
Clustered Content Replication for
Hierarchical Content Delivery Networks

Lazaros Gkatzikis
Huawei,

France.

lazaros.gkatzikis@huawei.com

Vasilis Sourlas
UCL,

UK.

v.sourlas@ucl.ac.uk

Carlo Fischione
KTH,

Sweden.

carlofi@kth.se

Iordanis Koutsopoulos
AUEB and CERTH,

Greece.

jordan@aueb.gr

György Dán
KTH,

Sweden.

gyuri@kth.se

Abstract—Caching at the network edge is considered a promis-
ing solution for addressing the ever-increasing traffic demand of
mobile devices. The problem of proactive content replication in
hierarchical cache networks, which consist of both network edge
and core network caches, is considered in this paper. This problem
arises because network service providers wish to efficiently dis-
tribute content so that user-perceived performance is maximized.
Nevertheless, current high-complexity replication algorithms are
impractical due to the vast number of involved content items.
Clustering algorithms inspired from machine learning can be
leveraged to simplify content replication and reduce its complex-
ity. Specifically, similar items could be clustered together, e.g.,
according to their popularity in space and time. Replication on a
cluster-level is a problem of substantially smaller dimensionality,
but it may result in suboptimal decisions compared to item-level
replication. The factors that cause performance loss are identified
and a clustering scheme that addresses the specific challenges of
content replication is devised. Extensive numerical evaluations,
based on realistic traffic data, demonstrate that for reasonable
cluster sizes the impact on actual performance is negligible.

Keywords—cache, clustering, content replication, Radio Access
Network.

I. INTRODUCTION

Content Delivery Networks (CDNs) are responsible for
36% of the Internet traffic [1]. In order to efficiently deliver
such vast amounts of data traffic, CDN providers deploy cache
servers worldwide, where the most popular content can be
replicated. Each content request is redirected to the closest
replica rather than being served by the origin CDN server.
Thus, replication facilitates local servicing of content requests,
and consequently both the user Quality of Experience (QoE) is
improved and the core network traffic is minimized. In parallel,
a 10-fold increase of mobile devices traffic is expected by 2018
[1]. Thus, it has been proposed that also Radio Access Network
(RAN), namely base stations, should be enhanced with caching
capabilities.

The problem of optimal content replication and placement
in a network with distributed caches has received significant
interest lately [2], [3]. Existing caching schemes assume that
caching is performed at item-level. However, given the tril-
lions of items transferred over CDNs, deriving at each time
the cache placement is a task of prohibitive computational
complexity. Thus, some form of content aggregation is the
only viable solution. The dimensionality of the problem is
further amplified when fragmentation of items into equally
sized chunks is applied, which is a requirement of many
replication mechanisms [2], [4].

Ideas from data mining can be used to reduce the complex-
ity of content replication algorithms. Specifically, clustering
of items into groups based on a similarity metric can signif-
icantly reduce the input size (dimension) of the replication
problem, and hence it may enable the application of existing
replication schemes in our context. However, this comes at
the cost of reduced performance, namely QoE, compared to
the fine-grained but impractical item-level replication. Thus,
the derivation of the optimal clusters in terms of size and
contents is a challenging task that needs to address this inherent
tradeoff.

In this paper, we consider the interaction of content clus-
tering and replication in a hierarchical network of caches,
covering both RAN- and CDN-level, as the one depicted in
Fig. 1. Any request that cannot be satisfied locally results
in a cache miss and is forwarded to the next higher layer,
which introduces additional communication delay. Due to the
high complexity of replication at item granularity, we apply
clustering of items and replication of clusters. Thus, clusters
can be updated offline during periods of low traffic, e.g.,
during the night, based on popularity statistics that have been
already collected, whereas cache contents can be updated more
frequently.

A. Related work

The problem of content caching in CDN and RAN-level
was considered in [5], where no coordination among caches
is assumed, i.e., each cache decides its content independently.
The offline policy of caching the most popular items and in-
network caching policies, similar in rational to Least Recently
Used (LRU), are considered. In contrast, we address the
feasibility of coordinated content replication by clustering
content items based on their popularity.

