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Abstract—We consider the problem of assigning communica-
tion and computing resources of a fog computing network to
sensors that may observe the same scene from multiple view-
ing angles. We formulate the Multi-View Assignment Problem
(MVAP) as a quadratic mixed-integer problem, and show that it
is NP-hard. We propose polynomial time 4-approximation based
on a transformation to a General Assignment Problem with
dependent profits, and based on a reduction of the number of
items to an approximately dominant set of items. We show that
the reduction of the set of items does not affect the solution of
the problem if the set of items is exactly the dominating set.
Extensive numerical results show that the proposed algorithm
performs close to optimal for small systems, and scales well with
the number of sensors in the system.

I. INTRODUCTION

Computer vision systems based on affordable cameras and
cheap networking technologies are becoming important build-
ing blocks of the networked society, supporting smart cities
and transportation, health care and entertainment. As cheap
camera sensors become a commodity, overlapping fields of
views between two or more cameras can be utilized for multi-
view visual processing, which allows improved reliability
of visual analysis based surveillance [1], tracking [2] and
recognition [3].

If computer vision systems are based on affordable wireless
sensor network platforms, the processing limitations of the
camera sensors and the low transmission capacity of the
sensor network make the real-time processing of the visual
information at the sensors, alternatively at a remote server
impossible [4]. Instead, a suitable solution for timely visual
analysis could be to delegate the processing to nearby, power-
ful network nodes, such as access points or base stations, as
it was shown for single camera [5] and for multiple camera
systems [6].

In this paper we address the specific challenge of remote vi-
sual processing in multi-view camera systems, where overlap-
ping fields of views of multiple sensors need to be processed
jointly, that is, at the same base station. Moreover, since the
same image can be part of several multi-views, processing
all these views at the same base station leads to additional
gains, as each image needs to be transmitted to one single
base station only, saving both time and energy. Transmitting
all images to the same base station is, however, infeasible in
systems with many sensor, and thus the assignment has to
be optimized so as to maximize the number of multi-views
processed, subject to the available communication capacity.

The solution to this problem is challenging in a wireless
environment, as the channel quality, and thus the required
transmission times depend on the relative positions of the
sensors and the base stations.

In this paper we address this problem by formulating the
multi-view sensor assignment problem (MVAP), in which a set
of sensors has to be assigned to computing resources located
at or near base stations in such a way that the total number
of multi-views processed within a time frame is maximized.
The MVAP is similar to general assignment problems, widely
addressed in the literature [7], [8]. However, the specific
requirement of multi-view processing leads to a quadratic
utility function and dependent gains in the case when a sensor
contributes in several multi-views. In this paper we propose to
solve the multi-view assignment problem as a series of mul-
tiple choice knapsack problems (MCKP) [9], and provide an
approximation algorithm with a bounded approximation ratio.
We show that the complexity of the approximation algorithm
can be decreased significantly by heuristics considering only
the dominating sets of multi-views without compromising the
efficiency of the resulting assignment. Our numerical results
show that the proposed algorithm performs well independent
of the view-graph topology, and allows to process up to 30%
more views compared to a greedy approximation using the
same communication capacity. To the best of our knowledge
we are the first to consider the multi-view assignment problem
for jointly optimizing the use of wireless communication and
computing resources in a fog computing infrastructure.

The paper is organized as follows. In Section II we introduce
the system model and in Section III we formulate the multi-
view assignment problem. In Section IV we develop the ap-
proximation algorithm and in Section V we provide analytical
results. In Section VI we present simulation results and we
conclude the paper in Section VII.

II. SYSTEM MODEL

We consider a system that consists of a set S of S = |S|
camera-equipped sensors and N base stations. The sensors
may have overlapping fields of views (FoV), which we model
by a view-graph GV (S, EV ), where an edge es,s′ ∈ EV
represents a shared FoV between sensors s and s′. We denote
by A the S × S weighted adjacency matrix of GV . Element
as,s′ of A represents the portion of the FoV of sensor s that
overlaps with that of sensor s′. For simplicity, we consider
that as,s′ is independent of the view of the other sensors, that



is, as,s′ = as. For notational convenience, we define Ã to be
a binary version of A, where

ãs,s′ =

{
1, as,s′ > 0
0, as,s′ = 0.

