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Abstract—Enabling visual sensor networks to perform visual
analysis tasks in real-time is challenging due to the computa-
tional complexity of detecting and extracting visual features. A
promising approach to address this challenge is to distribute
the detection and the extraction of local features among the
sensor nodes, in which case the time to complete the visual
analysis of an image is a function of the number of features
found and of the distribution of the features in the image. In
this paper we formulate the minimization of the time needed
to complete the distributed visual analysis for a video sequence
subject to a mean average precision requirement as a stochastic
optimization problem. We propose a solution based on two
composite predictors that reconstruct randomly missing data,
and use a quantile-based linear approximation of the feature
distribution and time series analysis methods. The composite
predictors allow us to compute an approximate optimal solution
through linear programming. We use two surveillance videos to
evaluate the proposed algorithms, and show that prediction is
essential for controlling the completion time. The results show
that the last value predictor together with regular quantile-based
distribution approximation provide a low complexity solution
with very good performance.

Index Terms—Image analysis; wireless sensor networks

I. INTRODUCTION

Low cost cameras and networking hardware make a new

class of sensor networks viable, namely, visual sensor net-

works (VSNs), where visual information is captured at one or

several cameras and processed and transmitted through several

network nodes, until the useful information reaches a central

unit. Such systems can have both industrial and consumer

applications, including supervision and surveillance systems,

and remote monitoring, or as components for autonomous

systems, like automotive navigation [1], [2]. VSNs, however,

differ from more traditional sensor networks, where the trans-

mission of sensed information requires little bandwidth and

the complexity of the information processing is rather low.

VSNs may instead capture high bitrate video sequences, and

information processing is performed locally in the network in

order to deliver only useful information to the sink node. The

information processing needed for visual analysis, such as for

tracking and for object recognition, is however computation-

ally intensive even using state-of-the-art algorithms like FAST

and BRISK [3], [4].
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A promising solution to allow real-time processing of the

visual information is to distribute the processing tasks among

several sensor nodes in the network, as it allows the use of the

processing capacity of several nodes. Nevertheless, the time it

takes for a particular node to perform the processing depends

on the available communication and computational resources

of the node and, importantly, on the image content, which

is not known prior to performing the processing. Therefore,

optimizing the distribution of the processing tasks among the

network nodes is a challenging task.

In this paper we consider visual analysis of video sequences

based on local feature descriptors [3], [4], which are widely

used for object recognition and tracking. The precision of the

visual analysis task depends on the number of descriptors used,

with a known target value. The camera node distributes the

workload of interest point detection and descriptor extraction

by assigning image sub-areas to the processing nodes. The

processing workload of a node depends both on the size of

the sub-area and on the number of detected and extracted

descriptors. Our goal is to maintain good visual analysis

performance, which requires that the total number of interest

points detected be close to the target value, and to allow real-

time video analysis, which requires that the network nodes

should receive the pixel information of the assigned sub-area,

and should complete the extraction of the descriptors as fast

as possible.

We formulate this problem as a multi-objective stochastic

optimization problem. To solve the optimization problem

we leverage the temporal correlation among the consecutive

images in the video sequence. The temporal correlation allows

us to develop a predictor of the detection threshold, such that

the number of descriptors is close to the required number. To

minimize the completion time, we find the optimal schedule of

the transmissions to the processing nodes, and we predict the

optimal division of the image into sub-areas using a percentile-

based approximation, such that the time of completing the

feature extraction is minimized. Numerical results show that

prediction is essential to achieve our objectives, and that the

proposed prediction algorithms combine low computational

complexity with good prediction performance.

The rest of the paper is organized as follows. In Section II

we review related work. In Section III we describe the con-

sidered system and in Section IV we provide the problem

formulation. In Section V we develop the proposed predictors

and in Section VI we identify the optimal scheduling order.



In Section VII we present smiulation results and we conclude

the paper in Section VIII.

II. RELATED WORK

The challenge of networked visual analysis is addressed

in [3], [4], defining feature extraction schemes with low com-

putational complexity. To decrease the transmission bandwidth

requirements, [5], [6] propose lossy image coding schemes

optimized for descriptor extraction, while [7], [8], [9] give

solutions to decrease the number and the size of the descriptors

to be transmitted. In [10] the number and the quantization

level of the considered descriptors are jointly optimized to

maximize the accuracy of the recognition, subject to energy

and bandwidth constraints.

To decrease the transmission requirements of feature ex-

traction in the case of video sequences [11] selects candidate

descriptor locations based on motion prediction, and trans-

mits and processes these areas only. In [12], [13] intra- and

inter-frame coding of descriptors is proposed to decrease the

transmission requirements.

Our work is motivated by recent results on the expected

transmission and processing load of visual analysis in sensor

networks [10], [14], [15]. Measurements in [14] demonstrate

that processing at the camera or at the sink node of the VSN

leads to significant delays, and thus distributed processing

is necessary for real-time applications. The requirement of

prediction based system optimization is motivated by the

statistical analysis of a large public image database in [15],

showing that the number and the spatial distribution of the

descriptors have high variability and depend significantly on

the image content. Thus, the temporal correlation in the video

sequence needs to be utilized to achieve the efficient control

of the visual analysis parameters. Finally, experiments in [10]

show that the processing delay and the energy consumption

increase linearly with the image size and with the number of

detected descriptors. Consequently, to limit the time needed

for descriptor extraction, the number of descriptors need to be

controlled, and the workload allocation has to consider both

the size of the sub-areas and the distribution of the descriptors.

