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Abstract—As cyberattacks are becoming more sophisticated,
automated activity logging and anomaly detection are becoming
important tools for defending computer systems. Recent deep
learning-based approaches have demonstrated promising results
in cybersecurity contexts, typically using supervised learning
combined with large amounts of labeled data. Self-supervised
learning has seen growing interest as a method of training models
because it does not require labeled training data, which can be
difficult and expensive to collect. However, existing self-supervised
approaches to anomaly detection in user authentication logs either
suffer from low precision or rely on large pre-trained natural
language models. This makes them slow and expensive both during
training and inference. Building on previous works, we therefore
propose an end-to-end trained self-supervised transformer-based
sequence model for anomaly detection in user authentication
events. Thanks in part to an adapted masked-language modeling
(MLM) learning task and domain knowledge-based improvements
to the anomaly detection method, our proposed model outperforms
previous long short-term memory (LSTM)-based approaches at
detecting red-team activity in the “Comprehensive, Multi-Source
Cyber-Security Events” authentication event dataset, improving
the area under the receiver operating characteristic curve (AUC)
from 0.9760 to 0.9989 and achieving an average precision of
0.0410. Our work presents the first application of end-to-end
trained self-supervised transformer models to user authentication
data in a cybersecurity context, and demonstrates the potential
of transformer-based approaches for anomaly detection.

Index Terms—cybersecurity, misuse detection, anomaly detec-
tion, sequence modeling, machine learning, transformer, LSTM

I . I N T R O D U C T I O N

Activity logging is a crucial part of computer systems
security. By collecting logs at hosts and in the network,
cybersecurity personnel are able to monitor the state and
dynamics of networked systems and processes in real-time.
Such real-time monitoring of the system’s behavior is essential
for situational awareness as cyberattacks become increasingly
sophisticated [1], [2].

A recent incident at Microsoft showcases the relevance of
monitoring user authentication data in order to detect and
prevent advanced persistent threat (APT) attacks. In this attack,
state-backed actors used forged authentication keys to gain
unauthorized access to e-mail servers and steal government
data [3].

In the absence of well-defined malicious behavior to target,
anomaly detection-based approaches can be used to identify
activity that does not conform to expected activity patterns.

Anomaly detection systems work by creating a model of
normal system behavior. Broadly, they can be split into two
primary categories: statistics-based and machine learning-based
[2]. Statistics-based methods use statistical features, typically
aggregated over set durations. A significant limitation of these
techniques is their heavy reliance on expert knowledge and
engineered features. Consequently, they often struggle to adapt
to changing system dynamics. In contrast, machine learning
(ML)-based approaches aim to improve on these weaknesses
by learning patterns in system activity. They are also able to
adapt to gradual changes in the activity if trained continuously
or iteratively [2].

The most common learning method for machine learning-
based anomaly detection in cybersecurity contexts is supervised
learning [4]. However, this approach requires large amounts
of labeled training data, which can be difficult and expensive
to collect in a cybersecurity context. To avoid this limitation,
some recent research efforts have investigated self-supervised
learning. This learning method uses parts of the existing data
as training labels.

A popular implementation of self-supervised learning is
sequence modeling. Such models are trained to predict elements
in sequences using incomplete contextual clues such as the
previous elements of the sequence. This method allows the
models to learn the relationships between the elements of
sequences comprising normal activity without needing labeled
data.

Several recent works have proposed using sequence modeling
for anomaly detection in computer logs. Each log entry consists
of a series of elements that can be considered as words, and
the complete entry is a sentence describing some event. These
methods involve deploying a sequence prediction model on the
log entries, and using the performance of the sequence model
as an anomaly score for the anomaly detection task.

However, existing approaches have various limitations. First,
some approaches use older sequence modeling approaches, for
example using LSTM-based models [5], [6], leading to sub-
optimal performance. Second, more recent approaches rely on
large language models pre-trained on natural language [7], [8].
The use of such large models makes these approaches slow
and expensive to train and employ as detection models, for
example requiring targeted efficiency optimizations to facilitate
practical applications [8].

To address these limitations, we propose a novel approach



using the transformer architecture [9] with self-supervised
learning for anomaly detection in user authentication data.
We train the transformer model end-to-end, including the token
embedding and deembedding steps. We thereby avoid the re-
liance of recent approaches on large language models, enabling
smaller and faster models. We also propose improvements to
the sequence modeling and training procedures in previous
work [5], [6], including an adapted MLM learning task, that
help further improve the anomaly detection results.

