
IEEE Communications Magazine • June 2007116 0163-6804/07/$20.00 © 2007 IEEE

INTRODUCTION

Live multicast of streaming media over the Inter-
net presents several challenges. First of all, high
bit rate streams must be delivered to a potential-
ly large population of users. This requires either
high transmission capacity at the streaming serv-
er, if using the traditional client-server approach,
or multicast support in the network. The peer-
to-peer approach aims to alleviate these
demands by utilizing the upload bandwidth of
the participating peers to distribute the media
stream. However, peer-to-peer streaming faces
several challenges. The number of peers partici-
pating in the overlay may change rapidly; the
streams must be transmitted with end-to-end
delays that are acceptable for live applications,
in the range of a couple of tens of seconds; and
to keep the perceived media quality acceptable,
the packet loss rate must be low.

In this article, we present an overview of the
methods proposed to achieve robust data trans-
mission in peer-to-peer live media streaming.
We argue that the proposed ideas must be eval-
uated thoroughly — both analytically and in
real-life settings — to define the building blocks
of an efficient architecture.

We present the main system requirements
and the two media distribution methods pro-
posed for live streaming in peer-to-peer net-
works. We discuss the building blocks and the
performance of streaming with the push method
and the pull method, respectively. We discuss
how to provide resilient transmission for peer-to-
peer streaming. We give an overview of the

ideas to optimize streaming performance and
then conclude the article.

SYSTEM REQUIREMENTS AND
DATA TRANSMISSION METHODS

For peer-to-peer streaming to be successful, it
must provide low end-to-end packet loss rate,
delay, and delay jitter, similarly to point-to-point
live streaming. To satisfy these requirements, the
transmission bandwidths must be utilized effec-
tively in bandwidth-scarce environments, and the
system must adapt to changes in network condi-
tions, for example, to increasing congestion on
some of the peer-to-peer transmission paths.
The solution must be resilient to churn, that is,
when peer nodes join and leave the overlay dur-
ing the streaming session, the cohesion of the
overlay structure must be maintained, and the
information loss due to node departures [1] must
be minimized.

The architecture proposed for peer-to-peer
streaming generally falls into one of two cate-
gories: push-based or pull-based. Solutions in
both categories utilize multi-path transmission to
ensure graceful quality degradation in dynamic
overlays. With multi-path transmission, parts of
the stream reach the peers through independent
overlay paths, and consequently a large part of
the streaming data can be received, even if some
of the peers stop forwarding.

The push method [2–4] follows the traditional
approach of IP multicast. The streaming data is
forwarded along multiple disjoint transmission
trees with the streaming server as the root. The
peers are the nodes of the trees and relay
streaming data with low processing delay. The
streaming data is divided into packets, and pack-
ets are allocated in a round robin manner to as
many slices as there are trees. Packets of a slice
are transmitted through one of the transmission
trees, providing path diversity for subsequent
packets in this way. The transmission trees are
constructed at the beginning of the streaming
session and maintained throughout the session
by a centralized or a distributed protocol.

The pull method (also called swarming) [1, 5,
6] follows the approach of off-line peer-to-peer
content distribution and aims at efficient stream-
ing in highly dynamic environments. There is no
global structure maintained, and parent-child
relations are determined locally on the fly as the
overlay membership changes. Peer nodes consid-

ABSTRACT

The success of peer-to-peer overlays for live
multicast streaming depends on their ability to
maintain low delays and a low ratio of informa-
tion loss end-to-end. However, data distribution
over an overlay consisting of unreliable peers is
inherently subject to disturbances. Resilience is
thus inevitably a key requirement for peer-to-
peer live-streaming architectures. In this article,
we present a survey of the media distribution
methods, overlay structures, and error-control
solutions proposed for peer-to-peer live stream-
ing. We discuss the trade off between resilience
and overhead and argue that efficient architec-
tures can be defined only through thorough per-
formance analysis.

PEER-TO-PEER MULTIMEDIA STREAMING

Viktoria Fodor and György Dán, KTH Royal Institute of Technology

Resilience in Live Peer-to-Peer Streaming

FODOR LAYOUT 5/22/07 12:10 PM Page 116

IEEE Communications Magazine • June 2007 117

er the reception of a block of consecutive pack-
ets at a time (or larger segments)and fetch those
packets from some of their parents. A new set of
parents can be selected for the transmission of
each block of packets.

STREAMING WITH THE
PUSH METHOD

MULTIPLE-TREE-BASED OVERLAYS
If the push method is used for peer-to-peer
streaming, the structure of the transmission trees
and their maintenance have a dominant effect
on the streaming performance.