Optimal load scheduling for distributed systems is addressed

in [16], in the framework of Divisible Load Theory, with the

general result that minimum completion time is achieved, if

all processors finish the processing at the same time. Usually

three decisions need to be made: the subset of the processors

used, the order they receive their share of workload, and the

division of the workload. Unfortunately, the results are specific

to a given system setup. Works closest to ours address tree

networks with heterogeneous link capacities and processor

speeds [17], concluding that scheduling should be in decreas-

ing order of the transmission capacities, while the processing

speed does not affect the scheduling decision. However, [18]

shows that the optimal scheduling order may be different if

the processing has constant overhead, and under equal link

capacities the scheduling should happen in decreasing order

of the processing speeds. As we show in the paper, this result

can not be used in general either, for example, in our scenario

where unicast and multicast transmissions are combined, and

the link transmission capacities differ.

III. BACKGROUND AND SYSTEM MODEL

We consider a VSN consisting of a camera node C, a set

of processing nodes N , |N | = N , and a sink node S. The
camera node captures a sequence of images. Each image is

transmitted to and processed at nodes in N , and finally the

results are transmitted to S where the visual analysis task is

completed.

A. Communication model

The nodes communicate using a multicast/broadcast capable

wireless communication protocol, such as IEEE 802.15.4 or

IEEE 802.11. Transmissions suffer from packet losses due

to wireless channel impairments. As measurement studies

show [19], [20], losses at the receivers can be modeled

as independent and the loss burst lengths have low mean

and variance in the order of a couple of frames [21], [22].

Therefore, a widely used model of the loss process is a low-

order Markov-chain, with fast decaying correlation and short

mixing time. In the system we consider, the amount of data to

be transmitted to the processing nodes is relatively large, and

therefore it is reasonable to model the average transmission

time from C to a node n ∈ N as a linear function of the

amount of transmitted data. The average per pixel transmission

time, including potential retransmissions, is referred to as

the transmission time coefficient and denoted by Cn. As the

throughput is close to stationary over short timescales, Cn

can be estimated [23]. When using multicast or broadcast

transmission, the throughput is determined by the receiver with

lowest achievable throughput.

B. Feature detection and extraction

A sequence {Zi} , i = 1, . . . , I , of images is captured at C.
Each image has a height of h and a width of w pixels. For

each image, C sends the image data to the processing nodes,

which perform interest point detection and feature descriptor

extraction.

Interest point detection is performed by applying a blob

detector or an edge detector at every pixel of the image

area [24], [25], [4]. The detector computes a response score

for each pixel based on a square area centered around the

pixel, with side length 2ow pixels, where o depends on the

applied detector. A pixel is identified as an interest point if the

response score exceeds the detection threshold ϑ ∈ Θ ⊆ R
+.

The number of interest points detected in an image depends on

the image and on the detection threshold ϑ, we thus describe

the number of interest points detected in image i is by an

integer valued, left continuous, non-negative, decreasing step

function fi(ϑ) of the detection threshold ϑ. fi is not known

before processing image i; we model it as a random function

chosen from the family of integer valued, left continuous, non-

negative, decreasing step functions. The inverse function f−1
i :

N → Θ can be defined as f−1
i (m) = max {ϑ|fi (ϑ) = m}.



The maximum exists because fi is a left continuous, decreas-

ing step function. We denote the sequence of thresholds used

in the images by ϑ = (ϑ1, . . . , ϑI).
In order to distribute the workload among the processing

nodes in N , the camera node divides each image i into at

mostN sub-areas. Sub-area Zi,n is then assigned to processing

node n. For simplicity, we consider that the sub-areas are

slices of the image formed along the horizontal axis. This

scheme was referred to as area-split in [15]. We specify the

sub-areas by the horizontal coordinates of the vertical lines

separating them, normalized by the image width w, which we

refer to as the cut-point location vector xi = (xi,1, . . . , xi,N ),
xi,1 < . . . < xi,N = 1. For notational convenience, we define

xi,0 = 0, the left edge of image i, and x = (x1, . . . ,xI),
the sequence of cut-point vectors used for the trace. Since

interest point detection at a pixel requires a square area around

the pixel to be available, all points within ow pixels of the

horizontal coordinate xi,n need to be transmitted to both node

n and n+ 1. We call o the overlap, and we express its value

normalized by the image width w (hence the multiplication

above). We consider that 1
N

>> o, which holds if the image

size is reasonably large.

The number of interest points detected in sub-area Zi,n

depends on the image, the detection threshold ϑi and on the

cut-point location vector xi. We thus describe the number

of interest points detected in sub-area Zi,n by the function

fi,n(ϑi,xi), and we define the vector function f i (ϑi,xi) =
(fi,1 (ϑi,xi) , . . . , fi,N (ϑi,xi)). The function f i (ϑi,xi) can
be modeled as a random function from the family of integer

valued vector functions with
∑N

n=1 fi,n(ϑ,xi) = fi(ϑ). We

consider that the time it takes to detect the interest points is a

linear function of the size of the sub-area (not including the

overlap) with rate Pd,px,n, and of the number of interest points

detected with rate Pd,ip,n.

As the next step, a feature descriptor is extracted for each

interest point. The time it takes to extract the descriptors is a

linear function of the number of interest points detected with

rate Pe,ip,n.

To validate this model, we performed interest point de-

tection and feature descriptor extraction on a BeagleBone

Black single board computer for 3 different image sizes using

OpenCV [26]. The results shown in Figure 1 confirm that

the computation time can be well approximated by a linear

function. Similar results were reported on an Intel Imote2

platform in [14].

