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ABSTRACT

We consider controlling and balancing the processing load in
a visual sensor network (VSN) used for detecting local fea-
tures, such as BRISK. We formulate a prediction problem
with random missing data, and propose two regression-based
algorithms for data reconstruction. Numerical results illus-
trate the performance of the proposed algorithms, and show
that backward regression combined with the last value predic-
tor can be used for controlling and balancing the processing
load in VSNs with good performance.

1. INTRODUCTION

Computer vision has a wide range of applications in industry
and in society, including the supervision of manufacturing,
automated surveillance, remote medical diagnosis, navigation
of automotives, or augmented reality. Therefore, affordable
and reliable computer vision systems could become important
building blocks in the emerging networked society [1, 2].

Computer vision systems today fall into one of two cate-
gories. In the first category expensive smart cameras are used
that are capable of performing complex computer vision tasks
locally, and can communicate the results to a central com-
puter. In the second category cheap low complexity cameras
capture the visual information from different viewpoints, then
compress and transmit this information to a central server,
which performs the visual analysis. As a consequence, the
transmission bandwidth requirements to the server are signif-
icant, which limits the feasibility of the approach.

Visual sensor networks (VSNs) with forwarding nodes that
are capable of processing visual information may provide a
solution to perform visual analysis tasks at low cost, low
transmission requirements and low delay. The processing
delay can be decreased via parallel processing at the nodes.
Furthermore, the transmission bandwidth requirements can
be lower, since the in-network processing avoids the need of
transmitting pixel information to the server. To achieve these
gains, however, the VSN has to be able to control the work-
load and balance the workload distribution among the net-
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work nodes, which is a challenging task considering the high
variability of the image content [3].

In this paper we propose to utilize the temporal correla-
tion in video sequences to control and balance the load in
the VSN. Specifically, we consider visual analysis based on
local feature descriptors, where the processing load depends
on the descriptor detection threshold. The processing load is
distributed by allocating sub-areas of the images to the pro-
cessing nodes. The balance of the processing load depends
on the number of detected descriptors within the sub-areas.

Our aim is to predict the detection threshold that results in
the desired number of detected features and the cut-points of
the sub-areas that lead to a balanced load distribution. The in-
formation available from the processing of preceding images
is limited: only the predicted parameter values and the result-
ing error in the number and in the balance of descriptors can
be observed. Therefore, for each image we first have to esti-
mate the threshold and cut-point values that should have been
used for the preceding image, and then predict the optimal
values of these parameters via autoregressive models.

Related to ours are recent works on visual analysis of video
sequences in smart camera networks. The temporal correla-
tion of video sequences is traditionally used to decrease the
image information to be stored or transmitted, by applying
inter-frame coding [4]. A similar idea, differential coding
among the descriptors detected in the consecutive images of
the video sequence, was used in [5] to decrease the bandwidth
needed for transmitting the descriptors from smart cameras.

Our work is motivated by recent works on visual analysis in
sensor networks [6, 7, 3]. In [6] the authors showed that the
processing delay and the energy consumption increases lin-
early with the number of detected interest points, and conse-
quently the control of this parameter is necessary. [7] demon-
strated that centralized processing leads to significant delays
in a VSN, and thus by distributing the processing load the per-
formance of the VSN could be improved significantly. Statis-
tical analysis of a large public image database revealed that
the number and the spatial distribution of the descriptors have
high variability and depend significantly on the image con-
tent [3]. Thus, the utilization of the temporal correlation in
the video sequence is necessary for the efficient control of the
visual analysis parameters.



2. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a visual sensor network (VSN) that consists of
a camera node C, a set of processing nodes P , |P| = P ,
and a sink node S. The camera node C produces a finite se-
quence {Zi} of images, numbered i = 0, 1, . . . , I . It sends
each image to the processing nodes, which detect and extract
local descriptors, such as the recently proposed SURF [8] or
BRISK [9] descriptors.

Interest point detection can be done using a blob detector,
as in the case of SURF, or using an edge detector, as in the
case of BRISK, and is parametrized by a detection threshold
ϑ ∈ Θ ⊆ R+. A point in an image is identified as an inter-
est point if the detection scheme assigns a score higher than
ϑ to it. The number of interest points detected in image i
is a left continuous, decreasing, non-negative integer valued
step function fi(ϑ) of the detection threshold ϑ used by the
interest point detection algorithm. Let us define the inverse
f−1
i : N → Θ of f as f−1

i (m) = max{ϑ|fi(ϑ) = m}. The
maximum exists because fi is a left continuous decreasing
step function. We use the notation ϑ = (ϑ1, . . . , ϑI) for the
vector of thresholds used for the sequence of images.