Coordinated replication and placement of content in a set
of caches so as to optimize network performance, e.g., min-
imize average latency, is an NP-hard problem [6]. However,
several caching schemes of polynomial complexity have been
proposed in the literature [2], [4], [7], [8]. For example, work
[4] demonstrates that for generic topologies an e/(e − 1)-
approximation algorithm of complexity O(N8V 8) can be
derived, where N is the number of content items and V the
number of caches. Given that an extremely large number of
items N is circulated over CDNs and that our system consists
of numerous caches V , even such approximation algorithms of
polynomial complexity cannot be directly applied. Instead, we
propose the use of clustering so as to reduce the dimensionality

…

RAN
Cache

CDN
Cache

Root CDN
server

d0

d1

d2

… … … …… …

Fig. 1. Architecture of the hierarchical-cache network.

of the problem. An overview of existing clustering schemes
can be found in [9].

Clustering of web content based on popularity and replica-
tion at cluster-level was first considered in [10]. The validity
of such an approach was demonstrated through extensive
numerical evaluations of existing clustering and replication
algorithms. In particular, the K-split algorithm was used to
minimize the maximum distance within a cluster. Clustering
for replication purposes has also been considered in the context
of grid computing in [11]. Items are clustered together when-
ever they are frequently accessed by the same process within
a small period of time. The problem of clustering is cast as a
graph partition problem, and a greedy algorithm is proposed.
Once the clusters have been determined, the problem is cast as
an integer linear programming (ILP) instance, which is solved
numerically.

The aforementioned schemes deal with clustering and
replication as two independent problems. Clustering of content
is performed according to existing clustering schemes and
replication of clusters follows. Although existing schemes
provide tangible evidence that content clustering is a promising
approach, a clustering scheme addressing the specifics of
content replication is still missing. In this direction, we suggest
that clusters should be formed such that performance loss
induced by replication at cluster-level is minimized.

An alternative use of clustering is proposed in [12], where
the interaction of user association and caching at RAN-level
is considered. In particular, users are clustered together and
associated to small cells based on similarity of their content
requests. Such an approach is complementary to our work,
given that our scheme relies on aggregate content popularity
estimates.

B. Our contribution

The key contributions of this paper are as follows:

• We identify the spatial distribution of requests as the
most prominent feature of content items in order to aid
replication.

• We formulate the joint clustering and replication prob-
lem and we analyze explicitly the inherent complexity -
performance tradeoff.

• We propose a replication-aware clustering scheme and
different metrics for the calculation of content similarity
that capture the spatial diversity of content popularity.

• We use realistic traffic data to analyze the impact of
cluster size on actual performance.

The rest of the paper is organized as follows. In Section II,
we present the system architecture and formulate the problem
of joint clustering and replication. In Section III, the problem
is decomposed into a replication-aware clustering scheme and
an adaptive replication strategy. Numerical results quantifying
the performance loss caused by clustering are presented in Sec-
tion IV. Finally, Section V concludes our study and provides
pointers for future work.

Throughout the paper we will use calligraphic letters to
denote sets and the corresponding capitals for cardinality; for
example |V| = V .

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the hierarchical-cache network depicted in
Fig. 1, which can be represented by a graph G = (V, E). Let
V denote the set of caches and E the set of communication
links connecting them. Root v0 corresponds to the origin CDN
server where all content items are stored, the first layer consists
of CDN caches and each CDN cache is directly accessible by
a set of RAN caches. Let Cv be the storage capacity (in bits)
of cache v ∈ V .