A recent analysis of security practitioners’ view of ML-based
methods [10] found that practitioners generally think that ML
methods should be used in conjunction with rule-based methods,
rather than replacing them. Motivated by this, we evaluate our
method for the use-case of a filter in a log processing pipeline.
We therefore present results in terms of specificity at 100%
recall of each model, in addition to the common metrics of
area under curve (AUC) and average precision (AP).

Concretely, the contributions of our work are summarized
as follows:

• We propose a self-supervised transformer for anomaly
detection in user authentication logs. Unlike previous
work, we use self-supervised learning for non pre-trained
models that are significantly smaller than existing ap-
proaches using BERT.

• We propose an MLM learning task for model training for
anomaly detection in user authentication. Unlike previous
work, we use the same masking process for training as
for inference.

• We consider the use-case of the self-supervised model as
a filter in conjunction with other rule-based or ML-based
methods in a log processing pipeline, evaluating the ability
of each model we compare to discard normal data while
retaining the data that corresponds to anomalous activity.

I I . R E L AT E D W O R K

Anomaly detection for cybersecurity traditionally relies on
aggregated statistical features to identify anomalous activity
in pre-defined time windows. For example, [11] uses the
Isolation Forest algorithm on aggregated statistical features
for the goal of insider threat detection. In a similar approach,
[12] augments the Isolation Forest algorithm to improve the
explainability of its results, and apply this approach to network
activity data to identify time intervals containing anomalous
activity. These approaches rely on feature engineering to select
salient features to be used in the anomaly detection, and are
limited to identifying anomalous regions or time intervals rather
than specific instances.

Machine learning-based approaches, and particularly deep
neural networks, have become the state-of-the-art in numerous
fields and are seeing growing interest within anomaly detection
[13]. A survey of anomaly-based network intrusion detection
carried out in 2022 [4] found that the most common method for
training anomaly detection models is supervised learning, with
works such as [14] and [15] proposing different approaches us-
ing deep learning for intrusion and anomaly detection. However,
supervised learning requires large amounts of labeled data for

training [13]. Collecting and producing this labeled data can be
extremely expensive and time-consuming, especially within the
cyber-domain. Thus, the reliance on, and scarcity of, labeled
data limits the practical applicability and generalisability of
supervised learning for anomaly detection.

Some approaches therefore investigate the use of self-
supervised learning, avoiding or greatly reducing the need
for labeled data. One example of this is [16], who adapted self-
supervised feature-extraction approach from computer vision
for use for network intrusion detection. They showed that
their approach outperformed other self-supervised approaches,
while being slightly outperformed by supervised learning
methods. Another approach was proposed by [17], who applied
a graph neural network for self-supervised intrusion detection
on network traffic flows, showcasing significantly improved
performance compared to using raw features or previous,
baseline approaches. Lastly, [5] proposed an approach using
an LSTM model trained with self-supervision for anomaly
detection on network authentication data. The work was
expanded upon by [6] by introducing an attention mechanism
to the LSTM architecture. Both these approaches are based on
the idea of using the sequence modeling loss as a metric for
anomaly detection. More recently, [18] proposed a two-step
process combining supervised with unsupervised learning for
intrusion detection, achieving improved results compared to [5]
on the Comprehensive, Multi-Source Cyber-Security Events
(CMSCSE) dataset [19].

The transformer neural network architecture [9] has become
a popular choice in other fields such as natural language process-
ing (NLP) [20]. A few works have combined the transformer
architecture with self-supervised learning for anomaly detection
in a cybersecurity setting. [21] applied a transformer model
with self-supervision to Windows event logs. While the model
is trained in a self-supervised manner, the model is later tuned
using a baseline dataset assumed to be anomaly-free, thereby
implicitly reintroducing the requirement for labeled data. The
authors also only evaluate the model on a synthetic dataset
which limits the reliability of their achieved results for real-
world applications. Some works [7], [8] have proposed methods
using BERT [22] for sequence modeling of security logs for
anomaly detection. BERT is a large language model pre-trained
on natural language, primarily from open web sources, that can
be finetuned for downstream tasks. Although these approaches
are able to harness the language modeling performance of
BERT, this use of extremely large neural networks also makes
them slow and expensive to fine-tune and to apply during
inference.