(1)

Time is slotted with slot length T . Each sensor captures an
image at the beginning of each time slot, and has to transmit
the captured image to one or more of the N base stations
before the end of the time slot, where the images are processed
for object recognition or tracking. For a pair of sensors s and
s′ for which es,s′ ∈ EV , the two sensors need to transmit their
images to the same base station, otherwise object recognition
for the view (s, s′) is not possible. Note that a sensor may need
to transmit to several base stations to allow the processing of
all multi-views.

Sensors transmit to the base stations via wireless channels,
and we consider that adjacent base stations use different
frequency bands in order to avoid interference, but have a
single radio unit, and can receive only from one sensor at a
time. We denote by dn,s the distance between sensor s and
base station n, and consider that the transmission capacity cn,s
is inversely proportional to dn,s up to the maximum range
D, above which cn,s = 0. The fraction of a time-slot T that
sensor s needs to complete transmission of as,s′ to base station
n can be expressed as tn,s = as

cn,s
. We say that tn,s = ∞ if

dn,s > D.

III. MULTI-VIEW ASSIGNMENT PROBLEM (MVAP)

Our objective is to maximize the number of multi-views pro-
cessed in each time slot by assigning sensors to base stations
subject to the multi-view graph and capacity constraints. We
refer to the problem as the Multi-View Assignment Problem
(MVAP). Due to the requirement of multi-view processing
at the same base station MVAP is a quadratic mixed-integer
optimization problem, and can be formulated as follows

max
S∑

s=1

S∑
s′=s+1

ãs,s′

(
1−

N∏
n=1

[1− xn,sxn,s′ ]

)
(2)

s.t.
S∑

s=1

tn,sxn,s ≤ 1,∀n (3)

xn,s ∈ {0, 1}, (4)

where xn,s is the decision variable indicating whether sensor
s transmits to base station n. Equation (3) enforces that base
stations do not receive past the duration of the time-slot, and
(4) ensures that the entire FoV of sensor s is transmitted.

Proposition 1. The MVAP defined by (2)–(4) is NP-hard.

Proof. We prove the NP-hardness by transforming the Densest
k-Subgraph problem (DkS) [10] to MVAP with N = 1. DkS is
an NP-Hard problem where, given the graph G = (V,E), the
objective is to find the k-vertex subgraph of G which contains
the largest number of edges. Let the nodes and the edges of the
view-graph GV (S, EV ) be identical to those of G = (V,E),

and set tn,s = 1
k ,∀s, ensuring that in the transferred problem

exactly k sensors can transmit to the base station. The resulting
optimum assignment of the MVAP gives highest number of
processed multi-views, and consequently, the densest k-vertex
subgraph of G. As DkS is NP-hard, problem (2)–(4) is also
NP-hard.

A. Multiple-choice Knapsack Problem (MCKP)

A basic building block in our solution is an approximation
algorithm to the Multiple-choice Knapsack Problem (MCKP).
In the MCKP a set K of items is partitioned into I classes;
item j in class i has weight wi,j and value pi,j . The objective
is to select exactly one item out of each class of items so
as to maximize the profit of the selected items subject to the
capacity constraint c,

max
∑
i∈I

∑
j∈Ji

pi,jyi,j (5)

subject to
∑
i∈I

∑
j∈Ji

wi,jyi,j ≤ c (6)∑
j∈Ji

yi,j = 1 (7)

yi,j = {0, 1}. (8)

Note that according to Proposition 1 the MCKP problem is
NP-hard.

One way to solve the MCKP is to use a greedy algorithm
that always selects the item with highest profit pi,j , without
violating the capacity constraint. The pseudo-code of the
algorithm is given in Algorithm 1. This greedy algorithm has
complexity O(L logL), where L is the total number of items
across all classes, and does not have a bounded approximation
ratio.