Let N denote a given fixed set of N content items that
have to be delivered over the network and sn the size (in bits)
of item n. Content requests are generated by users, with each
user accessing the network through a RAN node. Requests
that can not be served locally are forwarded to higher cache
layers. As a result, content requests are generated with rate
rv = {r1v, . . . , rNv }, where rnv denotes the aggregate incoming
request rate (in requests per second) at cache v for item n.
Vector rv is an estimate of the actual request pattern based on
observed, historical content access data (within a given time
window). This estimate is used as a prediction for the future
number of requests addressed to each cache.

Access requests that cannot be satisfied locally, trigger a
procedure for the transfer of the requested item from a remote
cache. Thus, in terms of traffic, a request for item n generated
at node i, would incur a cost equal to sndij , if served by
node j. Alternatively, parameter dij could capture the latency
of accessing content that is located in a distant node j. In
this work, we consider latency as the performance metric of
interest and we assume that it is symmetric i.e., dij = dji.

Clustering of N content items into M clusters (i.e.,
groups), with M � N , facilitates replication at cluster-level.
In addition, clustering can tune the complexity of replication
by determining the exact number of clusters to be formed.
Here, we consider the scenario where replication complexity
imposes a hard constraint on the maximum number of clusters

M̄ that can be supported, i.e., M ≤ M̄ . Parameter M̄ is a
positive integer that is determined by i) the time required to
calculate a cache assignment and ii) the dynamics of aggregate
request pattern rv . The former depends on the complexity
of the replication algorithm applied, whereas the latter is the
period of time in which estimated request rate vectors can be
considered sufficiently accurate.

Let binary matrix X ∈ {0, 1}N×M denote clustering
decisions, such that xnm = 1 if item n is assigned to cluster m.
Similarly, matrix Y ∈ {0, 1}M×V denotes caching decisions
ymj ∈ {0, 1} on whether cluster m should be cached at node
j. Let Sm =

∑
n∈N xnmsn be the size of cluster m and

Rm
i =

∑
n∈N xnmrni be the total request rate for items of

cluster m at node i. Notice that we use the small letter to
denote the item-level parameters and the corresponding capital
letters to denote the cluster-level parameters. The problem
of joint clustering and caching towards minimizing average
latency can be formally stated as

min
X,Y ,M

M∑
m=1

∑
j∈V

∑
i∈Am

j

Rm
i dij (1)

s.t. xnm ∈ {0, 1} ∀n ∈ N ,m = 1 . . . M̄ , (1a)

M∑
m=1

xnm = 1 ∀n ∈ N , (1b)

M ≤ M̄, (1c)

M∑
m=1

ymj Sm ≤ Cj ∀j ∈ V, (1d)

ymj ∈ {0, 1} ∀j ∈ V,m = 1 . . . M̄ , (1e)

where Am
j is the set of nodes retrieving items of cluster m

through its replica at cache j, constraints (1a)-(1c) correspond
to assignment of items to clusters. Constraint (1b) ensures
that clusters are disjoint, whereas constraint (1d) captures the
limited capacity of each cache.

Notice that relaxing constraint on the maximum number
of clusters (1c) results in the well known NP-hard problem of
item-level replication [6]. Thus, Problem (1) is NP-hard.

III. EFFICIENT ALGORITHMS FOR REPLICATION-AWARE

CLUSTERING AND CACHING

To deal with the NP-hardness of optimal cluster-level repli-
cation and the extreme number of RAN caches, we propose
that the original Problem (1) should be decomposed into two
subproblems: i) an in-network caching problem at RAN caches
and ii) a replication-aware clustering subproblem, where the
derived clusters can be subsequently replicated at CDN caches.
Any cache miss at RAN is forwarded and served by the closest
CDN cache.

The proposed decomposition of the original problem is also
motivated by various practical constraints. First, capacity of
RAN caches is significantly smaller than that of CDN caches.
Thus, cooperative clustering and caching at CDN and RAN
level would significantly limit the size of clusters that can be
supported, which is implicitly determined by constraint (1d).
Second, given also the limited number of caches that can

be handled due to complexity constraints [4], the joint con-
sideration of the two cache layers could lead to degraded
performance since a lower-complexity algorithm would have
to be applied. Finally, RAN and CDN are generally operated
by different entities, which would make coordination extremely
difficult. Thus, we propose that cluster-level caching should be
applied only at CDN caches, whereas item-level opportunistic
caching is a suitable option for the RAN caches.