Overlay Structure — The structure of the
overlay depends on the download and upload
capacities of the peers and the root node and on
a number of design choices.

The Download and Upload Bandwidth of
the Peers — The download bandwidth of a
peer determines whether the peer can receive all
slices belonging to the stream and consequently,
the number of slices it can relay. If all the peers
have a download bandwidth larger then the
streaming bandwidth, then all peers are part of
all transmission trees.

The Multiplicity of the Root Node — Often,
the streaming server itself has enough upload
bandwidth to support the transmission of more
than one copy of the media stream. The upload
capacity of the streaming server — which is the
root of the transmission trees — is called root
multiplicity. Figure 1 shows a scenario where
three peer nodes are directly connected to the
root in each tree, thus the root multiplicity is
three. The higher the root multiplicity, the short-
er the transmission paths are in the overlay.

The Number of Transmission Trees — In the
first place, the overlay is based on multiple
transmission trees to provide path diversity. Fig-
ure 1 shows a case with three transmission trees
for an overlay of nine nodes. The figure shows
how node 7 receives the slices through other
overlay nodes. If node 4 leaves the overlay, node
7 still receives two out of the three slices. By
increasing the number of trees, the amount of
data lost at peer departures is decreased, which
in turn improves the robustness of the data
transmission.

The Number of Slices — A slice is the smallest
data unit a peer can transmit. The number of
transmission trees defines the number of slices
that the streaming data is divided into and con-
sequently, the transmission rates of the slices.
Thus, the effective utilization of the upload
bandwidth of the peers may require a high num-
ber of transmission trees.

Upload Bandwidth Allocation Policy — The
two extremes of bandwidth allocation policy are
to divide the upload bandwidth of a peer evenly
among the transmission trees or to allocate all
the upload bandwidth to one of the trees. Figure
1 shows an example of the first case. The upload

bandwidths of the peers are considered to be
equal to their download bandwidths, and each
peer relays data in all transmission trees. Figure
2 gives an example of the second strategy. Here
a peer relays data in one tree only, but to several
child peers. The second bandwidth allocation
strategy has the clear advantage of generating
maximum breadth — minimum-depth trees —
which in turn minimizes the maximum transmis-
sion delays in terms of overlay hops and the
effect of churn [7]. More specifically, with the
first strategy, the number of overlay hops grows
linearly with the number of peers; with the sec-
ond strategy, the growth is only logarithmic.

We must note, however, that the minimum-
depth tree allocation is very rigid, and it can be
difficult to maintain the trees in a dynamic sce-
nario. For example, consider the case when node

n Figure 1. Push method. Traffic flow in multiple transmission trees with
FEC(3,2). Minimum breadth transmission trees for nine nodes, three trees,
and a root node with multiplicity 3.

7 8 9

7 6

FEC redundancy

5 4 3 2 1

Push — minimum breadth

Parent child

1 2

5

7
8

9

6

R3R2R1

R1
Tree 1

1 2 3

4 5 6

8 9 7

R2
Tree 2

1 2 3

6 4 5

9 7 8

R3
Tree 3

1 2 3

5 6 4

4

3

Slice 1
Slice 2
Slice 3

n Figure 2. Push method. Minimum depth transmission trees for nine nodes,
three trees, and a root node with multiplicity 3. If node 3 leaves, tree 3 becomes
disconnected.

Parent child Slice 1
Slice 2
Slice 3

Relaying node in the tree

Push — minimum depth

R1

5 6 8 2 9 3

1 4 7

Tree 1
R2

1 6 7 4 9 3

5 2 8

Tree 2

R3

1 7 8 2 4 5

6 9 3

Tree 3

Passive node in the tree

FODOR LAYOUT 5/22/07 12:10 PM Page 117

IEEE Communications Magazine • June 2007118

3 leaves from the minimum-depth trees shown in
Fig. 2. Node 3 leaves two disconnected children,
nodes 4 and 5. One of the children can take the
position of node 3, but the other one fails to
reconnect — the tree runs out of free capacity.