In order to distribute the workload among the processing
nodes in P , the camera node creates P sub-areas of image
i, one per processing node, and assigns sub-area Zi,p to pro-
cessing node p. This scheme is referred to as area-split in [3].
We consider that the sub-areas are slices of the image, and for
simplicity we assume slices are formed along the horizontal
axis. The sub-areas in image i are thus determined by the cut-
point location vector xi = (xi,1, . . . , xi,P−1). We denote the
set of feasible cut-point location vectors by X . The number
of interest points in sub-area Zi,p is a function fi,p(ϑ,xi) of
the detection threshold and of the cut-point location vector (in
fact, of two of its components xi,p−1 and xi,p). The number
of interest points in sub-area Zi,p determines the processing
time and the energy consumption of node p.

Once the processing nodes are done with the detection and
extraction for image i with the parameters (ϑi,xi), they send
the descriptors to the sink node S. The sink uses the descrip-
tors for a visual analysis task, such as object recognition and
tracking, and it requires M∗ descriptors per image. Since the
score of each interest point is available at the sink, the sink
can compute (fi,1(ϑ,x), . . . , fi,P (ϑ,x)) for an arbitrary cut-
point location vector x but only for ϑ ≥ ϑi. Furthermore, it
can compute fi(ϑ) for any ϑ ≥ ϑi. The sink can not, how-
ever, compute fi(ϑ) for ϑ < ϑi, as it does not have access to
image i. Consequently, if fi(ϑi) < M∗ then f−1

i (M∗) is not
known. We denote by Υi the data available to the sink node
about image i, and by Υi− the data available up to but not
including image i.

2.1. Problem Formulation

The goal of the VSN is to detect the desired M∗ number of
interest points in every image in a balanced way, that is, each

processing node should detect and extract N∗ , M∗/P in-
terest points. Typically M∗ >> P , thus it is reasonable to
assume that M∗ is divisible by P . Given (ϑi,xi), we define
the error due to the mismatch in the number of detected inter-
est points in image i as

eDi (ϑi) = (fi(ϑi)−M∗)2
, (1)

and the mean square error eD(ϑ) = 1
I

∑I
i=1 e

D
i (ϑi). Sim-

ilarly, the error due to the lack of balance in the load of the
processing nodes for image i as

eBi (ϑi,xi) =

P∑
p=1

(fi,p(ϑi,xi)−N∗)2
, (2)

and the mean square error eB = 1
I

∑I
i=1 e

B
i (ϑi,xi). Observe

that eBi (ϑi,xi) ≥ eDi (ϑi), and thus minimizing (2) requires
the minimization of (1). Since the functions fi and fi,p are
not known a priori, the problem is to find a predictor τ∗(Υ)
that minimizes the mean square error

τ∗ ∈ arg min
τ

1

I

I∑
i=1

eDi (τ(Υi−)), (3)

and a predictor γ∗(Υ) that minimizes the mean square error

γ∗ ∈ arg min
γ

1

I

I∑
i=1

eBi (τ∗(Υi−), γ(Υi−)). (4)

The solution of the prediction problems (3) and (4) us-
ing standard predictors is not immediate for two reasons.
First, the sets of minimizers θ∗i = {ϑ|eDi (ϑ) = 0} and
Ξ∗i = {x|eBi (ϑ∗,x) = 0, ϑ∗ ∈ θ∗i } need not be single-
tons, because fi(ϑ) and fi,p(ϑ,x) and thus (1) and (2) are
step functions in ϑ and in x. Second, if fi(ϑi) < M∗ then
θ∗i is unknown, and can thus not be used for prediction. In
the following we propose two regression-based solutions to
address the second problem.

3. REGRESSION-BASED RECONSTRUCTION

We propose two regression-based methods for estimating θ∗i ,
which allows us to evaluate various autoregressive models
that require ϑ∗i for prediction.

Consider an image i for which the predicted detection
threshold ϑ̂i results in fi(ϑ̂i) < M∗. The goal is to esti-
mate some ϑ̂∗i ∈ θ∗i that can be used to predict ϑ̂i+1 ∈ θ∗i+1.
The key tenet of the proposed approach is to use preceding
images for which fj(ϑ̂j) ≥ M∗ for estimating the slope of
the function f−1

i around M∗. Let Ii− be the set of indices of
the images before image i for which the estimated detection
threshold ϑ̂j resulted in more than M∗ interest points, i.e.,
fj(ϑ̂j) ≥M∗ ∀j ∈ Ii−. We can use the images in Ii− to es-
timate the slope of the function f−1

i around M∗ in two ways:
in the forward direction and in the backward direction.