We assume that each RAN cache applies a Least Frequently
Used (LFU) caching strategy, where in case of a full cache
the item that has been accessed the least is evicted. Thus, the
incoming request rate at CDN node j, rj , is the result of
cache misses. On the CDN side, clustering requires first to
identify the features that differentiate content items regarding
replication. In our scenario, content popularity is the main
feature. Notice that according to the problem definition (1),
replication decisions are also dependent on the corresponding
costs dij . However, these are characteristics of the underlying
network and hence cannot be considered as features. Instead,
we propose that the impact of this communication cost should
be addressed by the cluster replication algorithm.

A. Characterizing performance loss due to clustering

In traditional clustering problems, once the features have
been identified, a set of representatives has to be selected so
that a loss function, e.g., average distance of cluster items
from the closest representative, is minimized. Instead, in the
replication scenario considered here, we are only interested in
how clustering of items translates into suboptimal replication
decisions. Next, we present the two reasons that cause perfor-
mance loss in comparison to item-level replication.

• Slack loss: Non-integral multiple of cluster size. This
loss arises when part of the storage capacity of a cache
remains unallocated, since no uncached cluster fits there. If
item-level caching was applied instead, a subset of the items
of a cluster would have been cached. Unallocated space is
upper-bounded by the size of the smallest uncached cluster.
The corresponding loss is equal to the cost of fetching those
items from the closest replica.

• Diversity loss: Miss-classification of items due to spatial
variation of popularity and coarse-grained replication.
This loss results from two main characteristics of the specific
application scenario, namely spatial variation of content pop-
ularity and diversity of latency costs dij . Content clustering
is performed according to the request pattern rj across all
caches. Thus, any two items that are clustered together in the
same cluster, must be cached together. There may be places
(caches) though, that it would be preferable to split a cluster,
so as to cache only a part of it along with other items. Diversity
loss is generally decreasing in the number of clusters M .

B. Replication-aware clustering of content items

The problem of clustering a set of items in M clusters is
generally NP-hard [13]. Next, we derive a low complexity clus-
tering scheme that adequately addresses the aforementioned
losses. In order to address “Slack loss” we suggest that all
clusters should be of equal size, i.e., Sm = S ∀m, and
cluster size S =

∑
n∈N sn/M should be a common divisor

of all server capacities. Thus, we introduce the following set
of constraints on the selected number of clusters

M
Cj∑

n∈N sn
∈ N ∀j ∈ V. (2)

This constraint ensures that clusters perfectly fit to caches and
hence no cache capacity remains unused. Any approximate
divisor could also be used leading to limited loss. The imposed
set of constraints, along with constraint (1c), eventually deter-
mine the number of clusters M . Notice that in CDNs all servers
can be considered of equal capacities and hence (2) reduces
to a single constraint. Given that optimal clustering is NP-
hard, it has been shown that introducing specific constraints in
cluster cardinality generally improves performance of heuristic
approaches [14]. Introducing this constraint facilitates also the
application of swapping-based replication algorithms which
require all items to be of equal size [7], [8]. On the other hand,
“Diversity loss” is an inherent characteristic of clustering and
hence cannot be totally avoided. Nevertheless, we propose a
clustering approach that pursues to minimize the corresponding
loss.