The probability of reconnection failure can
be decreased in a number of ways. First, the
reconnection failure probability is low if the root
multiplicity, and thus the free capacity, in the
overlay is high. However, it is not always possi-
ble to increase the multiplicity of the root node
due to bandwidth constraints of the streaming
server. Second, the constraint on allocating all
upload bandwidth to only one tree can be
relaxed, allowing peers to transmit in several
trees, if necessary [8]. This in turn deepens the
transmission trees but decreases the reconnec-
tion failure probability due to the increased flex-
ibility. Figure 4 shows the reconnection failure
probabilities in an overlay with 10,000 nodes, as
a function of the number of transmission trees.
If the root multiplicity is the same as the number
of trees, then the reconnection failure probabili-
ty is over 10 percent. By doubling the root multi-
plicity, the reconnection failure probability is
decreased to the one percent range. However,
this is a solution that is rather demanding of
bandwidth. An even greater gain can be achieved
by allowing peers to transmit in two of the trees
— at the price of increasing the depth of the
overlay.

The Placement of Peers in the Overlay —
This question is relevant if the peers are hetero-
geneous in terms of upload bandwidth. Placing
peers that allocate high upload bandwidth for a
tree — and thus can support many children —
close to the root node will give the trees more
breadth, further decreasing the depth of the
overlay.

Based on this reasoning, we conclude that
peers should allocate a large part of their upload
bandwidth to a few of the transmission trees to
provide shallow but robust overlays. In addition,
high contributor peers should be placed close to
the root.

Overlay Management — The construction and
the maintenance of the trees can be performed
either by a distributed protocol [2, 4] or by a
central entity [3]. The tree maintenance affects
the performance of the streaming in the overlay
through factors such as the introduced control
traffic, the probability of incorrect peer availabil-
ity information, the time to detect a peer depar-
ture, and the time to reconnect the disconnected
children.

The overlay management is responsible for
maintaining the overlay under varying network
conditions, such as congestion levels between the
peers and in the case of churn. The tree con-
struction algorithm may aim for building struc-
tured [2, 3] or unstructured [4] trees. In the first
case, the structure is predefined to ensure an
overlay that is optimal in some sense, for exam-
ple, has minimum depth. However, maintaining
the optimal structure may lead to low perfor-
mance in the case of varying network conditions
[1, 4], may require significant management over-
head in the case of churn [8], and gives little

possibility to prioritize peers. In the unstructured
case, the overlay may be improved continuously
under the streaming session according to some
measure, for example, by pushing reliable peers
close to the root and by re-selecting parents if
the transmission performance is not adequate.

Control in tree-based overlays is required to
connect and reconnect the peers and to adapt
the overlay to the varying network conditions.
Consequently, the control overhead increases
with the number of trees, with the level of peer
dynamism, and with the targeted level of adapta-
tion.

DATA TRANSMISSION
In push-based peer-to-peer streaming applica-
tions, one of the principal sources of impairment
of streaming quality is peers leaving the overlay.
When a peer leaves, the subtrees of its children
become temporarily disconnected and do not
receive the slices transmitted in the particular
trees. In addition, transmission paths between
the peers may become congested, leading to
packet losses due to buffer overflow or to late
arrival to the playout buffer.

Because peers relay the stream, information
loss between a parent-child pair may further
propagate in the transmission tree, and losses
accumulate as the distance from the root increas-
es. Therefore, peer-to-peer streaming requires
error-control solutions that enable information
reconstruction at the peers, also with low delay,
considering the delay requirements of live
streaming. We discuss the error-control solutions
considered for push-based peer-to-peer stream-
ing later.

STREAMING WITH THE
PULL METHOD

MESH-BASED OVERLAYS
The overlay constructed for pull-based streaming
is often referred to as directed mesh, where
directed edges represent potential parent-child
relations. The mesh is reconstructed periodically
as peers search for new parents after the trans-
mission of each data block. Overlay membership
information is managed by a central entity or
spread by gossiping with message exchange
between child and parent peers.

As shown in Fig. 3, peers select a set of par-
ent nodes independently from each other,
receive a buffer map, receive the list of available
packets from the parents, construct a transmis-
sion schedule, and fetch the block of packets. A
peer node can be selected as a parent if it pos-
sesses some of the packets in the required data
block and has upload capacity not allocated to
other children.

Overlays employing the pull method are
dynamic and follow the changes of membership
and network conditions in the overlay easily,
compared to the push-based approach, where a
tree structure must be maintained [1]. The cost
of this simplified overlay management is two-
fold. First, the data transmission requires the
frequent exchange of control messages. Second,
the pulling process introduces additional delay at
each overlay hop: first the list of available pack-

Control in tree-based

overlays is required

to connect and

reconnect the peers

and to adapt the

overlay to the

varying network

conditions.

Consequently, the

control overhead

increases with the

number of trees,

with the level of

peer dynamism, and

with the targeted

level of adaptation.