An alternative to greedy is the polynomial time Dyer-Zemel
(DZ) approximation algorithm proposed in [11], [12] for
solving the MCKP. For completeness we discuss the algorithm,
shown in Algorithm 2. The basic idea is to pair items of the
same class and in this way iteratively remove items based on
their profit-weight ratio. The DZ algorithm terminates once
there is one single item left in each class (which may be the

Algorithm 1 Greedy approximation for MCKP
Input: I, Ji, pi,j , wi,j , c
Output: Set of M of assigned items

1: Sort all items j in all component i by decreasing pi,j
2: Let I+ the set of components with assigned item
3: I+ = ∅
4: M = ∅
5: W = 0
6: for each {i, j}, i /∈ I+ do
7: if W + wi,j ≤ c then
8: M =M∪ j
9: for i, j ∈ i I+ = I+ ∪ i

10: W =W + wi,j
11: end if
12: end for
13: return M



Algorithm 2 Dyer-Zemel MCKP approximation
Input: I, Ji, pi,j , wi,j , c
Output: Set M of assigned items

1: Let J+
i = Ji ∀ i

2: while ∃|J+
i | > 1 do

3: for each i do
4: while More than 1 unpaired item remains in class i do
5: Pair any items (j, k) ∈ i
6: if (wi,j < wi,k ∧ pi,j > pi,k) then
7: J+

i = J+
i \ k, pair j with new item

8: else if (wi,j > wi,k ∧ pi,j < pi,k) then
9: J+

i = J+
i \ j, pair k with new item

10: else if (wi,j > wi,k) ∨ (wi,j == wi,k ∧ pi,j < pi,k)
then

11: Change the order of j and k
12: end if
13: end while
14: for each Pair (j, k) ∈ i do
15: Let αijk =

pi,k−pi,j
wi,k−wi,j

16: end for
17: Let α = median({αijk})
18: for each i do
19: Let Mi = argmaxj∈ipi,j − αwi,j
20: Let ai = argminj∈Mi(α)

wi,j
21: Let bi = argmaxj∈Mi(α)

wi,j
22: end for
23: if

∑t
i=1 wi,ai ≤ c <

∑t
i=1 wi,bi then

24: return M = ∪iMi

25: else
26: for each i do
27: for each Pair (j, k) do
28: if

∑t
i=1 wi,ai ≥ c ∧ αijk ≤ α then

29: J+
i = J+

i \ k (remove heavier item)
30: end if
31: if

∑t
i=1 wi,ai < c ∧ αijk ≥ α then

32: J+
i = J+

i \ j (remove lighter item)
33: end if
34: end for
35: end for
36: end if
37: end for
38: end while
39: return M

empty set), and the capacity constraint is not violated. The
algorithm has an approximation ratio of 3 and complexity
O(L).

IV. APPROXIMATION ALGORITHM FOR MVAP
In this section we develop a 4 approximation algorithm with

complexity O(N2L) to the MVAP problem. The algorithm
consists of two phases. In the first phase we transform the
MVAP problem into a Generalized Assignment Problem with
Dependent Profits (GAPDP), which allows the selection of
items from the same class at multiple knapsacks. In the second
phase we solve the GAPDP by treating it as a series of
MCKPs.

We begin by describing the first phase. Let I be the set of
connected components in GV . For each i ∈ I we define the
class of items Ji as the power set of the sensors in i, including
the empty set ∅. We will reduce the cardinality of this set in
Section IV-B. For a subset of sensors j ∈ Ji we denote the

subgraph induced by the sensors by Gi,j . The profit of item j
is the number of shared views, that is, the number of edges
in Gi,j , pi,j = |E(Gi,j)|. The weight wn,i,j of j ∈ Ji depends
on the base station n, wn,i,j =

∑
s∈j ts,n.

We formulate the GAPDP as

max|
⋃
n

⋃
yn,i,j=1

E(Gi,j)| (9)

subject to
∑
i∈I

∑
j∈Ji

wn,i,jyn,i,j ≤ 1,∀n (10)∑
j∈Ji

yn,i,j = 1,∀n, i (11)

yn,i,j = {0, 1}, (12)

where yn,i,j indicates whether item j in class i is assigned
to knapsack n, (9) aims at maximizing the number of multi-
views covered by all assigned items, and (10)-(12) are the
transformed constraints (3), (4), and the additional constraint
on one assigned item per component.