For a given feature set, a similarity index I (metric) has
to be derived so as to cluster items together. In its simplest
form, the overall popularity of each item pn =

∑
j∈V rnj can

be considered as a single dimensional feature for clustering.
In this case, similarity of any two items n1 and n2 is captured
by their absolute distance as

Ipop(n1, n2) = (|pn1 − pn2 |)−1
. (3)

Generally, calculating content similarity over a more detailed
feature set captures content characteristics more precisely and
enables us to address spatial variation of request rates rj .
In this direction, we consider a similarity metric based on
pairwise Euclidean distance, i.e.,

Ieucl(n1, n2) =

⎛
⎝√∑

j∈V

(
rn1
j − rn2

j

)2⎞⎠
−1

. (4)

Finally, we consider a more conservative similarity metric,
which is based on Chebychev distance, i.e., the maximum
distance of content popularity over all coordinate dimensions

Imax(n1, n2) =

(
max
j∈V

|rn1
j − rn2

j |
)−1

. (5)

The aforementioned pairwise similarity metrics can be
then used to construct clusters. Although any of the existing
similarity-based clustering algorithms could be applied, here
we devise a greedy clustering scheme that specifically ad-
dresses both Slack and Diversity loss. Initially, a cluster that
contains the two most similar items is formed. Then, more
items are added to the cluster one by one until the selected
size of cluster according to constraints (1c) and (2) is reached.
Each item assigned to a cluster is excluded from the candidate
set. Next, similarity of each item with the set of items already
clustered is calculated as the average distance over all of them.
Thus, clusters are created and filled sequentially until all the
items have been assigned to a cluster.

C. Cluster-level replication

Once the clusters have been determined, they have to
be optimally replicated over the CDN caches. The proposed
clustering scheme guarantees that any of the existing item-
level replication schemes can be directly applied. In this work,
we assume that 2-approximation algorithms such as greedy
placement [15] or the lower complexity swapping algorithm of
[7], [8] are applied. Notice that the performance guarantees of
existing item-level approximation algorithms hold also in the
cluster domain, since here clusters can be simply considered
as items of larger size and higher popularity.

The greedy replica placement algorithm initially assumes
empty caches and at each iteration replicates the cluster to the
cache that yields the maximum latency gain. In particular, in
the first round the algorithm evaluates the latency gain if each
of the M clusters is cached in each of the V caches. Out of
the MV available options, the cluster-cache pair that yields
the maximum latency gain is selected. Given the previous step
decision, in the second round, an additional cluster-cache pair
has to be selected, namely the one that yields the maximum
latency savings. The greedy algorithm is repeated until all the
available storage capacity has been used and is characterized
by a complexity of O(M2V 2). Thus, if M = N/100,
clustering reduces replication complexity by four orders of
magnitude.

An alternative approach would be to apply an iterative
algorithm inspired by hierarchical clustering. Initially, two
clusters are formed and latency under greedy replication is
calculated. Next, the clusters are split such that constraint (2)
is not violated and performance is calculated for the new
clusters under greedy replication. Such an approach does not
require the number of clusters to be predetermined and it
is repeated as long as the latency improvement is above
a predefined threshold. Notice that this approach comes at
the cost of increased execution complexity, since multiple
replication problems have to be solved. Due to limited space
we do not elaborate on this approach.

IV. NUMERICAL EVALUATION

A. Evaluation setup

We use simulations to evaluate the performance of the pro-
posed clustering scheme, when combined with greedy replica-
tion of the resulting clusters. We also consider the performance
of item-level greedy replica placement (mentioned in figures
as item-level), so as to quantify the performance loss arising
from clustering. Greedy replication algorithm initially assumes
empty caches and in each iteration caches the item to the cache
that yields the maximum latency gain [15].

Throughout this section, we assume that all items are of
unit size sn = s = 1, ∀n ∈ N and we consider a hierarchical-
cache network with V = 20 (CDN caches), where all caches
have the same storage capacity (Cv = C, ∀v ∈ V) and hence
each can hold up to C different unit sized items.

As shown in Fig. 1 we assume three layers of caching.
If the requested content exists in the directly accessible RAN
cache, zero latency is induced. We denote by d0 the average
latency of serving a request by the user’s closest CDN cache,
whereas d1 denotes the average latency of serving a request

0 100 200 300 400 500900 950 1000
0

3

6

9

12

15

18

21

 Popularity cl.
 Eucl. dist. cl.
 Max dist. cl.
 Greedy M pop.