Finally, we note that these closely related works are unfor-
tunately difficult to compare quantitively due to them using
different datasets.

I I I . B A C K G R O U N D

In this section we introduce the dataset used and the two
neural network model architectures being compared in this
work: LSTM and transformer.



A. Dataset

We use the CMSCSE dataset that was collected at the
Los Alamos National Laboratory (LANL) [19]. The full
dataset contains data from several sources, including Windows
authentication event logs, collected over a period of 30 days. At
different times during the 30 days, a red team used stolen user
credentials to attempt to log in to computers in the network.
The authentication events caused by the red team’s activity are
provided as labels together with the event data. Table I shows
the number of authentication events and the number of red
team events for days six, seven, and eight. Because this is the
only data source in the dataset that contains labels, necessary
for model evaluation, we only use the authentication events.

TABLE I
C O U N T S O F A U T H E N T I C AT I O N E V E N T S A N D R E D T E A M E V E N T S

I N T H E C M S C S E D ATA S E T F O R D AY S S I X , S E V E N A N D E I G H T .

Day # Events # Red Events

6 7 066 526 0
7 7 005 987 1
8 7 022 147 273

Each authentication event is comprised of eleven value fields,
which are listed in Table II together with the number of unique
occurrences per field. The data is categorical, with each field
containing a single string value. Fields that relate to users,
domains and computer names have been anonymized by the
dataset authors. During the span of days 6–8, 10 163 unique
users, 799 unique domains and 12 229 unique computers appear.
These three types of fields have “Source” and “Destination”
variants. There is a significant overlap between the source and
destination fields, with a majority of values appearing in both
fields at least once.

TABLE II
N A M E S O F F I E L D S I N T H E C M S C S E D ATA S E T A U T H E N T I C AT I O N
E V E N T S , A N D T H E N U M B E R O F U N I Q U E VA L U E S P E R F I E L D F O R

D AY S S I X , S E V E N A N D E I G H T .

Field Name # Unique Values

Source User 10 159
Source Domain 738
Destination User 10 075
Destination Domain 720
Source Computer 11 450
Destination Computer 11 439
Authentication Type 10
Logon Type 10
Authentication Orientation 7
Success/Failure 2

B. LSTM Networks

LSTM Networks are a form of recurrent neural network
(RNN) designed to be able to incorporate long-range depen-
dencies in sequence predictions [23]. RNNs processes elements
in the input sequence sequentially, and builds an internal
representation that is dependent on both the next element and
the previous representation. The internal representation acts
as a “memory” of previous elements that have occurred in

the sequence. LSTM networks improve upon this process by
allowing the model to selectively incorporate elements in the
representation, which allows them to process longer sequences
than previous RNN architectures.

We include the LSTM network and Tiered LSTM network
models from [5], [6] as baseline models, specifically the “EM
with Semantic 1 attention” and “TA-BEM” models. The Tiered
LSTM model uses a second LSTM network to propagate
contextual information from previous authentication events
involving the same user and a bidirectional LSTM network
to process the features in each authentication event, thereby
seeking to improve the prediction accuracy of the model at the
cost of slower training and inference due to the added temporal
dimension.

C. Transformer

The transformer is a neural network architecture built
almost entirely around attention mechanisms [9]. Attention
mechanisms allow neural network models to assign numerical
weights to different elements of an input sequence, and
compare elements in the sequence either to themselves or
other sequences. Unlike an RNN, which processes each input
element sequentially, transformers process the entire input
sequence in one operation. This allows for more effective
parallel processing compared to RNNs and an improved ability
to identify long-range connections between elements, but with
the cost of higher computational complexity with increasing
input length. We use a decoder-only transformer model as in
previous work on sequence modeling with transformers [20].

D. Masked Language Modeling

MLM is a learning task introduced by [22] to train the NLP
model BERT. The main principle of MLM is to mask out
some tokens in the input sequence, either replacing them with
a “[MASK]” token, or with another random token. The model
is then tasked with correctly restoring the masked tokens. We
use this learning task to train a bidirectional transformer for
sequence modeling on the CMSCSE dataset, as it allows the
model to consider both the tokens before and after the masked
token when making its prediction.

I V. M E T H O D

This section describes the anomaly detection method and
model training schemes used in this work. First, we describe the
creation process of a vocabulary corpus from the authentication
events. Second, we introduce the method for performing
anomaly detection. Next, we detail the self-supervised training
and inference methods. Finally, we explain the method of
evaluating the anomaly detection models.