When node n completes the extraction of descriptors within

area Zi,n, it transmits them to S, where various computer

vision tasks can be performed. In order for S to be able

to perform its computer vision tasks, it requires M∗ interest

points to be detected in each image. To optimize the distributed

processing, ϑ and x should be selected based on information

available at S. Since for each already transmitted image i the
sink has access to the parameters (ϑi,xi), as well as all the

interest point descriptors, it knows the location and score of

each detected interest point. It can therefore calculate fi (ϑ)
for any ϑ ≥ ϑi, i.e., the total workload the system would have
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Figure 1: Average time for performing detection and extraction

as a function of the number of interest points found for three

image sizes. The linear regression shows a good fit.

had with detection threshold ϑ. Nevertheless, if fi (ϑi) < M∗

then f−1
i (M∗) cannot be computed by S. Similarly, S can

compute f i (ϑ,xi) for any ϑ ≥ ϑi and any cut-point location

vector x. We use Υi to denote the information available to S
about image i, and Υi− to denote the information available

about all images previous to image i.

IV. PROBLEM FORMULATION

Based on the model of the wireless links and of the detection

and extraction of features, we first express the transmission and

processing times of the N processing nodes as a function of

the threshold ϑi and the cut-point location vector xi. We then

define the performance metrics and formulate our objective.

A. Transmission and Processing Time

Assume the nodes are numbered by the order in which they

receive their data from the camera node C, and let us consider

a node n. Initially, node n is idle while all preceding nodes

receive their data. It then starts receiving data once C starts

to transmit the overlap shared between nodes n and n − 1,
followed by the data destined to node n only, and finally the

overlap shared between nodes n and n+ 1. Once node n has

received the data, feature detection and descriptor extraction

are performed on the sub-area Zi,n. Finally the descriptors are

transmitted to S. However, as the size of a descriptor is small

compared to the image data in the case of modern binary

descriptors like BRISK [4], we do not consider the time it

takes to transmit them to S. Figure 2 illustrates the phases for

N = 3.
In the following we provide matrix expressions for the

transmission, processing and finally for the task completion

time for the case when 2o < xi,n−1 − xi,n, i.e., an overlap

spans only two nodes; similar expressions can be obtained

for 2o ≥ xi,n−1 − xi,n. Let Gj be an N × 1 column

vector, and let Dj and Ej be N × N matrices. Also, let

us use the notation CM
n , max(Cn, Cn+1) as a shorthand

for the effective transmission time coefficient for multicast

transmission to nodes n and n+ 1.
The average time node n spends idling before it receives

the first bit can be expressed in matrix notation as



Figure 2: Example with N = 3 processing nodes. The image is

cut along the horizontal axis, the subareas and the overlaps are

transmitted to and processed by the processing nodes. A node

is either (w)aiting to receive data, is (r)eceiving individual

data, is receiving (o)verlapping data, or is (p)rocessing data.

Tidle,i = D1xi +G1, where

d1,m,n =











hwCn, m = n+ 1

hwCn − hwCn+1, m > n+ 1

0, otherwise,

and

g1,m =

{

0, m = 1

−hwoC1 +
∑m−1

j=2

(

2hwoCM
j−1 − 2hwoCj

)

, m > 1.

Node n receives the overlaps with its neighbours in mul-

ticast transmission. As nodes 1 and N are assigned the edge

pieces of the image, they will only receive a single overlap.

The time to receive the overlap is

Toverlap,i = G2, where

g2,n =











2hwoCM
1 , n = 1

2hwoCM
n−1 + 2hwoCM

n , 1 < n < N

2hwoCM
N−1, n = N.

The average time it takes node n to receive the non-

overlapping data depends on the size of the sub-area Zi,n

Ttransmit,i = D3xi +G3, where

d3,m,n =











hwCn, m = n

−hwCn+1, m = n+ 1

0, otherwise

and

g3,n =

{

−hwoCn, n ∈ 1, N

−2hwoCn, otherwise.

The time it takes to perform interest point detection is a

function of the size of sub-area Zi,n and of the number of

detected interest points, and can be expressed as

Tdetect,i = D4xi +E4f i (ϑi,xi), where

d4,m,n =











hw
Pd,px,n

, m = n

−
hw

Pd,px,n+1
, m = n+ 1

0, otherwise

and

e4,m,n =

{

1

Pd,ip,n
, m = n

0, otherwise.

Finally, the time needed for descriptor extraction is a

function of the number of detected interest points

Textract,i = E5f i (ϑi,xi), where

e5,m,n =

{

1
Pe,n

, m = n

0, otherwise.

Let us define D , D1 +D3+D4, E , E4 +E5, and G ,

G1+G2+G3. Using this notation we can express the expected

completion time of each node n for image i, Ti (ϑi,xi) =
(Ti,1 (ϑi,xi) , . . . , Ti,N (ϑi,xi)) as

Ti (ϑi,xi) = Dxi + Ef i (ϑi,xi) +G, (1)

which is a non-linear vector function of ϑi and xi.

B. Performance optimization

We are interested in two key aspects of the VSN’s perfor-

mance. First, we want to ensure that the VSN can perform

the visual analysis task at the required level of mean average

precision. The mean average precision can be controlled by the

number of detected interest points. We therefore define our first

performance metric to be the squared error in detected interest

points in image i compared to the target value M∗ required

by the computer vision task

eDi (ϑi) = (fi (ϑi)−M∗)2 , (2)

and we define the corresponding mean square error as

eD (ϑ) = 1
I

∑I
i=1 e

D
i (ϑi). We define the optimal detection

threshold for image i as ϑ∗
i = min(θ∗i ), where θ∗i =

{ϑ|eDi (ϑ) = 0}.
Second, we are interested in minimizing the time it takes

to complete the detection and the extraction of all descriptors.