V=20, N=5000, C/N=0.1, z=0.7

La

te
nc

y
(%

 lo
ss

 v
s.

Ite
m

 L
ev

el
)

 Number of Clusters M

(a)

0 5 10 15 20 25 30 35 40
0

4

8

12

16

20

24

28

 Popularity cl.
 Eucl. dist. cl.
 Max dist. cl.
 Greedy M pop.

V=20, N=5000, M=100, z=0.7

La
te

nc
y

(%
 lo

ss
 v

s.
Ite

m
 L

ev
el

)

 Storage capacity %C/N

(b)

0 100 200 300 400 500 900 950 1000

96

97

98

99

100

 Greedy clust. vs. Item Level

V=20, N=5000, C/N=0.1, z=0.7

C
om

pu
t.

co
m

pl
 (%

 d
if.

)
C

om
pu

t.
co

m
pl

 (%
 d

if.
)

0 5 10 15 20 25 30 35 40

99.6

99.8

100.0

100.2

 Greedy clust. vs. Item Level

 Storage Capacity %C/N

Number of Clusters M

V=20, N=5000, M=100, z=0.7

(c)

Fig. 2. The performance of the proposed clustering schemes vs. the total number of clusters and the the storage capacity of each cache.

from a peer cache in the given CDN network. Finally, d2
represents the average latency of fetching contents from the
origin CDN server, where all content items are stored (root
v0). Similarly to [16], when the requested content is not cached
in the closest CDN cache, it is fetched from a peer cache in
the same administrative domain, whereas the root CDN server
might be outside this domain.

Generally, condition d0 < d1 < d2 holds. Typical latency
values are 10-30 ms for d0 in cable and ADSL access net-
works. The latency between caches in the same administrative
domain, d1, typically ranges from a few up to 20 ms larger than
d0, depending on the geographical coverage of the network.
Finally, d2 typically ranges from 100−200 ms. Throughout our
simulations, we assume that dij ∈ {25, 50, 100} ms, depending
on the type of caches i and j.

Request rates for content items at each node are determined
by their popularity. We approximate item popularity by a Zipf
law distribution of exponent z, since it has been shown that
file popularity in the Internet follows the Zipf distribution
[17]. In general, the popularity of each content item may
differ from place to place, due to locality of interest (a.k.a.
spatial locality or spatial skew). In our experiments, this is
captured through a localized request generation model, where
aggregate request pattern rv is different across locations v.
We assume V different regions each served by a CDN cache.
All regions are characterized by the same value for the Zipf
distribution exponent which captures the local popularity of
items. In each location the ranking/order of the items within
the Zipf distribution may be different, given that different items
are cached in each of the RAN caches. The latter captures the
impact of RAN-level caching. We assume that in each region a
total of 10 requests per second are generated. Thus, the request
rate for each item at each region varies from 0-10 reqs/sec
depending on item’s popularity and ranking. We consider a
scenario where N = 5000 content items have to be clustered
in M clusters.

B. Quantifying the impact of number of clusters and cache
storage capacity

First, we study the performance of the proposed clustering
scheme for each of the similarity metrics. Fig. 2(a) depicts
the impact of the number of clusters M on latency. We
observe that clustering based on Euclidean and Max relative
distance outperform Popularity-based clustering. The former
two perform only 3% − 18% worse than item-level replica

placement algorithm, requiring at the same time 96% less
computations for the completion of the replica assignment
as depicted in Fig. 2(c). On the other hand, popularity-based
clustering exhibits significantly worse performance even for a
large number of clusters (≈ 9% worse than item-level), since
this scheme does not capture the spatial variation of content,
but only the aggregate request rate for each item over the entire
network. The tradeoff of performance over computational
complexity is definitely against item-level replication, since in
most cases it requires more than 96% additional computations
so as to achieve a negligible latency improvement of 3%−6%.