FODOR LAYOUT 5/22/07 12:10 PM Page 118

IEEE Communications Magazine • June 2007 119

ets is transmitted from the parent to the child
node, then the child node sends a request mes-
sage to the parent, and finally, the packets are
transmitted.

The performance of pull-based streaming is
determined by the overlay structure, the packet
scheduling, and the overlay management.

Overlay Structure — The structure of the
overlay depends on the download and upload
capacities of the peers and the root node, as in
the case of the push method.

The Number of Parents for Each Peer —
The number of parents for each peer determines
the number of potential peers that can upload
parts of the stream. Increasing the number of
parents increases path diversity and resilience to
churn. This parameter relates to the number of
transmission trees in the case of push-based
streaming.

The Number of Packets in a Block — One
packet per block gives the smallest transmission
rate at which a peer can transmit. Consequently,
the choice of this parameter determines the uti-
lization of peer upload bandwidths in a band-
width heterogeneous environment. Note that in
contrast to the push method, the minimum trans-
mission rate is now decoupled from the number
of parents. This flexibility enables better utiliza-
tion of transmission bandwidths without signifi-
cantly increasing the control overhead.

The Selection of the Parents and the
Scheduling of Packet Transmission in a
Block — In most of the proposed solutions, [5,
6] children try to fetch data at the earliest from
parents who possess the packets, aiming to mini-
mize the number of overlay hops. As Fig. 3
shows, however, more careful parent selection is
required to obtain shallow overlays. The figure
shows how packets of an arbitrary block of length
two can be spread in the overlay. All peers have
two parents, and the root has a multiplicity of
two. In the figure, two possible cases are shown.
In the first case, packets travel along transmis-
sion paths that are analogous to the minimum-
breadth trees with the push method; in the
second case, the transmission paths are analo-
gous to the minimum-depth trees with the push
method. For a small network such as this, the
maximum length of the transmission paths
already is larger for the first case. Consequently,
the parent selection, and also the scheduling
scheme — the way parents allocate bandwidth to
the children — affect the length of the transmis-
sion paths. Since packets travel along transmis-
sion trees even in pull-based streaming, we can
follow the earlier reasoning and conclude that
short transmission paths are achieved if each
peer forwards only a small part of the streaming
data, but to a high number of children. In the
pull method, too, peers with high upload band-
width should be placed close to the root to mini-
mize the number of overlay hops.

Packet Scheduling — For each block of pack-
ets, the child node decides from which parent
the individual packets should be pulled. Due to

this block-by-block decision, pull-based overlays
can quickly react to changes in the network con-
ditions and to churn. A node can immediately
utilize the free upload bandwidth of some of its
parents when others get congested or leave the
overlay. However, the flexibility of packet
scheduling comes at a price. Because schedules
at the peers are not coordinated, the scheduling
may be infeasible so that child peers may experi-
ence discontinuity in the stream, as we discuss
later.

Overlay Management — The overlay manage-
ment in the case of the pull method deals with
maintaining the mesh of parent-child relations.
Parent-child relations are changed if a parent
leaves the overlay, or if the current set of par-
ents cannot provide the required streaming qual-
ity.

Figure 5 shows the control overhead — the
ratio of control and data traffic at each peer
— at a 500 kb/s streaming rate in the case of
distributed overlay management. The graphs
show approximate values from [5]. The control
overhead depends on the number of parents a
peer maintains, because the overlay is man-
aged and the data transmission is controlled
through message exchanges between parent-
child pairs and seems to be independent of the
size of the overlay. The control overhead
increases with the level of network dynamism
— here reflected by the length of on and off
periods of each peer in the overlay — as the
overlay membership information must be
refreshed more frequently.

DATA TRANSMISSION
Discontinuity in streaming can occur in a dynam-
ic overlay if the partnership information is incor-
rect, or if a parent leaves before transmitting the
pulled packets.

n Figure 3. Pull method. Example for buffer maps and pull schedule and pack-
et transmission paths with different parent selection.

Pull method

1 3 2 4 1 4 2 3Parent
1 2 3 4 5 6 7 8Packet

Pull schedule for node 5

Parent child
{n,n,n,n} Buffer map1

{1,2,3,4,5}

{2,3,7,8} {2,4,6,7}

2

5

3
4

R1

Overlay 1
minimum breadth

R2

1

4

5

3

2

R1

Overlay 2
minimum depth

R2

1

4

5

3

2

{3,4,5,7}

Parent child
Packet 1
Packet 2

FODOR LAYOUT 5/22/07 12:10 PM Page 119

IEEE Communications Magazine • June 2007120

Discontinuity happens even in a static overlay
when a packet is lost due to congestion or can
not be scheduled within the transmission dead-
line. This in turn means that the data transmis-
sion is not feasible due to one of the following
reasons: the overlay ran out of capacity, the
potential parents have the packet available but
no available upload bandwidth, there are too few
peers possessing the packet, or the packet “dis-
appeared” from the network due to network fail-
ures.