We therefore define our second performance metric based on

the VSN’s completion time, which we define as the largest

completion time among all processing nodes. We define the

squared completion time error of the VSN for image i as

the squared difference compared to the smallest possible VSN

completion time

eCi (ϑi,xi) =
(

max
n

(Ti (ϑi,xi))−max
n

(Ti (ϑ
∗
i ,x

∗
i ))

)2

,

(3)

and the mean squared completion time error as eC (ϑ,x) =
1
I

∑I
i=1 e

C
i (ϑi,xi), where the optimal cut-point location vec-

tor x∗
i ∈ argminxi

maxn (Ti (ϑ
∗
i ,xi)).

Observe that both (2) and (3) depend on the functions fi
and f i, which are not known prior to processing image i. By
modeling fi and f i as random functions, we can formulate our

problem as a stochastic multi-objective optimization problem

lexmin(E[eD (ϑ)],E[eC (ϑ,x)]) (4)

s.t.

ϑ ∈ ΘI ,x ∈ X I , (5)

where lexmin stands for lexicographical minimization, and

we are looking for an expected value efficient solution [27].

Since the choice of ϑi and xi for image i does not influence
the error at images j > i, this problem is equivalent to solving

lexmin(E[eDi (ϑi)],E[e
C
i (ϑi,xi)]) (6)

s.t.

ϑi ∈ Θ,xi ∈ X , (7)

for every image i based on the information Υi−. We therefore

search for the solution in the form of a predictor τ∗ (Υ) that
minimizes the expected square error

τ∗ ∈ argmin
τ

E[eDi (τ (Υi−))], (8)



and a predictor γ∗ (Υ) that minimizes the expected squared

completion time error

γ∗ ∈ argmin
γ

E[eCi (τ∗ (Υi−) , γ (Υi−))]. (9)

In what follows we develop and analyze predictors with low

complexity and little overhead suitable for sensor networks.

V. PREDICTIVE COMPLETION TIME MINIMIZATION

Solving the prediction problems (8) and (9) with conven-

tional methods is not straightforward for two reasons. First,

since fi (ϑ) and fi,n (ϑ,x), and thus (2) and (3) are step func-

tions in ϑ and x, the sets of minimizers θ∗i =
{

ϑ|eDi (ϑ) = 0
}

and Ξ∗
i =

{

x|eCi (ϑ∗,x) = 0, ϑ∗ ∈ θ∗i
}

may not be single-

tons. Second, if fi(ϑ̂i) < M∗ then θ∗i is unknown and can

not be used for prediction. Third, a predictor for solving (9)

should predict the distribution of interest point locations.

A. Controlling the Workload

We first address the problem of estimating θ∗i when fi(ϑ̂i) <
M∗. Let us consider an image i for which the predicted

detection threshold ϑ̂i results in fi(ϑ̂i) < M∗. We want to

estimate a ϑ̂∗
i ∈ θ∗i that can be used to predict ϑ̂i+1 ∈ θ∗i+1.

The approach we describe in the following uses preceding

images for which fj(ϑ̂j) ≥ M∗ for estimating the slope of

the function f−1
i around M∗ [28]. Let Ii− be the set of

indices of the images before image i for which the estimated

detection threshold ϑ̂j resulted in at least M∗ interest points,

i.e., fj(ϑ̂j) ≥ M∗ ∀j ∈ Ii−.
We can use these images to obtain the backward estimate

of the slope of the function f−1
i at M∗ by using the linear

regression in the backward direction proposed in [28]. In the

backward direction (i.e., less than M∗ interest points) we can

compute the regression for arbitrary difference d < M∗ based

on the available data Υi−. For a particular difference d =
M∗ − fj(ϑ) after simplification we obtain

βb
i−(d) =

1

|Ii−|

∑

j∈Ii−

f−1
j (M∗)− f−1

j (M∗ − d)

d
, (10)

which is the average backward difference quotient of f−1 at

M∗ over the images in Ii−. Using the backward regression

coefficient we obtain the estimated threshold

ϑ̂b∗
i = ϑ̂i − (fi(ϑ̂i)−M∗)βb

i−, (11)

which is the minimum variance unbiased estimator of ϑ∗
i [28].

Given ϑ̂b∗
i , we can use a time series model to predict ϑ̂i+1.

B. Distribution-based Cut-point Location Vector Selection

We address the minimization of the completion time in two

steps. First, we consider a given ordering of the processing

nodes and provide an algorithm to approximate the cut-point

location vector xi that minimizes the completion time for the

ordering. Second, in Section VI we show how to find the

ordering that allows the smallest completion time.

Without loss of generality we consider that sub-area Zi,n

has to be processed by node n, and for image i we need to

find the cut-point vector xi that minimizes eCi (ϑi,xi).

Let us assume that the distribution of the interest points’

horizontal coordinates Fi(ϑi, x) is known, thus f i (ϑi,x) can
be computed for an arbitrary cut-point location vector x. We

can then compute the cut-point location vector x∗
i for image i

that minimizes eCi (ϑi,xi) by solving the integer programming

(IP) problem

min t (12)

s.t.

Dxi + Ef i (ϑi,xi) +G ≤ t1 (13)

xi,n−1w − xi,nw ≤ −2o ∀n (14)

xi,nw ∈ {1, . . . , w} ∀n (15)

where (13) is componentwise, (14) enforces that the cut-point

coordinates are increasing, (15) ensures they are aligned with

pixels, and 1 is a N × 1 column vector of ones.