In Fig. 2(b) we depict the impact of available storage
capacity, expressed as the fraction of content items that can
be stored in a CDN cache. We observe that location-aware
similarity metrics always perform better than Popularity-based
clustering and at most 8% worse than item-level replication.
In the most realistic regime of small enough storage capacity
(1%−10% of all items), they perform even better (≈ 5% worse
than item-level) having 99.96 less computational complexity,
as depicted in Fig. 2(c).

From the results above, it should be clear that the compu-
tational complexity of item-level replication is enormous when
compared to cluster-level replication. An alternative approach
of comparable complexity to the proposed scheme would be
an item-level greedy replication considering only the M most
popular items (denoted as Greedy M pop. in the figures). In
particular, the M network-wide most popular items are placed
according to the item-level greedy replication algorithm and
the remaining storage capacity of each cache is used to store
the locally most popular items. Greedy M pop. algorithm is in
line with the coordinated caching scheme used in [16], where a
portion of the available cache is used in a coordinated manner
and the rest is used to cache the locally most popular items.

Fig. 2 reveals that the Greedy M pop. algorithm performs
better than the Popularity-based clustering, but leads to 2− 3
times higher performance loss in comparison to the proposed
clustering scheme that exploits the spatial characteristics of
content popularity. It is only for large enough storage capacity
that Greedy M pop. outperforms cluster-level replication. In
this case, all M items fit in each cache and hence are replicated
in each of them.

C. Impact of content popularity

In the above scenarios we assumed a specific value for
the Zipf exponent of the items’ popularity. Measurement-based

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

4

8

12

16

20

24

28

 Popularity cl.
 Eucl. dist. cl.
 Max dist. cl.
 Greedy M pop.

V=20, N=5000, C/N=0.1, M=100

La
te

nc
y

(%
 lo

ss
 v

s.
Ite

m
 L

ev
el

)

Popularity Zipf exponent z

Fig. 3. The performance of the proposed clustering schemes vs. the exponent
of content popularity.

studies suggest that the Zipf exponent for web traffic lies in the
range of 0.64−0.84, while other types of traffic (e.g., P2P or
video) may follow different popularity patterns [17]. Since in
this work we do not assume a specific application, we depict
in Fig. 3 a wider range of values for the Zipf distribution. As
expected, exploiting spatial variation of content popularity is
of utmost importance and it results into a latency increase of
10% over item-level replication. On the other hand, Popularity-
based clustering may result up to a 24% latency increase,
for large values of parameter z, since in such scenarios the
proposed clustering scheme groups together items that are
very popular, but they have large spatial skewness, resulting
in higher Diversity loss.

On the other hand, Greedy M pop. algorithm is out-
performed by clustering schemes for small values of z and
only when z > 1 is the situation reversed. When z > 1
the M most popular items account for the largest portion
of requests and thus Greedy M pop. algorithm outperforms
cluster-level replication. In addition, when z > 1 and due
to the different popularity ranking of the items among the
nodes of the network, items tend to have large spatial skewness
and the composed clusters have large intra-clustering distance
increasing the Diversity loss as well.

V. CONCLUSIONS

This work is a first step towards a better understanding
of the interaction of clustering and replication in hierarchical
architectures that bring together caching at CDN- and RAN-
level. We devised a clustering scheme that takes into account
the specific characteristics of content replication. Our analysis
demonstrated that applying the proposed scheme, if content
is clustered according to spatial distribution of popularity, can
efficiently reduce replication complexity up to four orders of
magnitude at the cost of less than 5% performance degradation
in comparison to item-level replication.

In this paper, we focused mainly on the impact of spatial
distribution of content popularity in a static scenario. Content
popularity though may exhibit significant temporal variations
as well. Thus, the temporal dimension of the problem, i.e., how
often clustering and replication decisions should be updated,
is an interesting topic for future study. In addition, stream
clustering approaches could be considered for the online
dynamic update of clusters when new popular items appear
in the network in a streaming fashion.

