-



sources is crucial. Recognizing this, our research aims to
complement existing studies by identifying the implications
of applying state-of-the-art cloud-tailored stateful serverless
technologies in environments with severe resource limitations.
The subsequent section outlines our methodology, which in-
cludes a series of experiments designed to rigorously evaluate
various stateful serverless configurations and approaches.

III. EVALUATION METHODOLOGY

In this section, we present five experiments based on a
prototype of the motivating example application. The structure
of this section is as follows: III-A details how the application is
implemented and deployed using a stateful serverless system.
III-B describes the five different experiments we conduct
using the application. III-C describes the different state and
application management approaches we compare, and finally
III-D details the different stateful serverless configuration
options compared using the experiments.

A. Implementation

Our evaluation scenarios have been built based on the
MVOT application described in the introduction. We imple-
mented all functions entailed in multi-view object tracking
(pre-processing/detection, aggregation into live 3D view) using
a combination of cloud serverless library configurations. We
further generated an input workload from a public dataset
consisting of 7 camera feeds [13]. In this section, we detail
the design choices, configurations and metrics used.

1) Application Description: For an extended description of
MVOT application we refer to the original paper [14]. In short,
the approach is based on pre-trained object-detection models
like YOLO [15] to detect objects in each frame individually.
Subsequently, the full set of detections at each time step are
aggregated using recursive Bayesian inference.

The approach conveniently maps to two distinct functions,
first a highly parallelized stateless pre-processing of each
frame using ML inference, followed by a stateful aggregation,
conceptually illustrated in Figure 1. At the moment of writing
no practical implementations of such an aggregator exist, and
the authors report a per-frame processing time of up to 20
seconds for their unoptimized prototype. Attempting to actu-
ally deploy a real implementation would immediately restrict
the experiment to be a benchmark of the specific Bayesian
aggregation implementation. Instead, we replace the Bayesian
aggregator with a simple operator which we call aggregator.
The aggregator in our experiment receives detections, which
it stores as its state and once all detections for a timestep have
been received it outputs that set of detections, in order, and
evicts the set from its state, preventing the state from ever
growing too large. In the last experiment we present, we use a
modified version of the aggregator which retains all detections
indefinitely, causing its state to continuously increase in size.

2) Experiment execution: The experiment uses 2-primary
services which together form a stateful serverless system:
Flink Statefun (v3.2.0) for state and application orchestration
and Knative for serverless resource management (v1.10.0),

both deployed on the same server using Kubernetes. We use
an experiment-runner written in Python which runs natively on
the same host server. The runner reads image files produced
from seven video files corresponding to seven cameras, sends
the frames as separate events at a given FPS, and records the
send time for each frame. The application manager consumes
the frames in the order they were written and invokes the
detection function. The serverless resource manager receives
the detection invocations and dispatches them to an available
function instance (or spawns a new instance). The function
instance executes the detection function and returns the result
to the application manager, which then invokes the aggregator
with the new detection as an argument, and includes the
current state of the aggregator as a second argument, with each
invocation. If any aggregations were completed during the
invocation (note that each aggregation requires 7 detections)
the result is returned to the application manager, which finally
returns the result to the experiment runner.

B. Experiments

We create 5 different experiments, all based on the same
object-tracking application. For each experiment, we employ
a different subset of configurations focusing on different key
aspects of stateful serverless performance at the edge.

1) The Provisioned Concurrency experiment establishes
stable performance using a static number of pre-
provisioned serverless instances, comparing the perfor-
mance impact of different stateful serverless configuration
options when operating near the maximum throughput.

2) The State and application management experiment
compares different state-management and application-
orchestration methods when operating safely below the
maximum sustainable throughput, using identical server-
less configuration options.

3) The No Provisioned Concurrency experiment compares
scale-up time using different configuration options.

4) The Minimum Overhead experiment uses a modified
detection function and workload, causing the system to
be throughput-limited by the aggregator function.