A. Vocabulary Creation

We create a vocabulary of tokens present in the authentication
events to be used by the anomaly detection models. A token
represents a single field-delimited string value, with each such
string value being uniquely mapped to an integer index via
a dictionary mapping. In order to keep the vocabulary size



bounded, and to handle values unseen in the training set like
new usernames, tokens that occur less than a certain frequency
threshold are replaced by an “out-of-vocabulary” token.

We compare two different methods of defining the vocabulary.
First, we consider the vocabulary proposed by [5], [6], which
we refer to as field-based vocabulary. In this method, each field
included in the authentication events has a separate vocabulary.
For example, a user that appears in both the “Source User” and
“Destination User” fields will be considered different tokens
and therefore map to different indices.

The high number of duplicate tokens in source and destina-
tion fields led us to consider a second method of defining the
vocabulary, which we refer to as global vocabulary. With the
global method, all fields in the events share the same vocabulary.
Identical tokens will map to the same index regardless of the
field it occurs in. This both produces a much smaller vocabulary
and reduces the number of string values that are pruned by the
out-of-vocabulary frequency threshold.

Vocabularies were generated using word counts from days
six, seven and eight, using a token frequency cutoff of 401

occurrences across the three days. This cutoff retains 99% of
all tokens present in the data, while reducing the number of
unique tokens by 18%. The resulting field-based vocabulary
had 36 752 tokens, and the global vocabulary 19 859 tokens.

B. Anomaly Detection

We adopt the general approach of self-supervised machine
learning for anomaly detection used in [5], [6]. This approach
applies the model on the authentication events from one day
D at a time, and works as follows:

1) Train model on the authentication events from the
previous day Di−1

2) Apply model on the authentication events from day Di

to perform anomaly detection
3) Repeat for the next day Di+1

In this way the anomaly detection model is continually
updated, allowing it to adapt to drift in network activity and
handle new users introduced to the network (with a 1 day
lag-time).

Due to the self-supervised learning method, the models do
not explicitly learn to classify events as anomalous. Instead,
an anomaly score is computed for each event based on the
cross-entropy loss for the predictions of its tokens. When
the model produces a loss that is significantly higher than its
average performance for a set of authentication events, it means
that the model failed at predicting the tokens of that event.
This method is based on the principle that higher prediction
losses signify events that deviate from the distribution that the
model was trained on, and the assumption that this correlates
to anomalous activity. A threshold can be set for the anomaly
score, where all authentication events that have scores above
the threshold are deemed as anomalous.

The anomalous activity we want to identify in the CMSCSE
dataset is attempts to log in using stolen credentials. However,

1Cutoff value also used by [5], [6].

the sequence models identify any events that do not conform to
the model that has been learned, which are not necessarily the
targeted anomalies. Through manual inspection, we identified
two patterns in the dataset that were not correlated to the
anomalous activity we want to identify:

• The vast majority of authentication events in the dataset
have the same value in the “Source User” and “Destination
User” fields (98% of events on day six, seven and eight).
Events with a different source user and destination user
are very uncommon.

• Similarly, nearly all authentication events in the dataset
were successful (99% of events on day six, seven and
eight), while authentication failures are extremely rare.

In both these cases, the model is likely to have a high
performance loss when tasked with predicting the rare case.
However, whether the source user and destination user match is
not related to whether the event represents an attempt at logging
in with stolen credentials, as the attacker can freely control
the values of both of these fields. Likewise, an authentication
failing is also not indicative of the use of stolen credentials,
as the attacker is known to possess valid credentials. We
therefore omit the model’s prediction loss on the “Source
User”, “Destination User” and “Success/Failure” fields when
computing the anomaly score.

While these fields are excluded for the anomaly score
computation, they are still included as input for the sequence
modeling task. In doing so, the sequence models are able
to learn connections such as a certain source user normally
using a certain computer, and can still use these fields when
predicting the other fields.

C. Training and Inference

We train and evaluate four model variants: a transformer-
based model, a bidirectional transformer-based model, and
the two baseline models introduced in Section III. The
unidirectional models (the baseline LSTM model and the
transformer model) are trained with a causal language modeling
task, where each field in the event, except the first, is predicted
with the previous fields as context. The sequence order is
artificially set as the order fields appear from left to right. This
order is also reflected in Table II, where the top field is also the
left-most field of the events. The prediction loss is calculated
as the average cross-entropy between the output distributions
of the model and the input sequence.