Although analytic results on the data distribu-
tion performance are not available in the litera-
ture, experimental results are reported in [1, 5].
As shown in Fig. 5, the ratio of packets not
received is around 2 to 5 percent in a stable
environment, depending on the number of par-
ents and 5-15 percent in a dynamic environment,
depending on the level of network dynamism,
with the distributed overlay management
described in [5]. Further analysis is required to
see if discontinuity is caused by unfeasible sched-
ules at the peer nodes or by error propagation
similar to the push-based case and to evaluate
the performance of very large overlays.

STREAMING WITH THE PUSH-PULL METHOD
While pull-based solutions provide high band-
width utilization in heterogeneous networks and
react quickly to churn and varying network con-
ditions, they introduce significant latency by
pulling small amounts of data at a time. To
decrease latency while maintaining the desirable
properties of pull-based streaming, combining
push and pull mechanisms may offer a good
compromise [9].

With the push-pull methods, a schedule of
packet transmission is defined through a pulling
phase, based on the buffer maps of the parent
peers. After the packet schedule is defined for
one block, the same schedule is applied for the
subsequent blocks without testing the actual
buffer content of the parents, that is, the overlay
works in push mode for some time, providing
low end-to-end delays and lower control load.
When a new packet schedule is defined, the
push phase again is followed by a pull phase.

The length of the push phase determines how
quickly the overlay reacts to churn and to
changes in the network conditions and can be
tuned adaptively. Consequently, the push-pull
method trades flexibility for lower end-to-end
delay and control load.

RESILIENT TRANSMISSION FOR
PEER-TO-PEER STREAMING

In peer-to-peer networks, packets may not be
delivered to the peers due to churn or due to
congestion or network failures. To provide the
desirable low packet-loss rate for the streaming
application, some form of error control is
required. Traditionally, there are two methods of
error control in communication networks. Lost
information can be retransmitted or regenerated
based on the redundancy present in the stream.
In the following sections, we discuss how these
two approaches can be used in the case of peer-
to-peer streaming. In the case of pull-based
streaming, discontinuity also occurs if the parents
have the same subset of packets available. We
discuss how network coding helps in this case.

Error Control with Redundancy — Redun-
dancy can be added to the media stream through
source coding or by applying algebraic codes
over the coded stream. MDC (multiple descrip-
tion coding) falls in the first category and has
been proposed for point-to-point streaming
applications. MDC encodes the stream into mul-
tiple sub-streams called descriptions. If only one
description is received, the stream can be decod-
ed with certain accuracy. If more than one
description is received, the information from the
other descriptions can be used to enhance the
accuracy. MDC can be used in peer-to-peer
streaming applications to accommodate peers
with heterogeneous download bandwidth. How-
ever, for error control, MDC is of limited use
because peers receiving a subset of the descrip-
tions cannot regenerate the missing ones, which
in turn leads to propagation of losses in the
overlay.

n Figure 4. Push method. Reconnection failure probability and data distribution performance in dynamic overlays.

Number of trees

100
0

0.02Re
co

nn
ec

ti
on

 f
ai

lu
re

 p
ro

ba
bi

lit
y

0.04

0.06

0.08

0.1

0.12

20 30 40

Average reconnection time/average lifetime

10-2
0.3

0.4

Pa
ck

et
 p

os
se

ss
io

n
pr

ob
ab

ili
ty

0.5

0.6

0.7

0.8

0.9

1

10-1 0.5

W/o FEC
FEC(8,7)
FEC(8,6)

Minimum-depth tree
Increased root multiplicity
Flexible bandwidth allocation

FODOR LAYOUT 5/22/07 12:10 PM Page 120

IEEE Communications Magazine • June 2007 121

Forward Error Correction (FEC) based on
algebraic codes — like Reed-Solomon codes,
works as follows. The source generates the coded
media stream and constructs the data packets to
transmit. Then, it takes a block of k consecutive
packets, applies an error-coding scheme to all
the bits in the same position across the packets,
and generates the redundant bits, which will
compose c redundant packets. This procedure
gives an FEC(k + c,k) coded stream. It is
enough to receive any k out of k + c packets;
the rest of the packets can be reconstructed. The
advantage of FEC is that peers can reconstruct
the missing packets and forward them to their
children; thus with proper redundancy, errors do
not propagate in the overlay.