5) The State size experiment uses a modified aggregator
function such that its state grows linearly over time,
allowing us to see how different state management ap-
proaches are affected by state size.

C. State and Application Management Approaches

Stateful serverless is realized by three main components:
Application management, state management and resource
management. In all our experiments we use Knative Serving
for resource management, which receives HTTP requests from
the application manager, and scales or load balances the
function instances accordingly. Application management ties
the functions together, i.e. ensuring that the output of the
detection function is forwarded to the aggregator function,
and communicating with external systems, i.e. the experiment
runner. State management entails where and how the state is
managed. In our experiments, we compare a total of 5 different
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variants realizing stateful serverless, illustrated in Figure 2,
from left to right:

1) Internally managed state (abbreviated as Internal
henceforth): The application manager manages both the
application and the state.

2) Externally managed state (External): We move the
state out of the application manager and instead let the
aggregator read and update its state from external storage1

each time it processes an event.
3) Externally managed state (batched) (External

(batched)): When the function handler receives a
batch of events it immediately reads the state from
storage before processing the batch, and writes the final
state after processing the entire batch.

4) Unmanaged state (Unmanaged): We let the state reside
entirely within the memory of the single function instance
serving the aggregator function, sacrificing fault tolerance
and durability.

5) Unmanaged state (Knative) (Knative): We replace the
application manager used in the preceding variants (Flink
Statefun) with Knative Eventing, and leave the state
unmanaged (no fault tolerance and durability).

D. Serverless Resource Configuration

Along with comparing different application and state man-
agement methods, we also consider various combinations of
three commonly used resource configuration options for the
serverless deployment of the functions. We examine these
parameters using only the internally managed state variant.

1) Reserved/Unreserved Resources: Cloud providers offer-
ing serverless always reserve both vCPU and memory for
function instances, forcing the serverless users to select an
instance type from a set of predefined instance sizes. However,
setting up our own serverless platform using Kubernetes (and
Knative) allows us to skip reserving vCPUs per function
instance. Note that reserving a vCPU for a function instance
implies that the instance has guaranteed access to the reserved

1We use MinIO for storage, an open-source S3 compatible object store.

amount, but it is also confined to what has been reserved for
it. Without reservation, the different function instances share
the available processing capacity, and the detection function
within each instance may utilize parallelized execution for
faster inference. In our experiments, up to 60 instances can
reserve 1 vCPU each.

2) Dedicated/Shared Instances: Stateful application man-
agers built on-top-of serverless, such as Flink Statefun, require
that the serverless functions are instrumented for the stateful
library. For simplicity, we implement both the aggregator
and the detection functions within the same Python file and
construct the same function image. In the dedicated instances
configurations, we deploy this identical function image twice,
as two different serverless Functions, with separate configura-
tions that are scaled independently of each other.

With shared instances, we deploy a single serverless func-
tion, with a single configuration. Effectively, all invocations
received by the resource manager are identical black-box
invocations, and the invocations for the two different functions
share the same queue outside of the application manager.

3) Minimum/Maximum Concurrency: All FaaS frameworks
permit users to define the minimum number of function
instances to be active at all times to avoid cold start (sometimes
called provisioned concurrency), and the maximum number
of function instances, to avoid excessive costs. In our ex-
periments, the aggregator does not use concurrent function
instances, while for the detection function (or shared in-
stances) we vary the maximum number of instances when
using unreserved vCPU.

E. Hardware Resources

The experiments were executed on a HPE ProLiant DL380
Gen10 server equipped with two Intel Xeon Gold 5218 CPUs
@ 2.3 GHz with 16 cores each, supporting two threads each
for a total of 64 vCPUs. The subsystems we measure are all
deployed using Kubernetes MicroK8s v1.26.5 revision 5395
running on a single Ubuntu 20.04.6 LTS server.
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Fig. 3. End-to-end latency (top) and detection time (bottom) for five
serverless-configurations, using a workload near the maximum throughput
with provisioned concurrency.

IV. RESULTS

In this section, we present the results from each experiment
and our findings, one at a time.