The bidirectional transformer model uses the same architec-
ture as the unidirectional transformer model, but is trained with
an MLM task. We adapt the approach suggested by [8], based
on the original MLM task introduced by [22], in two ways:

• In the training method used by [8], a random number of
tokens were masked for each sequence. However, during
inference the model is always given exactly one masked
token to predict. We therefore randomly choose one token
to mask for each event during training, but always mask
exactly one token. This provides consistency to the task
given to the model during training and during inference.
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Fig. 1. Receiver operating characteristic curve for the evaluated models with field-based vocabulary. The subplot shows the region of FPR≤0.015 in greater
detail. For each model type the version performing the closest to the mean in terms of AUC is shown. The LSTM (baseline) plot is approximated from [5].

• The method used by [8] also includes the “[CLS]” token
that was used in the original work to summarize the
sentence and subsequently to predict whether a pair of
sentences were semantically connected. However, in [8]
this next sentence prediction is not carried out during
model inference. Thus, including this token only slows
down the training and inference processes, with no gain.
We therefore remove the “[CLS]” token, instead only
asking the model to predict the masked token for each
event.

With the MLM task, the masked field is predicted by the
model with all other fields of the event as context, meaning the
order of the fields is irrelevant. During training the prediction
loss is calculated only for the field that was masked. During
inference the model is applied to predict each field in each
event, one at a time, producing a prediction loss for each field.

Each model is trained for three epochs on the training set.
When training the non-tiered LSTM model and the transformer
models we shuffle the training set before each epoch of training.
We do not shuffle the training set for the Tiered LSTM model as
it makes predictions based on earlier events. We also perform
validation after each epoch of training in order to determine
a choice of hyperparameters based on the training data. At
the end of training the version with the best validation score
(average sequence modeling loss) was picked for evaluation.

All models shared the same hyperparameter choices to the
extent possible. We use a single layer of 128 neurons, attention
size 128 for the LSTM models, and token embedding size 128.
Each model was trained using the ADAM [24] optimizer with
a learning rate of 1e−4, reduced by a factor of 2 after each
epoch, and a dropout rate of 0.25.

This is a more involved training regiment than that suggested
in the previous work of [5], [6], which used only a single
epoch of training with learning rate scheduling during the
epoch, without validation, training data shuffling and dropout.

Maintaining a constant learning rate throughout each epoch
ensures every training sample is weighted equally during
training, and training for several epochs provides more time for
the model to fine-tune on the training data. We also use a lower
learning rate and add dropout and multi-epoch training to further
improve the stability of training. Initial experiments indicated
that training for several epochs with a lower learning rate
significantly improved the validation loss, while dropout was
used to prevent overfitting. We performed brief hyperparameter
tuning based on validation performance to find values that
achieved good results without excessive resource cost.

Shuffling the training data is a particularly important change
due to the format of the dataset being split into days. The
characteristics of the events change significantly between
daytime and nighttime, for example there is less traffic at night
and most users are most active during the day. When training
on the data in sequential order the model first trains on the
hours just after midnight, and ends training with the hours just
before midnight at the end of the day. This causes the model to
be tuned to nighttime activity at the end of training at cost of
performance on daytime activity. This is avoided by shuffling
the training set, resulting in better performance overall and
importantly a lower performance discrepancy between events
created during the day and those created during the night.

During inference, the models are fed all authentication events
from the evaluation set and compute an anomaly score for each
event. All events with a score above the anomaly threshold
are classified as anomalous.

Model training and evaluation was implemented using Python
and the PyTorch framework [25]. All training and evaluation
was done using virtual machines on the Google Cloud platform,
equipped with 8 vCPUs, 30 GB of RAM and 1 V100 GPU.

D. Evaluation
The CMSCSE dataset comes with a set of labels for events

constituting known anomalous activity, caused by a red team
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attempting to log in using stolen credentials. We use these
labels to calculate the detection accuracy of the models on our
evaluation set.

We use the receiver operating characteristic (ROC) curve to
consider the possible combinations of true positive rate (TPR)
and FPR achievable by the models at different threshold values,
and compute the area under curve (AUC) of this curve as a
performance metric, as done by [5], [6]. It is important to note
that the dataset is heavily unbalanced between the amounts of
anomalous and benign activity, with only 0.004% of events in
day eight being labeled as red-team activity. As such, the AUC
values will be skewed towards high values and may give a false
impression of model performance if presented alone. Therefore,
in addition to the AUC, we report the precision and recall of
the models. We provide precision-recall curves which show
the possible trade-offs between precision and recall achievable
by the models depending on the prediction threshold.