Forward estimate: To obtain the forward estimate of the
slope of the function we define the forward regression coeffi-
cient

βfi− =

1
|Ii−|

∑
j∈Ii− (fj(ϑ̂j)−M∗)(ϑ̂j − f−1

j (M∗))

1
|Ii−|

∑
j∈Ii− (fj(ϑ̂j)−M∗)2

, (5)

which is the estimated slope of the piece-wise linear extension
of f−1

i in the forward direction (i.e., beyond M∗). We then
use the forward regression coefficient to obtain the estimated
threshold

ϑ̂f∗i = ϑ̂i − (fi(ϑ̂i)−M∗)βfi− (6)

Backward estimate: To obtain the backward estimate of
the function’s slope we use the same linear regression but in
the backward direction. In the backward direction (i.e., less
than M∗ interest points) we can compute the regression for
arbitrary difference d < M∗ based on the available data Υi−.
For a particular difference d after simplification we obtain

βbi−(d) =
1

|Ii−|
∑
j∈Ii−

f−1
j (M∗)− f−1

j (M∗ − d)

d
, (7)

which is the average backward difference quotient of f−1 at
M∗ over the images in Ii−. Using the backward regression
coefficient we obtain the estimated threshold

ϑ̂b∗i = ϑ̂i − (fi(ϑ̂i)−M∗)βbi−. (8)

Proposition 1. Assume that for every d the backward dif-

ference quotient f−1
i (M∗)−f−1

i (M∗−d)

d of f−1
i at M∗ can

be modeled by an i.i.d. random variable, and is indepen-
dent of f−1

i (M∗). Then the estimated threshold ϑ̂b∗i =
arg minϑE[eDi (ϑ)].

Proof. Since the backward difference quotient is indepen-
dent of f−1

i (M∗), the backward difference quotient of images
j ∈ Ii− is an unbiased sample of that of all images j < i.
Since βbi−(d) is the sample mean of the backward difference
quotient, it is the minimum variance unbiased estimator, and
thus it minimizes the expected square error.

Given ϑ̂b∗i or ϑ̂f∗i we can use a similar regression for esti-
mating the cut-point location vector x̂i that would minimize
eBi (ϑ̂∗i ,xi).

4. PERFORMANCE EVALUATION

We use two video traces to evaluate the proposed regression-
based prediction and to compare the performance of different
predictors. The traces are surveillance recordings from two
different locations, and have a resolution of 1920× 1080 pix-
els at 25 frames per second. One trace, referred to as the
“Pedestrian” trace, consists of 375 frames and shows a pedes-
trian intersection with people moving from one side to the
other, covering up and uncovering interest points as people

move. The second trace, referred to as the “Rush hour” trace,
contains 473 frames and shows a busy road with slow moving
vehicles. The line of vision is parallel to the street, mean-
ing vehicles move mostly towards and away from the camera.
The more chaotic movements of the Pedestrian trace some-
times produce large changes in both θ∗ and Ξ∗. The VSN we
consider contains two processing nodes, and we use BRISK
for interest point detection with M∗ = 400.

As a basis of comparison for the proposed regression based
reconstruction we use two methods. The first method, re-
ferred to as the Scaling method, scales the predicted thresh-
old ϑ̂i by a constant factor α, 0 < α < 1 whenever
fi(ϑ̂i) < M∗, i.e., the scaled value of the threshold predic-
tion for image i is ϑ̂S∗i = α · ϑ̂i. Off-line evaluation shows
that the scaling method produces best results for α = 0.98.
The second method, referred to as the Clairvoyant scheme,
has knowledge of ϑ̂∗i = ϑ∗i = f−1

i (M∗) and x̂∗i = x∗i =
max(Ξ∗

i )+min(Ξ∗
i )

2 , and can use it for predicting ϑ̂i+1 and x̂i+1.
The predictions of both the threshold and the cut-point val-

ues are done using autoregressive (AR) prediction models of
orders 1, 2, and 10. Our choice of prediction models and their
orders are based on the partial autocorrelation function of ϑ∗i
and x∗i for the two video traces. The AR predictors are ini-
tially trained using data from the first quarter of the trace, and
then retrained after each frame. Alongside the AR predictors
we use the last value predictor (denoted by Y (i− 1)), which
predicts ϑ̂i+1 = ϑ̂∗i .