A. Provisioned Concurrency

Figure 3 shows the end-to-end latency and detection time,
using a steady workload of 1 frame per second per camera,
which is close to 100% of the maximum throughput. We
compare different configurations where all instances are pre-
allocated (referred to as provisioned concurrency in some
serverless offerings) when the experiment starts. Hence, there
is no cold start involved in executing the functions.
Reserved resources interfere with parallel processing: The
bottom plot in Figure 3 shows the detection times obtained
using different configurations. Detection time is measured
within the function instances and only measures the time for
the CPU-heavy detection task. The average detection time is
around 6-8 seconds for all configurations, and hence it is
reasonable to expect that 60 instances would be able to sustain
7 detection tasks per second with 8 seconds per detection task
on average.

One may expect that reserving computational resources
for instances would be beneficial for achieving low latency,
but this is not the case. It is in fact the 60 Reserved
Dedicated configuration that results in the highest E2E
latencies. We attribute the comparatively poor performance
to the library we use for object detectionwhich can utilize
thread parallelism, but it has no benefit from this when the
instances are constrained to a single CPU. We also tried using
30 instances with 2 vCPU’s reserved each but found that such
a configuration was unable to keep up with this workload,
resulting in an ever-growing E2E latency.
More concurrency leads to lower latency: The detection
time metric only captures the exact time it takes to perform
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Fig. 4. End-to-end latency and detection time for four system configurations,
using a workload safely below the maximum throughput with provisioned
concurrency

the actual detection computation, it does not capture queueing
time. In principle, each instance should have some amount of
idle time in between detections, while it is waiting for network
I/O. By increasing the number of instances beyond the number
of available CPUs to 100 as in the 100 Unreserved
Dedicated configuration, the instances’ idle time yields
CPU time to other instances, and we achieve even better
results. The instances are able to share the CPU time efficiently
and result in the lowest E2E latency. These results show that
one should plan for more instances than expected based on
the workload to achieve optimal performance.
Rate limiting invocations improves performance: Instance
sharing is the arguably easiest way to build applications using
Flink Statefun as it only requires building and deploying
a single function image, but also leads to the functions
sharing the same queue. Unsurprisingly, we find that the 60
Unreserved Shared configuration results in very high
E2E latencies as the events for the aggregator are queued
up behind the events for the detection function. However, by
increasing the number of shared instances to 100 as in the
100 Unreserved Shared the latencies decrease. Here
we find, through inspection of system logs, that Statefun
periodically activates flow control and rate limits invocations
for the detection functions. The cycles of flow control, halting
and then resuming invocations, cause burstier behavior which
in-turn produces greater variance in detection times. More
importantly, however, flow control maintains a more even pace
between the two functions, reducing the overall E2E latency.

B. State and Application Management

In Figure 4 we compare state management configurations
when the workload is reduced by 25% so that the systems
are safely below the maximum capacity. This leads to even
lower detection times and E2E latencies. To better compare
the state and application management we use the same number
of unreserved and pre-provisioned instances for all variants.
Reducing the critical path leads to better performance:
Comparing the Internal variant to External in Figure 4
we observe that the end-to-end latency is greater when the state
is stored externally. The external state access occurs for each
event the aggregator processes, and it must combine 7 events
to complete an aggregation. This result shows that despite the
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network latency being minimal (everything happens on the
same physical host), reducing the number of sub-system hops
still reduces E2E latencies significantly.
Unmanaged state fails sooner rather than later: Both the
Unmanaged and Knative variants show greater variance
and higher E2E latencies. Theoretically, these variants should
represent optimal state management as they never transfer or
persist the aggregators’ state. However, we find that they are
too unreliable, despite running the experiment many times the
variants consistently fail within the first 150 seconds, which
leads to consistently worse results.
Application management performance is important: The
Knative variant is the only variant we show that does not use
Flink Statefun at all. We find that this significantly increases
E2E latency as the alternative application manager transfers
events between functions in a less timely manner.