Using the IP (12)-(15) for the considered VSN faces two

challenges. First, the distribution Fi(x) is not available until

the processing of image i is completed, at which point

solving the IP problem is no longer necessary. Second, even

if one knew Fi(x) before processing image i, solving the IP

problem would be computationally intensive. We address these

challenges in the following.

C. Percentile-based Cut-point Location Vector Selection

The biggest challenge in solving (12)-(15) is that it needs

a prediction of the distribution Fi(ϑi, xi) of interest points

in image i. This prediction would require predicting the

locations and appearance/disappearance of all interest points

for every image, which is computationally infeasible. To avoid

this problem, we propose to approximate the distribution

Fi−1(ϑi, x) of interest points through its percentiles, and to

predict the approximation of the distribution Fi(ϑi+1, x) for

the optimization through predicting the percentiles. Here we

focus on the approximation and the optimization, and will

compare various predictors in Section VII.

We approximate the distribution Fi(ϑi, x) with the dis-

tribution F̃i(ϑi, x), obtained as the linear interpolation of

Fi(ϑi, x) between its values at Q percentiles, denoted by

ξ = ξ1, . . . , ξQ,

F̃i(ϑi, x) =
x− ξq−1

ξq − ξq−1
πq +Πq−1, (16)

where ξ0 = 0, ξq−1 < x ≤ ξq , πq = Fi(ϑi, ξq)−Fi(ϑi, ξq−1)
is the portion of interest points in the interval ξq−1 < x ≤ ξq ,
and Πq−1 = Fi(ϑi, ξq−1) is the portion of interest points

left of ξq−1. F̃i(ϑi, x) is a non-decreasing, non-negative,

continuous, piecewise linear function, which we can use to

compute the approximate number of interest points assigned

to node n for cut-point location vector xi as

f̃i,n (ϑi,xi) = M∗

(

F̃i(ϑi, xi,n)− F̃i,x(ϑi, xi,n−1)
)

. (17)

We can use (17) to express the approximate time needed for



interest point detection

T̃det,i = D̃4xi + G̃4,where

d̃4,m,n =















hw
Pd,px,n

+
M∗

Pd,ip,n

πq

ξq−ξq−1
, m = n

−hw
Pd,px,n+1

−
M∗

Pd,ip,n+1

πr
ξr−ξr−1

, m = n+ 1

0, otherwise

g̃4,n =
M∗

Pd,ip,n

(

ξr−1πr

ξr − ξr−1

−
ξq−1πq

ξq − ξq−1

+Πq−1 − Πr−1

)

, ∀n

and the approximate time needed for descriptor extraction

T̃ext,i = D̃5xi + G̃5,where

d̃5,m,n =















M∗

Pe,ip,n

πq

ξq−ξq−1
, m = n

−
M∗

Pe,ip,n+1

πr

ξr−ξr−1
, m = n+ 1

0, otherwise

g5,n =
M∗

Pe,ip,n

(

ξr−1πr

ξr − ξr−1

−
ξq−1πq

ξq − ξq−1

+Πq−1 −Πr−1

)

, ∀n

By forming the matrices D̃ , D1 + D̃4 + D̃5 and G̃ ,

G1 + G2 + G3 + G̃4 + G̃5, we obtain for the approximate

completion times of the nodes the set of linear equations

T̃i = D̃xi + G̃. (18)

The cut-point location vector x̃∗

i that minimizes (18) can be

obtained by solving the integer-linear programming problem

min t (19)

s.t.

D̃xi + G̃ ≤ t1 (20)

xi,n−1w − xi,nw ≤ −2o ∀n (21)

xi,nw ∈ {1, . . . , w} ∀n (22)

Since (20) is piece-wise linear, a linear relaxation of the

problem can be solved efficiently, and the rounding error is

negligible if the distribution is reasonably smooth. Observe

that by using Q = fi(ϑi) percentiles, the approximate distri-

bution F̃x(ϑ, x) is a linear interpolation of Fx(ϑ, x).
An important question is how close to optimal would be

the completion time of the processing with this approximate

solution. To answer this question we introduce TN
i (ϑi,x

∗
i ) =

maxn(Ti(ϑi,x
∗
i )), the optimal processing completion time in

the VSN based on (12)-(15), T̃N
i (ϑi, x̃

∗

i ) = maxn(Ti(ϑi, x̃
∗

i ))
the optimal completion time with the linear interpolation

according to (19)-(22), and finally TN
i (ϑi, x̃

∗

i ) the experienced
completion time if x̃∗

i is applied for the real distribution

Fx(ϑ, x). In the following we give a bound on the maximum

difference between TN
i (ϑi,x

∗
i ) and T̃N

i (ϑi, x̃
∗

i )

Proposition 1. For any ǫ > 0 there exists Q such that

TN
i (ϑi,x

∗
i ) ≤ T̃N

i (ϑi, x̃
∗

i ) + ǫ.

Proof: As TN
i (ϑi,x

∗
i ) ≤ TN

i (ϑi, x̃
∗

i ), we prove

TN
i (ϑi, x̃

∗

i ) ≤ T̃N
i (ϑi, x̃

∗

i ) + ǫ. Despite the linear interpo-

lation, for each node n the components of T̃i,n (ϑi, x̃
∗

i ) and

Ti,n (ϑi, x̃
∗

i ) are identical: the transmission time, the sub-area

size dependent part of the detection time, and the detection

and extraction times that depend on the interest points in

the percentiles following x̃∗
i,n−1 and preceding x̃∗

i,n. If we

define ∆i = maxx|Fi(ϑi, x) − F̃i(ϑi, x)|, we can obtain

the worst case bound ǫ̃n = Ti,n (ϑi, x̃
∗

i ) − T̃i,n (ϑi, x̃
∗

i ) ≤

2∆i

(

1
Pd,ip,n

+ 1
Pe,n

)

, and consequently ǫ̃ = TN
i (ϑi, x̃

∗

i ) −

T̃N
i (ϑi, x̃

∗

i ) ≤ 2∆i maxn

(

1
Pd,ip,n

+ 1
Pe,n

)

.