Finally, we consider the use-case of our models as an initial
filter in a log processing pipeline or as part of an ensemble
model. In such a use-case the model’s ability to filter out the
normal activity while retaining all anomalous activity is more
relevant than, for example, its precision. For this reason we
also report the specificity of each model when achieving 100%
recall. This represents what proportion of the non-anomalous
data can be filtered out by the model without discarding any
anomalous events, in an ideal case.

V. N U M E R I C A L R E S U LT S

Each model variant, except the tiered LSTM, was trained and
evaluated five times with different random number generator
seeds. The tiered LSTM models were only trained and
evaluated on three different seeds, as they are slow and resource-
intensive due to the tiered structure. The seeds affect the model
parameter initialization and the sequence in which data is loaded
during training (if shuffling is used), and thus lead to variations

in the final result. For each model we average each performance
metric across all seeds and compute the standard deviation.

We used day seven for training and day eight for evaluation
to be able to directly compare our results with [5] and [6]. A
subset of 100 000 events from day six was used for validation
during training.

We report results for the two baseline models as reported by
[5], [6], the results achieved by these models with our training
and anomaly detection method outlined in section IV, and the
results of our two transformer models. Table III shows the
AUC, average precision and specificity at 100% recall for each
model, averaged across five different random number generator
seeds (three for the tiered LSTM models), along with one unit
of standard deviation.

Figure 1 shows ROC curves for all models except the baseline
tiered LSTM model, as the authors of [6] did not publish this
data. The figure shows that the bidirectional transformer model
and the LSTM model outperform the other models, with the
bidirectional transformer achieving a slightly higher AUC than
the LSTM model. Both these models reach a higher TPR
at lower FPR than the transformer and tiered LSTM models,
resulting in a higher AUC. All models significantly outperform
the baseline LSTM model. Figure 2 shows the precision-
recall curve for all non-baseline models, while the baseline
models could not be included as precision-recall data was not
published. In this figure the difference between the bidirectional
transformer and the other models is more significant, with the
bidirectional transformer achieving higher precision at lower
recall when compared to the unidirectional transformer, LSTM
and tiered LSTM.

Looking at AUC, all models significantly outperform the
baseline LSTM and tiered LSTM models. The highest AUC
is achieved by the bidirectional transformer model with field-
based vocabulary, although the LSTM model achieves nearly
as high AUC when using our training and anomaly detection



TABLE III
A R E A U N D E R C U RV E , AV E R A G E P R E C I S I O N , A N D S P E C I F I C I T Y AT 1 0 0 % R E C A L L . M O D E L S W E R E T R A I N E D W I T H T W O T Y P E S O F
T O K E N V O C A B U L A R I E S . AV E R A G E S A R E P R E S E N T E D T O G E T H E R W I T H O N E U N I T O F S TA N D A R D D E V I AT I O N . ”−” D E N O T E S T H AT

T H I S VA L U E WA S N O T R E P O R T E D .

Model Name Vocab. AUC Average Precision Specificity at 100% recall

LSTM (baseline) [5] Field 0.9760± 0.0030 − 0.8800±−
Tiered LSTM (baseline) [6] Field 0.9880± 0.0030 − −
LSTM (our method) [5] Field 0.9986± 0.0002 0.0200± 0.0013 0.9888± 0.0012
LSTM (our method) [5] Global 0.9980± 0.0001 0.0125± 0.0010 0.9909± 0.0016
Tiered LSTM (our method) [6] Field 0.9982± 0.0004 0.0153± 0.0017 0.9890± 0.0049
Tiered LSTM (our method) [6] Global 0.9975± 0.0004 0.0093± 0.0014 0.9884± 0.0025
Transformer Field 0.9981± 0.0006 0.0166± 0.0047 0.9920± 0.0024
Transformer Global 0.9984± 0.0005 0.0193± 0.0131 0.9923± 0.0010
Bidir Transformer Field 0.9989± 0.0003 0.0410± 0.0153 0.9927± 0.0014
Bidir Transformer Global 0.9988± 0.0004 0.0244± 0.0082 0.9908± 0.0014

method. Considering a global vocabulary the bidirectional
transformer still achieves the highest average AUC, followed
by the unidirectional transformer model.