The solution of the MVAP, which is the matrix of binary
values xn,s, is then given as xn,s =

∑
s∈j,j∈Ji,i∈I yn,i,j for

all n and s.

A. Iterative GAPDP approximation

To solve the GAPDP we propose the Highest Marginal
Profit (HMP) algorithm, which is an iterative greedy algorithm.
Its pseudo-code is shown in Algorithm 3. HMP solves the
MCKP for all base stations in each iteration, and keeps the
assignments to the base station n∗ with the highest profit.
Then, the profit of all items is updated to represent the
marginal gains given the completed assignments. Let us denote
the set of base stations already considered by N+. Then the
profit of each item j is decreased by the number of multi-
views already assigned at the base stations in N+. That is,
pi,j = |E(Gi,j) \ ∪n∈N+,yn,i,k=1E(Gi,k)|.

Proposition 2. The approximation ratio of the HMP algorithm
is 1+α, where α is the approximation ratio of the algorithm
for solving the MCKP.

Proof. The proof is based on the local ratio technique [13],
following the steps in [8].

Depending on the algorithm used to solve the MCKP, there
may be spare capacity available at some or all base stations.
By running the HMP algorithm multiple times, each time
considering just the remaining capacity of the base stations and
the un-processed multi-views, it may be possible to process
additional multi-views. As no previously assigned sensor is
removed, the total profit is non-decreasing, and thus, running
the HMP algorithm multiple times does not decrease the
approximation ratio given by Proposition 2.

B. Dominating set for GAPDP

Recall that each class in the GAPDP corresponds to a con-
nected component of M sensors, and could contain 2M items
in the worst case, which makes the MVAP transformation
to GAPDP and the solution of GAPDP exponential in the



Algorithm 3 HMP algorithm for approximating the GAPDP,
with marginal gain maximizing base station sequence. The
time complexity is O(N2f(S)).
Input: I, Ji, pi,j , wn,i,j , T
Output: {yn,i,j}

1: N+ = ∅
2: while N+ 6= N do
3: for ∀n /∈ N+ do
4: Solve Mn = MCKP(I, Ji, pi,j , wn,i,j , T )
5: pn =

∑
j∈Mn

pj
6: end for
7: n∗ = argmaxn pn
8: set yn∗,i,j = 1 for j ∈Mn∗ , j ∈ Ji
9: N+ = N+ ∪ n∗

10: pi,j = |E(Gi,j) \
⋃
n+∈N+,yn,i,j′=1E(Gi,j′)|

11: end while

component size M . To reduce the exponential complexity, we
propose to include only the set of dominating items in Ji.

Definition 1. An item j is dominated if there exists another
item k such that wn,i,j ≥ wn,i,k and pi,j ≤ pi,k [14].
If two items have exactly the same weight and profit, we
can arbitrarily declare one of them to be dominated without
affecting the total profit and weight of the items assigned to
base station n. If j is not dominated by any other items, we
say that it is a dominating item.

Definition 2. We call the set of dominating items in a class
a dominating set.

Proposition 3. The optimal solution when considering only
the dominating set in each class is equivalent to the optimal
solution when retaining the full set of items.

Proof. Assume that in the solution of the MCKP, item j is
selected from class i. If any item k satisfies pi,k ≥ pi,j and
wi,k ≤ wi,j , then item j is not a dominating item and the
solution is not optimal, as it can be improved by substituting
item j for item k. If such a substitution is not possible, then
the solution can not be improved and, by definition, item j is
part of the dominating set.

To construct the dominating set of items in a class without
performing an exhaustive search, we propose the greedy Re-
move Sensor with Lowest Ratio (RSLR) algorithm described
in Algorithm 4. The RSLR algorithm starts from the complete
set of sensors and iteratively removes the sensor with the
lowest profit-to-weight ratio.

Proposition 4. For a connected component that is a complete
graph the RSLR algorithm computes the set of dominating
items.