In a peer-to-peer network with push-based
transmission, packets of a FEC block are trans-
mitted in the trees in a round-robin manner. The
multi-path transmission introduces randomiza-
tion in the packet-loss process within a block
and makes FEC efficient. An example with
FEC(3,2) is shown in Fig. 1. Slices with original
packets are transmitted in trees 1 and 2, while
the slice of the redundant packets is transmitted
in tree 3. We follow how node 7 receives the
stream. If node 3 leaves, node 4, 5, and 6 receive
only two out of the three slices but can recon-
struct and then relay the packets of the third
one. Then, even if node 4 also leaves, node 7
receives two slices and can reconstruct all data.

FEC works similarly for the pull method when
applied over the set of packets in a pull block.

The level of redundancy must be selected
carefully, so that it really compensates for the
information loss. Figure 4 shows analytical
results [8] on the average packet-possession
probability of the peers in an overlay of 10,000
nodes depending on the node dynamism —
reflected by decreasing peer lifetime — and on
the added redundancy. The average packet-pos-
session probability already decreases at very low
node dynamism if no error coding is applied.
Adding redundancy, the packet-possession prob-
ability can be kept high, up to a higher level of
node dynamism. If the redundancy is not ade-
quate, the packet-possession probability and
thus, the perceived media quality, drops to zero
in large overlays.

Although redundancy must be adjusted to
cope with the losses, it can be increased only by
decreasing the rate of the media stream at the
same time to keep the transmission rate
unchanged. Otherwise, sources might increase
their transmission rates as a reaction to conges-
tion, further increasing the congestion in this
way. Consequently, adaptive control must be
adopted to tune the redundancy level according
to the level of dynamism and congestion in the
overlay.

Although FEC provides a solution to stop
error propagation in the overlay, it has several

n Figure 5. Pull method. Control overhead and continuity index in static and dynamic overlays.

Number of parents

Pull method

2

0.002

C
on

tr
ol

 o
ve

rh
ea

d

0

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

3 4 5 6

Number of parents

2

0.94

C
on

ti
nu

it
y

in
de

x

0.935

0.945

0.95

0.955
0.96

0.965

0.97
0.975

0.98

0.99

0.985

3 4 5 6

On/off period (s)

Static scenario

Dynamic scenario

50

0.002

C
on

tr
ol

 o
ve

rh
ea

d

0

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

100 200 400 600

On/off period (s)

50

0.84

C
on

ti
nu

it
y

in
de

x

0.82

0.86

0.88

0.9

0.92

0.94

0.96

0.98

100 200 400 800

FODOR LAYOUT 5/22/07 12:10 PM Page 121

IEEE Communications Magazine • June 2007122

shortcomings. It does not accommodate peers
with different download bandwidths, and it is
inefficient if the packet-loss probability varies
across the peers and if burst of losses happen in
short time intervals. To deal with overlays that
are heterogeneous in terms of download band-
width and loss probability, the combined use of
FEC and layered coding is proposed [3]. Layered
coding sorts the bits of the streaming data (bits
of a group of frames in the case of video stream-
ing) in decreasing order of importance. Then,
FEC is used with different levels of redundancy
to protect the data units to a different extent.
Peers experiencing high loss rate are able to
decode important data with high probability.
Peers with low download bandwidth can join to
trees pushing the important data in push-based
overlays and pull selectively the important pack-
ets in pull-based overlays.

Error Control with Retransmission — Redun-
dancy added at the source is an inefficient solu-
tion if loss rates fluctuate quickly. Highly varying
loss can be handled by the retransmission of lost
information or by the combination of added
redundancy and retransmission.

Pull-based streaming incorporates retransmis-
sion of missing data in the basic operation. Peers
can pull a packet again from another parent if it
was not received when first pulled but still could
be received before the playout time. With push-
based streaming, the basic protocol must be
extended to incorporate retransmission. If a
packet is not received, the peer can try to pull it
from one of its parents in the other transmission
trees. Both of these solutions utilize the free
upload bandwidth of the parent peers. Alterna-
tively, a set of potential parents can be main-
tained and used for retransmission.