Let us now consider Q quantiles. The number of interest

points between neighboring quantile points is
fi(ϑi)

Q
−1 = ∆i,

and consequently we have

ǫ̃ ≤ 2

(

fi(ϑi)

Q
− 1

)

max
n

(

1

Pd,ip,n

+
1

Pe,n

)

. (23)

Thus, ǫ̃ ≤ ǫ for any Q ≥ 2fi(ϑi)Tp

ǫ+2Tp
, with Tp = 1

Pd,ip,n
+ 1

Pe,n
.

D. On-line Cut-point Location Vector Optimization

So far we considered minimizing the expected completion

time, assuming that data are transmitted with the expected

transmission time coefficients Cn. The actual transmission

times are however random, and would differ from the expected

values. In the following we address whether one should recom-

pute the cut-point location vector after the data transmission

to node m completes, to further minimize the completion time

of the distributed processing.

Let us consider image i and denote the expected time of

completing the transmission to node m by τi,m (ϑi,x
∗
i ), and

the expected remaining time until completing the processing

of the image by τi,m+ (ϑi,x
∗
i ), such that τi,m (ϑi,x

∗
i ) +

τi,m+ (ϑi,x
∗
i ) = TN

i (ϑi,x
∗
i ) according to (12)-(15). Let us

furthermore denote by τmi,m (ϑi,x
∗
i ) the experienced time of

completing the transmission to node m, using the optimal cut-

point vector x∗
i . Also we denote by xm and xm+ the first m

and the remaining N −m elements of vector x.

Proposition 2. For all m = 1 . . .N − 1, xm+∗

i =
{x∗

i,m+1, x
∗
i,m+2, . . . x

∗
i,N}, that is, the cut-point location

vector calculated according to (12)-(15) minimizes the ex-

pected completion time TN,m
i

(

ϑi, [x
m∗
i ,xm+

i ]
)

for any given

τmi,m (ϑi,x
∗
i ).

Proof: We prove the theorem by contradiction.

TN,m
i

(

ϑi, [x
m∗
i ,xm+

i ]
)

can be minimized by minimizing the

remaining expected completion time τi,m+

(

ϑi, [x
m∗
i ,xm+

i ]
)

,

where xm+
i is arbitrary.

Assume now that there exists xm+
i 6= xm+∗

i , such that

τmi,m+(ϑi, [x
m∗
i ,xm+

i ]) < τmi,m+(ϑi,x
∗
i ). Then, exchanging

xm+∗

i with xm+
i , the completion time expected before the

start of the transmission of the first subarea of image i
would be τi,m−

(

ϑi, [x
m∗
i ,xm+

i ]
)

+τi,m+

(

ϑi, [x
m∗
i ,xm+

i ]
)

<
Ti (ϑi,x

∗
i ), which is a contradiction.

Thus, the optimal cut-point location vector need not be

recomputed after the transmission starts.

VI. SCHEDULING ORDER

From [16] it is known, that for given scheduling order,

that is, given order of transmission to the processing nodes,

the task completion time is minimized, if all the processing

nodes completes the processing at the same time, while the



achievable minimum depends on the scheduling order. Below

we show that the existence of data transmission overlap affects

the optimal scheduling method. We show that to minimize the

completion time decisions need to be made: i) on the order of

the transmission to the utilized processors, ii) on the number

of processors to be utilized, and iii) whether the overlap should

be transmitted multicast or by separate, unicast transmission

to the two involved processors.

Let us consider the simplified case, when the processing

time is proportional to the amount of received data, that is,

Pn = Pd,px,n and Pd,ip,n = Pd,e,n = 0, and there are only

two processing nodes N = {A,B}.

Proposition 3. If overlap is not required, i.e. o = 0, the

completion time is minimized by scheduling the nodes in

increasing order of per bit transmission time.

Proof: Here we recall the proof for N = 2. The extended
version can be found in [17]. Consider two processing nodes,
A and B, with CA ≤ CB and arbitrary processing capacities
PA and PB . When node A is scheduled before node B, the
completion times for image i are

Ti,AB = hw

[

xi,1CA +
xi,1

PA

xi,1CA + (1− xi,1)CB +
1−xi,1

PB

]

. (24)

This gives optimal cut-point location, under which the
processing at node A and B completes at the same time

x
∗

i,1,AB =
PA(1 + CBPB)

PA + PB + CBPAPB

, (25)

and the resulting minimum completion time is

T
∗

i,AB =
(1 +CAPA)(1 + CBPB)

PA + PB + CBPAPB

. (26)

Scheduling the nodes in the reverse order gives

Ti,BA = hw

[

xi,1CB + (1− xi,1)CA +
1−xi,1

PA

xi,1CB +
xi,1

PB

]

, (27)

The optimal cut-point location in this case is

x
∗

i,1,BA =
PB(1 + CAPA)

PA + PB +CAPAPB

, (28)

and minimum completion time becomes

T
∗

i,BA =
(1 +CAPA)(1 + CBPB)

PA + PB + CAPAPB

. (29)

Assume, T ∗
i,BA < T ∗

i,AB . As (26) and (29) differ only in

one term in the denominator, T ∗
i,BA < T ∗

i,AB → CA > CB ,

which contradicts the initial assumption CA ≤ CB .