Proof. The item containing all M sensors of the subgraph
is clearly a dominating item. In a complete graph of size
M , every vertex has (M − 1) edges connecting it to other
vertices. After removing any vertex from the complete graph,
the resulting subgraph is also a complete graph containing
(M−1)(M−2)

2 edges, that is, for any items j, k, pi,j = pi,k. As

Algorithm 4 removes the sensor with the greatest transmission
time ts,n at each iteration, the resulting item j will satisfy
wi,j ≤ wi,k which, by definition, makes j a dominating
item. By induction, the items found in later iterations are also
dominating items.

V. ANALYTIC RESULTS

The approximation algorithm we propose to solve the
MVAP consists of two main steps: the transformation of
the problem to the GAPDP, and the solution of GAPDP
through the conversion to a series of MCKPs. Transforming
the MVAP to a GAPDP does not affect the optimal solution,
as long as all the dominating sets of items are included in
the GAPDP. The approximation is in the solution of the
GAPDP. The DZ algorithm (Algorithm 2) solves each MCKP
with an approximation ratio of 3, which gives a resulting
approximation ratio of 4 when solving the complete GAPDP
using the HMP approximation algorithm (Algorithm 3). The
greedy MCKP approximation algorithm (Algorithm 1) does
not have an approximation ratio.

Transforming the MVAP to the GAPDP involves gener-
ating L items, where S ≤ L ≤ 2S . The complexity of
solving the resulting GAPDP using the HMP approximation
algorithm is O(N2 · f(S)), where f(S) is the complexity of
the algorithm used for solving the individual MCKPs. The
resulting complexity when using the greedy MCKP approxi-
mation algorithm to solve the MCKP is O(L+N2L logL) =
O(N2L logL), while it is O(L + N2L) = O(N2L), when
using the DZ MCKP approximation algorithm.

To decrease the computational complexity, we also propose
to consider only the set of dominating items for MCKP. This
does not change the approximation ratio if the exact set of
dominating items is found, but it decreases the computational
complexity significantly. The RSLR Algorithm (Algorithm 4)
finds an approximate set of dominating items with cardinality
S and runs in O(M2) time for a group of M sensors. When
using the approximate sets of dominating items, the overall
time complexity is O(L2+N2S logS) and O(L2+N2S), for
the greedy algorithm and for the DZ approximation algorithm,
respectively.

Algorithm 4 RSLR algorithm for dominating set construction.
Time complexity is O(M2).
Input: I, tn,s
Output: J+

i

1: Z = {s ∈ argmaxj |E(Gi,j)|}
2: J+

i = {Z}
3: while |Z| > 2 do
4: s′ = argmins

deg(s)∑
s∈Z tn,s

5: Z = Z \ {s′}
6: J+

i = J+
i ∪ Z

7: end while
8: J+

i = J+
i ∪ ∅

9: return J+
i
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Figure 1. Required capacities as a function of the portion of views that can
be processed for the various algorithms. Bars show 95% confidence intervals.

VI. NUMERICAL RESULTS

We performed simulations to study the performance of the
proposed algorithm. We placed base stations in a uniform
grid within a square area, and clusters of sensors uniformly
at random within the square area. Each cluster consisted of
sensors deployed evenly on a circle around the center of the
cluster. The number of sensors in a cluster were uniformly
distributed within 50% of the average cluster size. The sensors
of a cluster were connected in sub-graphs according to an
Erdős-Rényi random graph model [15], with the additional
constraint that all sensors must have at least one edge to
another sensor. We used the weighting parameter of the Erdős-
Rényi random graph model to control the total number of
edges in the view-graph. We ran each simulation 100 times
with different random seeds, and the presented results are the
averages with 95% confidence intervals.

Figure 1 shows the required capacity as a function of the
share of views that can be processed, computed using greedy
or Dyer-Zemel for solving the MCKP and considering all
items in a class (Full) or using the RSLR algorithm, and
with the HMP algorithm run either once or twice (2xHMP).
To be able to compute the optimal solution to MVAP, we
used 4 basestations, and 16 clusters totaling 96 sensors, with
a weighting parameter of 0.6 for the view-graph. The figure
shows how the required capacities of the basestations must
be increased in order to process a given portion of the multi-
views. We observe that for these small scenarios all algorithms
are similar in terms of processed views, and all algorithms
perform well when compared to the optimal solution, with no
algorithm ever being more than 10% worse than the optimal
solution. We will forgo the optimal solution for the rest of the
section in order to be able to consider larger systems.