The opportunities for information retransmis-
sion might appear to be limited due to the
required low end-to-end delays, but efficiency
can be improved. If retransmission is combined
with error coding, only the packets that improve
the error coding capability must be retransmit-
ted. For example, if block coding with k informa-
tion and c redundant packets is applied, the
retransmission must ensure that k out of k + c
packets are received, so that the peer node can
reconstruct the missing c packets. In the case of
coded video, packets retransmitted after their
playout time can be used to decode predicted
frames and thus stop temporal error propagation
in the video stream [10].

Network Coding for Peer-to-Peer Stream-
ing — Originally, network coding was proposed
to decrease the required transmission bandwidth
if information is transmitted from multiple
sources to multiple destinations. Then, the
method was extended for the case of large-scale
content distribution and recently, for pull-based
peer-to-peer streaming [11]. The main point of
network coding is to transmit the linear combi-
nation of data units instead of the data units
themselves. Then, the original data units can be
decoded after receiving the right number of lin-
early independent combinations. Network coding
does not help regenerating lost information but
increases the possibility of collecting the right

amount of information in a distributed environ-
ment. Consequently, it can resolve scheduling
conflicts in pull-based overlays. Network coding
introduces some overhead because the coeffi-
cients of the linear combinations must be trans-
mitted but introduces little coding and decoding
delay and is computationally simple. According
to the first evaluations, network coding can
improve streaming quality in dynamic and band-
width scarce environments.

OPTIMIZING PERFORMANCE
The performance of the data transmission can
be improved by decreasing the end-to-end delays
and the effects of peer departures. A number of
prioritization schemes, which move peers in the
overlay or reallocate parents according to some
metrics, were proposed and evaluated [6, 7, 12].

End-to-end delays are affected by the number
of peer-to-peer hops that data traverses in the
overlay and by the propagation delays between
the parent-child pairs. The first one can be mini-
mized with the correct tree structure and by
moving peers with high upload bandwidth close
to the root [12]. Propagation delays can be mini-
mized by selecting parents based on geographic
locations [6]. Since both the upload bandwidths
and the geographic location of the nodes are
static, predictable metrics that prioritize accord-
ing to upload bandwidth and geographic loca-
tion, prove to be efficient methods to improve
the quality of the data transmission.

It is more difficult to minimize the effects of
congestion and dynamic overlay membership.
The disrupting effect of congested and departing
peers can, in principle, be minimized by moving
reliable peers close to the root node. However,
experiments with real-life traces showed that
predictions on congestion and peer lifetime are
not accurate, and prioritizing according to the
predicted reliability does not improve and might
even degrade the performance [4, 7].

DISCUSSION
The success of live peer-to-peer multimedia
streaming depends on the ability of the overlays to
meet the expectations of the end users. Overlays
should distribute streaming data with acceptable
delays and with acceptable perceived media quali-
ty in spite of the often highly dynamic overlay
membership. In this article, we discussed the per-
formance of the two methods underlying most of
the proposed mechanisms for live peer-to-peer
streaming: the push method, where data is dis-
tributed along transmission trees, and the pull
method, where data is pulled from frequently res-
elected parent peers. Table 1 summarizes the
main properties of the pull and the push methods.

We found that the performance of the data
distribution is affected by the ability of the over-
lays to provide transmission paths with a low num-
ber of overlay hops, which in turn depends on the
strategy of the peers to allocate their upload band-
widths. Although upload bandwidth allocation
strategies are easy to incorporate in the push-
based methods, they may increase the complexity
of parent selection significantly in the now emerg-
ing pull-based solutions. In contrast, pull-based

The success of live

peer-to-peer

multimedia

streaming depends

on the ability of the

overlays to meet the

expectations of the

end users. Overlays

should distribute

streaming data with

acceptable delays

and with acceptable

perceived media

quality in spite of the

often highly dynamic

overlay membership.

FODOR LAYOUT 5/22/07 12:10 PM Page 122

IEEE Communications Magazine • June 2007 123

solutions can better utilize the transmission band-
width in bandwidth-scarce overlays and adapt bet-
ter to temporal changes of network conditions.

We showed how packet loss due to peer
departure can propagate in the push-based over-
lays and discussed the challenges of efficient
error control. We also argued that a thorough
analytical evaluation of the push method is nec-
essary to see how the overlay size affects the
data distribution performance. Only after we
understand the behavior of the push and the pull
methods can we define a hybrid architecture that
achieves both resilience against churn and good
data distribution performance in terms of end-
to-end delay and loss.

ACKNOWLEDGMENTS
This work was supported in part by the Swedish
Foundation for Strategic Research through the
projects Winternet and AWSI and by Wire-
less@KTH.