ACKNOWLEDGMENT

This work was conducted while L. Gkatzikis was a re-
search associate at KTH Royal Institute of Technology. V.
Sourlas work has been supported by the European Commis-
sion through the FP7-PEOPLE-IEF INTENT program, under
contract 628360. I. Koutsopoulos acknowledges the support
of the ERC08-RECITAL project, co-financed by Greece and
the European Social Fund through the Education and Lifelong
Learning Operational Program of the Greek National Strategic
Reference Framework 2007-2013.

REFERENCES

[1] “Cisco visual networking index: Forecast and methodology,”
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
ip-ngn-ip-next-generation-network/white paper c11-481360.html.

[2] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in IEEE INFOCOM, 2010, pp. 1–9.

[3] S. Gitzenis, G. Paschos, and L. Tassiulas, “Enhancing wireless networks
with caching: Asymptotic laws, sustainability and trade-offs,” Computer
Networks, vol. 64, no. 0, pp. 353 – 368, 2014.

[4] K. Shanmugam, N. Golrezaei, A. Dimakis, A. Molisch, and G. Caire,
“Femtocaching: Wireless content delivery through distributed caching
helpers,” IEEE Transactions on Information Theory, vol. 59, no. 12, pp.
8402–8413, 2013.

[5] H. Ahlehagh and S. Dey, “Hierarchical video caching in wireless cloud:
Approaches and algorithms,” in IEEE ICC, 2012, pp. 7082–7087.

[6] I. D. Baev and R. Rajaraman, “Approximation algorithms for data
placement in arbitrary networks,” in ACM-SIAM Symposium on Discrete
Algorithms, 2001, pp. 661–670.

[7] V. Sourlas, P. Flegkas, L. Gkatzikis, and L. Tassiulas, “Autonomic cache
management in information-centric networks,” in IEEE NOMS, 2012,
pp. 121–129.

[8] V. Sourlas, L. Gkatzikis, P. Flegkas, and L. Tassiulas, “Distributed cache
management in information-centric networks,” IEEE Transactions on
Network and Service Management, vol. 10, no. 3, pp. 286–299, 2013.

[9] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On clustering validation
techniques,” Journal of Intelligent Information Systems, vol. 17, no. 2-3,
pp. 107–145, 2001.

[10] Y. Chen, L. Qiu, W. Chen, L. Nguyen, and R. Katz, “Efficient and
adaptive web replication using content clustering,” IEEE Journal on
Selected Areas in Communications, vol. 21, no. 6, pp. 979–994, 2003.

[11] H. Sato, S. Matsuoka, and T. Endo, “File clustering based replication
algorithm in a grid environment,” in 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID), 2009, pp.
204–211.

[12] M. ElBamby, M. Bennis, W. Saad, and M. Latva-aho, “Content-aware
user clustering and caching in wireless small cell networks,” in Wireless
Communications Systems (ISWCS), 2014, pp. 945–949.

[13] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “NP-hardness of
Euclidean sum-of-squares clustering,” Machine Learning, vol. 75, no. 2,
pp. 245–248, 2009.

[14] S. Zhu, D. Wang, and T. Li, “Data clustering with size constraints,”
Knowledge-Based Systems, vol. 23, no. 8, pp. 883 – 889, 2010.

[15] J. Kangasharju, J. Roberts, and K. W. Ross, “Object replication strate-
gies in content distribution networks,” Comput. Commun., vol. 25, no. 4,
pp. 376–383, 2002.

[16] Y. Li, H. Xie, Y. Wen, and Z.-L. Zhang, “Coordinating in-network
caching in content-centric networks: Model and analysis,” in IEEE
International Conference on Distributed Computing Systems (ICDCS),
2013, pp. 62–72.

[17] G. Dán and N. Carlsson, “Power-law Revisited: Large Scale Measure-
ment Study of P2P Content Popularity,” in 9th IPTPS, 2010.