Now we introduce transmission overlap o > 0.

Proposition 4. Consider overlap o > 0. There exists some

configuration of per bit transmission times and processing

rates for which the scheduling order in increasing per bit

transmission times is not optimal.

Proof: Consider, as before N = {A,B}, with CA ≤
CB and arbitrary PA and PB . The overlap is transmitted via

multicast transmission with CB .
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Figure 3: Optimal transmission scheduling schemes as a

function of CB/CA and PA/PB , for CA = 1/PA, CA ≤ CB

and o = 0.2.

Transmitting first to node A the completion times are

Ti,AB = hw

[

(xi,1 − o)CA + 2oCB +
xi,1

PA

(xi,1 − o)CA + (1− xi,1 + o)CB +
1−xi,1

PB

]

,

(30)
and in the reverse order they become

Ti,BA = hw

[

(xi,1 + o)CB + (1− xi,1 − o)CA +
1−xi,1

PA

(xi,1 + o)CB +
xi,1

PB

]

.

(31)

The optimal cut-point location and the related minimum
completion time can be calculated as in Proposition 3. The
expressions are rather cumbersome in this case. However, as
CB

CA
→ ∞, they give T ∗

i,BA < T ∗
i,AB , if

PA

PB

>
1− o

o
(32)

There is thus a ratio of processing rates for which reversed

scheduling order, with increasing per bit transmission times,

is optimal.

Similar derivations provide the (CA, PA, CB, PB) parame-

ter combinations where the unicast transmission of the overlap

area is preferable, and when only one of the processors should

be utilized. Leaving the exact expressions aside, in Figure 3

we show representative results, with parameters CA = 1/PA,

CA ≤ CB and o = 0.2 Under given CAPA product and

o value, the optimal transmission scheduling is a function

of the ratios CB/CA and PA/PB . Only a single processor,

processor A should be used in the parameter region marked

with (A,-,U), that is, when the relative transmission time to

A is low, and its relative processing speed is high. Moreover,

the border of this region does not depend on the value of the

overlap. If there is a significant difference in the transmission

times, but the processing speeds are similar, then both of the

processors should be used, and the overlap areas should be

transmitted separately with unicast transmission. In the case of

unicast transmission, it always holds that the fastest link should

be scheduled first. This region is marked as (A,B,U) on the

figure. Finally, according to Proposition 4, when the multicast

transmission of the overlap area is optimal, the scheduling
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Figure 4: The partial autocorrelation function of the optimal

threshold ϑ∗
i time series of the Pedestrian video sequence.

order depends on the ratio of the processing speeds, leading

to parameter regions (A,B,M) and (B,A,M).

VII. NUMERICAL RESULTS

We performed simulations to evaluate the proposed algo-

rithms on two surveillance video traces, both with resolution

1920 × 1080, and frame rates of 25 frames per second.

One trace, referred to as the "Pedestrian" trace, consists of

375 frames and shows a pedestrian intersection with people

moving horizontally across the field of view, covering and

uncovering interest points in the background. The other trace,

referred to as the "Rush hour" trace, consists of 473 frames

and shows a road with vehicles moving slowly along the

camera’s line of sight, leading to mostly minor changes in the

horizontal distribution of interest points. The characteristics of

the Pedestrian trace make feature extraction optimization more

challenging.

The VSN we consider uses the BRISK [4] scheme for

interest point detection and feature description extraction, with

M∗ = 400 as the target number of interest points. When not

otherwise noted the VSN has N = 6 processing nodes, all

with equal processing rates similar to those of an Intel iMote

(Pd,px = 9×104 px/s, Pd,ip = 94 ip/s, Pe = 25 ip/s) and trans-
mission time coefficients (C = 6.7× 10−8 s/bit), and we use

Q = 10 quantiles for the approximation of the interest point

distribution Fi(ϑ, x), i.e., F̃i(ϑ, ξq) =
q
Q
, q = 1, 2, . . . , Q.

We normalize the performance results to the performance

of a non-adaptive offline scheme, and we compare the per-

formances to that of a simple last value predictor denoted by

Y (i − 1). The offline scheme has complete knowledge of all

parameters in each frame; it uses a static detection threshold

ϑs = argminϑ e
D(ϑ) and a static cut-point location vector

that minimizes the completion time assuming the interest point

distribution is F (ϑ, x) = 1
I

∑I
i=1 Fi(ϑ

∗
i , x). The last value

predictor assumes that the content of image i is identical to

that of image i− 1.

A. Detection threshold prediction

Figure 4 shows the partial autocorrelation function of the

optimal threshold values ϑ∗
i for the Pedestrian trace, similar

results were found for the Rush hour trace. The figure suggests

that autoregressive (AR) models up to order 10 should be

considered for predicting ϑ̂i.

Pedestrian Rush hour
0

0.05

0.1

0.15

0.2

Video trace

N
o

rm
a

liz
e

d
 t

h
re

s
h

o
ld

 M
S

E

 

 

AR(1)

AR(2)

AR(10)

Y(i−1)

Pedestrian Rush hour
0

0.05

0.1

0.15

0.2

Video trace

N
o

rm
a

liz
e

d
 i
n

te
re

s
t 

p
o

in
t 

M
S

E
 (

e
D

(ϑ
))

 

 

AR(1)

AR(2)

AR(10)

Y(i−1)

Figure 5: Mean square error of four threshold predictors in

terms of threshold ϑi and in terms of detected interest points

(eD(ϑ)).
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Figure 6: Mean square error of the completion time (eC) and
of the completion time difference of four percentile predictors.