In terms of average precision the best performing model
by far is the bidirectional transformer with field vocabulary,
followed by the same model with global vocabulary. The bidi-
rectional transformer with field-based vocabulary also achieves
the highest specificity at 100% recall. Due to the MLM learning
task the bidirectional transformer is able to use the full context
of all other tokens in each event for each token prediction. This
capability allows it to learn the distribution of tokens in normal
activity better than the unidirectional transformer, leading to
more accurate identification of anomalous authentication events.

TABLE IV
AV E R A G E T I M E TA K E N F O R T R A I N I N G A N D E VA L U AT I O N O F

M O D E L S , I N M I N U T E S .

Model Name Vocab. Training Evaluation

LSTM (baseline) [5] Field − −
Tiered LSTM (baseline) [6] Field − −
LSTM (our method) [5] Field 26.98 8.78
LSTM (our method) [5] Global 16.00 7.47
Tiered LSTM (our method) [6] Field 348.73 115.24
Tiered LSTM (our method) [6] Global 243.43 83.78
Transformer Field 24.42 8.19
Transformer Global 15.30 7.09
Bidir Transformer Field 25.70 19.30
Bidir Transformer Global 16.62 14.57

Table IV shows the average time taken for training and
evaluation for each model and vocabulary type. The authors of
[5], [6] did not publish the time taken for training and evaluating
their models, we are therefore unable to report these values.
Notably, the Tiered LSTM model took significantly longer for
training and evaluation than the LSTM and transformer models.
The unidirectional transformer and the LSTM models using
our method show very similar training and evaluation times,
with the transformer being slightly faster in all cases. Due to
the MLM task, the bidirectional transformer is slightly slower
in training than the unidirectional transformer, and significantly
slower during evaluation as each event must be processed
several times by the bidirectional model. Comparing the two
types of vocabulary, models using a global vocabulary took on
average 36% less time to train and 20% less time for evaluation.

This vocabulary is significantly smaller than the field-based one,
resulting in smaller memory footprint and faster processing.

V I . D I S C U S S I O N

Self-supervised versus Supervised learning: As the most
popular learning method for machine learning-based anomaly
detection in cybersecurity is supervised learning, it is important
to compare our self-supervised approach to a supervised
method. The related work of [18] proposes a method combining
a supervised learning module named LightGBM with an
unsupervised module using K-means clustering. In their paper
they report results achieved on the CMSCSE dataset, comparing
these to the performance of the bidirectional LSTM model from
[5]. Specifically, they achieve an AUC of 0.9832, while [5]
achieved 0.9760, and our best model achieved an average AUC
of 0.9989. It must be noted that the results presented by [18]
are computed using a larger training and evaluation set than we
have used in this work, and therefore despite using the same
original dataset these results are not directly comparable as the
data is split in different ways. The model proposed by [18] is
also faster than our self-supervised models during inference.
However, it provides a useful indication of the performance
improvements we achieve with our method, and that methods
using self-supervised learning are capable of matching the
performance of those using supervised learning on this dataset
without needing labeled data for training.

Ablation study: Table V presents an ablation study covering
the four main changes we propose and detail in section IV-C,
compared to the baseline LSTM method proposed by [5]:

1) Improvements to the model training method outlined in
section IV-C, including training for three epochs instead
of one, shuffling the training set before each epoch of
training, reducing learning rate after each epoch, and
adding dropout.

2) Applying a transformer-based model instead of an LSTM-
based one

3) Computing the anomaly score for each event based
on a subset of the fields in the dataset, described in
section IV-B.

4) Applying a bidirectional transformer-based model with
our adapted MLM task, as described in section IV-C



TABLE V
A B L AT I O N S T U D Y O F O U R P R O P O S E D M E T H O D A N D M O D E L . F O R B R E V I T Y P E R F O R M A N C E I S O N LY P R E S E N T E D F O R M O D E L S U S I N G

A F I E L D - B A S E D V O C A B U L A RY.