In Figure 1 we compare the mean square error (MSE) of
the four reconstruction schemes. Subfigure 1(a) was obtained
by using the last value predictor for predicting ϑ̂i; whenever
fi(ϑ̂i) < M∗ we use one of three reconstruction schemes
to reconstruct ϑ̂∗i and compute the resulting squared error
(ϑ̂∗i − ϑ∗i )2 . To avoid the propagation of the prediction error,
we use ϑ∗i instead of ϑ̂∗i as input for predicting ϑ̂i+1. The val-
ues plotted are the MSE of the backward regression scheme,
i.e., (ϑ̂b∗i − ϑ∗i )2, divided by the MSE of the three schemes.
The results show that backward regression performs best, in
accordance with Proposition 1.

Subfigure 1(b) shows the MSE of the last value predictor
combined with the Clairvoyant scheme, divided by the MSE
of the predicted thresholds for four predictors combined with
three reconstruction schemes. The results were obtained by
using the reconstructed thresholds ϑ̂∗i for predicting the sub-
sequent thresholds ϑ̂j , j > i. This creates a feedback loop
where the choice of predictor influences the frames for which
reconstruction is needed, and reconstruction influences the
prediction performance. From the figure we see that the back-
ward regression scheme has a slight advantage over the for-
ward regression scheme in almost all scenarios, and they both
greatly outperform the scaling scheme. Therefore from this
point on we only consider the backward regression scheme
for threshold reconstruction.

Figure 2 shows the MSE of the predicted threshold values



Fig. 1. Relative MSE of (a) the reconstructed thresholds (pre-
dictors trained with Clairvoyant scheme) and (b) the predicted
thresholds (predictors trained with reconstructed thresholds).
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Fig. 2. MSE of threshold prediction normalized by that of the
Clairvoyant last value predictor.
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Fig. 3. MSE of cut point prediction normalized by that of the
Clairvoyant last value predictor.
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Fig. 4. Evolution of predicted cut-point and MSE for the
Pedestrian trace.

([ϑ̂i−ϑ∗i ]2) and of the number of interest points detected (eDi )
for the different prediction models, normalized by that of the
last value predictor with the Clairvoyant scheme. The fig-
ure shows that the gains of using a higher order predictor are
small, and in certain cases a high order predictor may even
perform worse than the last value predictor. Finally, com-
pared to a static optimal scheme that uses ϑ̂i = ϑ̂ that min-
imizes eD, we found that prediction reduces the MSE of de-
tected interest points by a factor of 5 to 25.

Figure 3 shows corresponding MSE results for cut-point
location ([x̂i−x∗i ]2) and the point balance (eBi ) normalized by
that of the last value predictor with the Clairvoyant scheme.
For the Pedestrian trace the normalized point balance MSE of
the AR(10) predictor is roughly twice that of the AR(1) and of
the last value predictor. While it may sound counter-intuitive
that higher order predictors perform worse in terms of point
balance, we have to remember that what we use to train the
predictors is the cut-point location, and not the point balance.

In Figure 4, we observe what happens when there are sud-
den changes in the cut-point location. We can see that the
error in cut-point prediction is not that sensitive to sudden
changes, and the errors of the AR(10) and the last value pre-
diction models are fairly similar. However, after the cut-point
suddenly changes, it takes the AR(10) predictor some time to

settle around the new cut-point. During the settling time, the
point balance error grows quickly, indicating that there is a
high concentration of interest points around the cut-point. We
can therefore conclude that although the two error measures
are related, the distribution of interest points in a frame can
cause a predictor with higher settling time to produce large
errors in point balance. This in turn explains, why a low order
AR predictor can perform better than higher order ones.

5. CONCLUSION

We considered the problem of controlling and balancing the
processing load of detecting local visual features in a visual
sensor network. We proposed a backward and a forward
regression-based algorithm for reconstructing missing data.
We used these data reconstruction algorithms in conjunction
with a variety of predictors for predicting the detection thresh-
old and the cut-point location. Our numerical results show
that, in accordance with the analytical results, backward re-
gression based reconstruction performs best. Furthermore,
the simple last value predictor proves to achieve consistently
good performance both for detection threshold and cut-point
location prediction. Combined with low computational com-
plexity, its good performance makes the last value predictor a
good candidate for load control and balancing in VSNs.
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