REFERENCES
[1] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or Multiple-

Tree: A Comparative Study of Live P2P Streaming
Approaches,” Proc. IEEE INFOCOM, May 2007.

[2] M. Castro et al., “SplitStream: High-Bandwidth Multi-
cast in a Cooperative Environment,” Proc. ACM Symp.
Op. Sys. Principles, Oct. 2003.

[3] V. N. Padmanabhan, H. Wang, and P. Chou, “Resilient
Peer-to-Peer Streaming,” Proc. IEEE Int’l. Conf. Network
Protocols, Nov. 2003.

[4] V. Venkataraman, K. Yoshida, and P. Francis,
“Chunkyspread: Heterogeneous Unstructured End Sys-
tem Multicast,” Proc. IEEE Int’l. Conf. Network Proto-
cols, Nov. 2006.

[5] X. Zhang et al., “CoolStreaming/DONet: A Data-Driven
Overlay Network for Efficient Live Media Streaming,”
Proc. IEEE INFOCOM, Mar. 2005.

[6] J. Liang and K. Nahrstedt, “DagStream: Locality Aware
and Failure Resilient Peer-to-Peer Streaming,” Proc.
Multimedia Comp. and Networking, Jan. 2006.

[7] P. B. Godfrey, S. Shenker, and I. Stoica, “Minimizing
Churn in Distributed Systems,” Proc. ACM SIGCOMM,
Sept. 2006.

[8] G. Dán, V. Fodor, and I. Chatzidrossos, “On the Perfor-
mance of Multiple-tree-based Peer-to-Peer Live Stream-
ing,” Proc. IEEE INFOCOM, May 2007.

[9] M. Zhang et al., “Large-Scale Live Media Streaming over
Peer-to-Peer Networks through the Global Internet,”
Proc. ACM Wksp. Advances in Peer-to-Peer Multimedia
Streaming, Nov. 2005.

[10] E. Setton, J. Noh, and B. Girod, “Rate-Distortion Opti-
mized Video Peer-to-Peer Multicast Streaming,” Proc.
ACM Wksp. Advances in Peer-to-Peer Multimedia
Streaming, Nov. 2005.

[11] M. Wang and B. Li, “Lava: A Reality Check of Network
Coding in Peer-to-Peer Live Streaming,” Proc. IEEE
INFOCOM, May 2007.

[12] T. Small, B. Liang, and B. Li, “Scaling Laws and Trade-
Offs in Peer-to-Peer Live Multimedia Streaming,” Proc.
ACM Multimedia, Oct. 2006.

BIOGRAPHIES
VIKTORIA FODOR (vfodor@ee.kth.se) received her M.Sc. and
Ph.D. degrees in informatics from Budapest University of
Technology and Economics, Hungary, in 1993 and 1998,
respectively. She is an associate professor at the Laboratory
for Communication Networks at KTH, Royal Institute of
Technology, Stockholm, Sweden. Her current research
interests include protocol design and performance evalua-
tion of multimedia content distribution systems. She has
conducted research in the areas of all-optical networking,
end-to-end traffic control, and multimedia communication.
She worked as a senior research engineer at the Hungarian
Telecommunications Company in 1997–1998 and joined
KTH in 1999.

GYÖRGY DAN (gyuri@ee.kth.se) received an M.Sc. degree in
informatics from Budapest University of Technology and
Economics in 1999 and an M.Sc. degree in business admin-
istration from Corvinus University of Budapest in 2003. He
received his Ph.D. in telecommunications in 2006 from
KTH. Currently, he is a post-doctoral researcher at KTH. He
worked as consultant in the field of access networks,
streaming media, and videoconferencing from 1999 to
2001. His research interests include traffic control and per-
formance evaluation of point-to-point and peer-to-peer
multimedia communications.

n Table 1. Comparing the push and the pull methods for peer-to-peer streaming.

Push Pull

Overlay Maintains multiple transmission trees Defines partnership mesh and for the whole streaming session
Schedules block of packets

Sign of infeasibility Reconnection failure Infeasible transmission schedule

Delay control Tree structure Parent selection and scheduling

Loss control Redundancy and retransmission Redundancy, scheduling, including retransmission and network
coding

Bandwidth utilization Tree construction and maintenance Scheduling

Performance optimization Tree maintenance Scheduling and parent reselection

Resilience to churn Tree construction and loss control Mesh maintenance, scheduling, and loss control

Control cost Tree maintenance Mesh maintenance and packet pulling

Trades resilience for Redundancy and control Delay and control

FODOR LAYOUT 5/22/07 12:10 PM Page 123