Model Name AUC Average Precision Specificity at 100% recall

LSTM (baseline) [5] 0.9760± 0.0030 − 0.8800±−
LSTM with our training method [5] 0.9939± 0.0002 0.0028± 0.0001 0.9838± 0.0009
Transformer with our training method 0.9947± 0.0015 0.0040± 0.0018 0.9892± 0.0019
Transformer with our training and anomaly detection method 0.9981± 0.0006 0.0107± 0.0029 0.9920± 0.0024
Bidirectional transformer with our training and anomaly detection method 0.9989± 0.0003 0.0248± 0.0084 0.9927± 0.0014

The table shows that each of these additions contribute to
improving the results achieved across all three metrics. In
terms of AUC and specificity at 100% recall, the largest
improvements compared to the baseline are gained by using our
training method, allowing the same LSTM model to achieve
significantly better results. Interestingly, each metric sees the
second largest improvement brought by different additions. The
second-largest gain in specificity at 100% recall is seen in the
change from an LSTM-based model to a transformer-based
model, the second-largest change in terms of AUC is due to
our anomaly detection method, and lastly the second-largest
gain in AP is seen with the addition of the MLM task and the
bidirectional transformer. Overall, while each improvement
contributes to better performance, our training method stand
out as most impactful.

Suitability of the approach: The sequence modeling per-
formed for the unidirectional transformer and the baseline
LSTM model is autoregressive, predicting the next element
in each event based on the previous elements. However, the
elements of the authentication events considered do not have
a natural ordering. The order used in this work is the order
in which the fields appear from left to right in the data. This
puts the “Source User” field first, meaning that all predictions
of the following fields are conditioned on that particular field.
Any order could be used, however, which calls into question
the suitability of an ordered sequence-modeling approach.

We train a bidirectional transformer using our modified MLM
learning task. This is a non-sequential model that predicts each
token in each authentication event conditioned on all other
tokens in the event. Together with the self-attention step of the
transformer model, which directly compares all tokens with
each other, this makes the approach entirely unreliant on the
ordering of the input values for each sample.

Base rate fallacy: While the transformer model achieves a
high AUC and reaches high TPR at low FPR, the base rate
of anomalies in the dataset must be taken into account when
evaluating these results. Looking instead at precision as a
more representative performance measures for this unbalanced
dataset, the bidirectional transformer model achieves an average
precision of 4.1%.

In this case, the performance of our best model is not high
enough to allow it to be used as a detector on its own, as
it would overwhelm a potential operator with false positives
and cause alert fatigue. However, we believe that the model
can be used together with other tools as an initial filter in a
processing pipeline or model ensemble. By using the model in

this way the data amount to be processed in the next step of
automated processing, or considered by a human analyst, can be
drastically reduced. To evaluate the models in this use-case we
present the specificity achieved by each model when that model
reaches 100% recall. These results show that the bidirectional
transformer model with field-based vocabulary can filter out
an average of 99.27% of normal activity, in an ideal scenario,
without any false negatives, while the best LSTM-based model
can only filter out on average 99.09%. The best baseline model
from [5] achieved a specificity of 88%.

The CMSCSE dataset: In the CMSCSE dataset, the red
team’s only reported method of attack is to use stolen cre-
dentials [19]. The lack of variety in attacks in the dataset
limits discussion about our approach’s and the models’ ability
to generalize across different attack methods. In principle
the approach can be transferred to different datasets, log
sources and user activity profiles and attack behavior, with
the choice of which fields to use for computing the anomaly
scores needing special attention depending on the target attack
behavior. However, investigating this is left for future work
involving other datasets.

Adversary threat model: Since the approach involves training
a model directly on network log data, an adversary could
potentially perform a data poisoning attack by using their own
activity to mold the training data. Assuming no other systems
or safeguards are in place, an attacker could outnumber benign
activity with their own malicious activity to the point where it
is no longer considered anomalous by the model.

V I I . C O N C L U S I O N

We presented a transformer-based approach for anomaly
detection in authentication event data. This method leverages
self-supervised learning and thus does not require data labels
for training. Compared to previous LSTM-based models,
our transformer-based method shows superior performance.
Specifically, we improve the AUC achieved from 0.9760 to
0.9989 and specificity at 100% recall from 0.8800 to 0.9927.
We also achieve an average precision of 0.0410. We find the
approach of sequence modeling on authentication log data
promising; however, the dataset used in this work prevents
us from drawing wider conclusions about transferability and
performance on other log sources and attack behavior. Other
than investigating the performance of our approach on differ-
ent datasets, a potential direction for further improving our
approach in future work is to incorporate context, possibly in
the form of user or computer activity history.
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