C. No Provisioned Concurrency

Provisioned concurrency usually comes at a cost in server-
less infrastructures, as function instances have to be kept
in memory. For a bursty workload, such as motion tracking
triggered by a low-power infrared motion detector, it would
thus be tempting not to use provisioned concurrency and
rely only on the autoscaling capabilities of serverless edge
infrastructures. As our results show, doing so is far from
straightforward.

Figure 5 shows results for the previously considered config-
urations without minimum concurrency. For all configurations
we use the simplest autoscaling policy possible, setting a target
of 1 instance per in-flight invocation in the resource manager.
We use a workload corresponding to approximately 75% of
the maximum capacity. In this experiment, we are interested
in how long it takes for the system to scale up and converge
to stable performance. We run the experiment multiple times
for each configuration and show the result of a single repre-
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Fig. 6. End-to-end latency for three state management methods using minimal
preprocessing and a workload near their respective maximum throughput.

sentative outcome for each configuration. For the Dedicated
variants, we tried both preallocating or not preallocating the
single aggregator instance and found that it has no impact
on the overall results as the simple aggregator function can
quickly catch up once it starts processing detections.
Overloading serverless can cause unstable behavior: As in
the previous experiment, we see that reserving vCPUs for the
detection instances can impact performance significantly, as
seen in the results produced by the Reserved configuration.
Though the workload is safely below the maximum throughput
of this configuration it takes longer to deal with the queue that
has been built up while the system is scaling up. In the CPU
utilization plot we can see that CPU usage drops down to
nearly 0% around the 200-second mark. These drops in CPU
usage eventually occur when the resources are overloaded,
which causes the resource manager to restart all the instances,
severely degrading performance. We are unable to determine
exactly why this happens.
More concurrency means more cold starts: Unlike in
the case of provisioned concurrency, the 60 Unreserved
Dedicated configuration produced the best results, converg-
ing faster than 100 Unreserved Dedicated. One may
expect that the better-performing configuration would stabilize
faster but these results reveal the severe costs of cold starts on
constrained resources. The lower number of instances means
that there are fewer cold starts occurring, and the cold starts
do not just take time but also take up precious resources while
the instances are starting.

In the first experiment we noted that flow control occurred
for one of the Shared variants, which could have played a
crucial role in this experiment in preventing overloading the
system, but we find no such effect.

D. Minimum Overhead

Figure 6 shows the results for when we replace the workload
with tiny 1 pixel images and disable the inference step within
the detection function, allowing us to significantly increase
the rate of events until the stateful aggregator becomes the
bottleneck. We find that the throughput of the aggregator
depends greatly on how the state is managed.
Batching greatly increases maximum throughput: We find
that both the Internal variant (which uses batching) and
External (batched) can reliably handle 700 events per
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second. In contrast, the External variant can only achieve
up to 70 events per second, demonstrating how batching
significantly alleviates bottlenecks.

E. State Size

Finally, Figure 7 shows the results for when we let the size
of the aggregators’ state grow linearly over time by retaining
all detections received indefinitely. Here we focus on the
time in between aggregator function invocations, and use a
workload of 0.5 FPS. We send events in groups of 7 events
once every two seconds, thus the ideal average latency for time
between aggregator events is 2/7 seconds. The perfect system
processing such a workload would receive each group of 7
events and process the first one with a latency just below 2
seconds, and then immediately process the following 6 events
with minimal latency. Due to variance within the detection
function the events arrive to the aggregator out of sync, but
in the results for External (Batched) we see something
close to the ideal pattern, where the rolling minimum remains
around a few milliseconds throughout the experiment.
Serialization is expensive: In any system, allowing the state to
expand indefinitely will be unsustainable, with the sustainable
size being contingent upon factors like the event arrival rate
and processing time. However, our findings reveal a critical
inefficiency: the rolling minimum for Internal increases
linearly with the state size. We expect it to behave similarly
to the External (Batched), as they all receive events
in batches in the same way. With further investigation, we
find that the Statefun python function handler serializes and
deserializes the state for each event, even within a batch,
and as the state size grows this serialization/deserialization
becomes more and more expensive, such that it eventually
becomes impossible to handle events at the same rate as they
are arriving in, emphasizing the importance of efficient state
management.