Figure 5 shows the performance in terms of MSE of three

AR models and of the last value predictor Y (i− 1). The AR

models are initially trained using the first 100 frames of the

trace and are then retrained after each frame. The left plot

shows the MSE of the threshold prediction, i.e., 1
I

∑I
i=1(ϑ

∗
i −

ϑ̂i)
2, the right plot shows the MSE in terms of detected interest

points, i.e., eD(ϑ). The MSE results are normalized by the

corresponding MSE of the offline scheme. The figure shows

that threshold prediction decreases the MSE compared to the

offline scheme by a factor of 5 to 20 depending on the trace.

At the same time the gain of using a higher order predictor is

small when compared to the last value or the AR(1) predictor,

especially for the Pedestrian trace.

B. Completion time minimization

Figure 6 shows results for the completion times using

the proposed percentile based prediction, i.e., each of the Q
percentile points is predicted by an AR model or by the last

value predictor. Prediction again decreases the MSE by up to

a factor of 10 compared to the offline scheme. The two traces

show different results in the performance of the predictors.

For the Rush hour trace there is some advantage of choosing

a higher order predictor, although the marginal performance

gain decreases as the order increases. In this case the choice

of the predictor should be based on the trade-off between

the achieved performance and the computational complexity

of training the predictor. For the Pedestrian trace, however,
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predictors and for varying p, under percentile prediction.
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Figure 8: Cumulative square errors of two different predic-

tors, together with the coordinate of the 0.50 interest point

distribution percentile.

we see very different results, as the performance does not

seem to improve with higher prediction order; the AR(10)

performs significantly worse than the last value predictor. In

the following we discuss the reasons for this counter-intuitive

result.

Figure 7 shows the completion time MSE achieved when

using AR and vector AR (VAR) predictors for percentile pre-

diction as a function of the predictor order p, again normalized

by the MSE of the offline scheme. We see that the performance

of the AR predictor decreases with increased prediction order.

Interestingly, the VAR predictor, which could capture any cor-

relation between the different percentile coordinates, performs

consistently worse than the independent AR predictors.

To explain the reason for the poor performance of high order

predictors, Figure 8 shows the evolution of the cumulative

square error (i.e., not normalized by the number of images

I) for the sequence of images for the AR(10) and the last

value predictor. The results confirm that due to the longer

memory of the AR(10) predictor it needs longer time to adjust

to large and sudden changes in the image contents. We see,

for instance, that a large portion of the total square error

for AR(10) emerges during frames 250–320. These frames

correspond to a 3 second part of the trace where a tight
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Figure 9: Mean difference in completion times as a function of

the number of percentiles used for distribution approximation.
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Figure 10: Completion time MSE and mean completion time

as a function of N .

cluster of interest points in the right side of the scene is first

revealed, concealed, and then revealed again very suddenly.

Another reason why the last value predictor can outperform

the AR predictors is that the error criterion used to train the

predictors is not the deviation from the minimal completion

time but the error in predicting the percentile coordinates. As

the interest points tend to appear in clusters, a small error

in percentile prediction and cut-point selection can produce a

large discrepancy between the actual number of interest points

in the slices.

C. Approximation of the interest point distribution

So far we used quantiles as the percentiles for approximat-

ing the interest point distributions. Figure 9 compares the MSE

of the quantile based approximation to an approximation that

chooses the percentiles so as to minimize the square error

of the approximation. The predictor used is the last value

predictor. The figure shows that optimizing the percentiles

improves the prediction performance significantly and reduces

the number of percentiles needed for the same performance,

especially when the number of processing nodes is high

(N = 6). However, achieving this performance improvement



comes at the price of optimizing the percentile locations,

which is again computationally intensive.

In Figure 10 we show the MSE (left axis) of the last

value predictor as a function of the number of nodes N for

Q = 10 percentiles. We see that the relative gain of performing

the percentile optimization increases as N increases. On the

right axis we show the mean completion times achieved

using the two approximations. It is worth noting that the

difference in terms of mean completion time is rather small,

which indicates that the large difference in terms of MSE

is due to occasional large errors caused by the quantile-

based approximation, which are penalized by the quadratic

error function. Consequently, if large completion times can be

tolerated occasionally then the quantile based approximation

with the last value predictor constitute a computationally

simple algorithm with good performance.

VIII. CONCLUSION AND FUTURE WORK

We considered the problem of minimizing the comple-

tion time of distributed interest point detection and feature

extraction in a visual sensor network. We formulated the

problem as a stochastic multi-objective optimization problem.

We proposed a regression scheme to support the prediction of

the detection threshold so as to maintain a target number of

interest points, and a prediction scheme based on a percentile-

based approximation of the interest point distribution for min-

imizing the completion time. Our numerical results show that

prediction is essential for achieving good system performance.

The gain of high order predictors is moderate in general, and

depending on the characteristics of the video trace it may

even be detrimental to system performance to use higher order

prediction models. Our results show that the simple AR(1)

and the last value predictors together with a quantile-based

approximation of the interest point distribution offer good

performance at low computational complexity, making them

good candidates for use in visual sensor networks.

Our model could be extended to fast fading and corre-

lated wireless channels and to dynamically evolving network

topologies, in which case node unreachability needs to be

handled. Another interesting direction for future work could

be to maximize the network lifetime under completion time

constraints which may require pipelined processing.
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