Figure 2 shows the portion of processed views as a func-
tion of the number of clusters, for 9 basestations, clusters
containing on average 6 sensors, and a weighting parameter

0 50 100 150 200 250

Number of clusters

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

P
o

rt
io

n
 o

f 
p

ro
c
e

s
s
e

d
 v

ie
w

s

Greedy, Full

Greedy, RSLR

Greedy, RSLR, 2xHMP

DZ, Full

DZ, RSLR

DZ, RSLR, 2xHMP

Figure 2. Portion of views that are processed as a function of the number of
clusters in the system. The portion of views being processed by the greedy
algorithm decreases while the DZ based algorithm maintains its performance.
The available capacity of each basestation is directly proportional to the
number of sensors. Bars show 95% confidence intervals.

of 0.6. The capacities of the basestations are scaled to be
direct proportional to the number of sensors in the system. The
figure shows that despite the increasing capacity the portion of
views that can be processed when using the greedy algorithm
decreases, while the DZ based algorithm shows no decrease
in the portion of processed views as the number of sensors
increases.

Figure 2 also shows how using the reduced classes of
the RSLR algorithm and running the HMP algorithm twice
affects the portion of processed views for the greedy and DZ
algorithms. We can see that there is practically no difference
between algorithms using the RSLR algorithm and those
using the complete classes, showing that this reduction in
complexity comes at a very low cost. While the second round
of assignment has no effect when using the greedy algorithm,
it does increase the portion of processed views for the DZ
based algorithm. The reason is that the greedy algorithm will
always assign as many items as the capacities allow to each
basestation, leaving no usable capacity, while the DZ based
algorithm often results in some unused capacity after the first
round of assignment. This unused capacity is then used to
assign additional sensors that were overlooked in the first
round.

Figure 3 shows the same scenario as Figure 2, but with
the number of clusters fixed and varying the average size of
the clusters instead. Again, the capacities of the basestations
scale with the number of sensors in the system. The figure
shows that the DZ based algorithm performs well, even when
the cluster sizes are large, that is, when the multi-views are
highly dependent.

Figure 4 shows the cumulative distribution function (CDF)
of the weights of all sensors assigned to 9 basestations when
average cluster size is 6 sensors and the weighting parameter
is 0.6, and explains why the greedy algorithm perform worse
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than DZ based algorithm. As the greedy algorithm does not
consider the weight of items when assigning sensors, heavier
items will tend to be selected when compared to the DZ based
algorithm, especially when the number of sensors is larger.
We see that the greedy algorithm has a much higher portion
of heavy items compared to the DZ based algorithm, e.g.,
for 200 clusters the average weight of sensors is 0.12 for the
Greedy while 0.08 for the DZ based assignment.

Figure 5 shows the required capacities of basestations in
order to process a given portion of the views. Compared to
Figure 1, the figure shows results for larger systems of 9
basestations and 200 clusters with average cluster size of 6,
maintaining an average degree of 0.6. We see that the DZ
based algorithm requires significantly less capacity in order to
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process the same portion of views as the greedy algorithm.
The advantage of the DZ based algorithm increases further
with a second round of assignment, with up to 30% more
views processed compared to the greedy algorithm.

VII. CONCLUSION

We considered the problem of assigning sensors to com-
puting resources located at or near base stations in such a
way that the total number of multi-views processed within
a time frame is maximized. We showed that the problem
is NP-hard and proposed an approximation algorithm by
transforming the problem to a generalized assignment problem
with dependent profits and by considering dominating sets of
items for clusters of sensors. Our numerical results show that
using the approximate dominating sets of items provides good
performance at low computational complexity, and combined
with the DZ algorithm it can provide significant bandwidth
savings compared to the greedy solution. Our work could be
extended to consider constrained processing resources, and
to the case of mobile sensors with interesting application in
vehicular safety and urban UAV networks.
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