V. DISCUSSION

Number of instances and resource sharing: The results in
subsection IV-A show that serverless functions can efficiently
share compute resources when the resources are not reserved
per instance, which is particularly beneficial for multithreaded

implementations of ML inference tasks. This is in contrast to
the common practice among cloud providers, which reserve
resources for function instances, and offer a small set of
instance sizes to choose from. Doing so simplifies resource
allocation for cloud providers, but leads to resource inefficient
deployments [16].

A complementary approach is to allow instance-level con-
currency to be configured by the user so that a single instance
can handle multiple events concurrently. This has been made
commercially available in Google Functions and its automa-
tion has been investigated in [12].
Batching in stateful and stateless tasks: Previous work has
shown that batching can significantly improve the through-
put of stateless inference tasks (such as object detection),
as inference libraries are typically optimized for batches of
inputs [17]. In subsection IV-D and subsection IV-E we found
that batching plays a crucial role in the performance of state
access as well, as it allows the state to be kept hot in memory
for a sequence of events accessing the same state. This is
a novel aspect compared to maintaining state locality, i.e.,
persisting state at the edge location where it is used, considered
in previous work [3] [4] [5].

Beyond the importance of batching, our experiments, which
consider a single edge location where everything happens
locally, show that keeping the state in the instance memory can
achieve an order of magnitude faster processing and greater
throughput. However, we also saw that maintaining the state
purely in memory of an instance, as in the Unmanaged
variant, quickly failed due to state corruption. The tradeoff
between maintaining state in memory and guaranteeing con-
sistency and fault tolerance is a core challenge for stateful
serverless, at the edge and in the cloud alike.
Flow control and fine tuning configurations: In subsec-
tion IV-A we observed that flow control (i.e. rate limiting)
plays a crucial role for one variant to achieve a lower end-
to-end latency. The specific configuration of that variant hap-
pened to fit with the default configuration of flow control.
Within all our experiments we made no effort to fine-tune
the configuration for flow control, a non-trivial task which is
currently left to the users. Flow control, along with many other
configuration parameters should be tuned automatically by the



serverless abstraction as hiding the complexity of operations
is an essential part of the serverless paradigm [18] [19].
Scale up strategies and cold starts: The only way to avoid
cold starts in serverless is to keep instances allocated at all
times, but such deployment strategies cancel most of the
benefits provided by serverless computing. In cloud environ-
ments, the long stabilization period we find in our experiments
(subsection IV-C) could be reduced significantly by simply
provisioning more resources until the queue stops growing,
and then eventually de-provision excess resources [20]. In
edge deployments, resources are constrained, and scaling up
indefinitely locally is not possible, requiring new strategies.

VI. CONCLUSION

In this study, we examined the feasibility of deploy-
ing existing cloud-based serverless software within resource-
constrained edge environments. Our results reveal several
insights related to local resource management at the edge:
to achieve optimal performance maximum utilization of CPU
resources becomes imperative. We find that the detrimental
effect of cold starts is magnified in limited resource settings,
exposing a significant shortcoming of conventional serverless
frameworks designed for the virtually limitless computational
capacity of cloud environments. This stark mismatch under-
scores an urgent demand for the development of resource-
efficient strategies tailored to serverless at the edge.

Our investigation also highlights the potential of efficient
application orchestration as a means to mitigate performance
issues and temper bursts through flow control coupled with
effective scaling policies. We emphasize that achieving low-
latency stateful serverless computing necessitates not only
local access to storage but also optimization of state access pat-
terns such as batching. Collectively, these insights demonstrate
that all three layers of stateful serverless - application, state,
and resource management - require substantial improvements
to realize high-performance stateful serverless at the edge.
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