© Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The paper is
accepted for publication in IEEE SmartGridComm 2013.

SELINDA: A Secure, Scalable and Light-Weight
Data Collection Protocol for Smart Grids

Gyorgy Dan', King-Shan Lui?, Rehana Tabassum®, Quanyan Zhu?*, and Klara Nahrstedt?

!School of Electrical Engineering, KTH, Royal Institute of Technology, Stockholm, Sweden
2Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
3Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA
“Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL, USA

Abstract—Security in the smart grid is a challenge as an
increasing number of sensors and measurement devices are
connected to the power grid. General purpose security protocols
are not suitable for providing data security to devices with limited
memory, computational power and network connectivity. In this
paper, we develop a secure and light-weight scalable security
protocol that allows a power system operator (PO) to collect data
from measurement devices (MDs) using data collectors (DCs).
The security protocol trades off between computations and device
memory requirements and provides flexible association between
DC and MDs. These features allow data to be securely transferred
from MDs to PO via mobile or untrustworthy DCs. We analyze
the complexity and security of the protocol and validate its
performance using experiments. Our results confirm that our
proposed protocol collects data in a secure, fast and efficient
manner.

I. INTRODUCTION

The proper operation of the smart grid relies on the quality
of data collected from a vast number of sensors and mea-
surement devices (MDs). The data collection needs to be
efficient and secure in order for smart grids to be economical
and dependable. Efficiency and scalability arguably require a
hierarchical data collection framework to be adopted [1]. Fig.
1 shows a simplified hierarchical data collection model. Data
collectors (DCs) collect data from MDs, and send the data to
a control center, typically owned by the power operator (PO).
Each DC is responsible for collecting data from multiple MDs,
and therefore the PO only needs to communicate with a few
DCs directly, keeping the number of connections to maintain
manageability.

A DC can be assumed to be trusted if it is within the
operator’s security perimeter, and therefore can be used to read
the collected data. Extending the security perimeter to a vast
number of DCs is, however, expensive, and can even be in-
feasible when the data collection architecture is changeable or
DCs are mobile. If the DCs cannot be trusted, the MDs need to
encrypt and authenticate the data so that the DC does not have
the access to data even if it carries them. In this way, the data
are secure even if the DC is compromised. In the event that the
DC needs to aggregate the data, homomorphic encryption [2]
can be used to maintain data confidentiality. This allows the
PO to outsource the data collection and reduce operation cost
without sacrificing security. While various protocols have been

Power Operator (PO)
:

| Power Grid |

Fig. 1. A three-level hierarchical data collection model

proposed for trusted DCs [3]-[6], there is no efficient protocol
yet for secure data collection via untrusted DCs.

In this work, we propose and analyze a key establishment
and data collection protocol, SELINDA, that allows a PO to
establish shared keys with multiple MDs via an untrusted DC.
The DC behaves like a relay for data communications although
it is not continuously connected to the PO. Besides, the DC
has no access to the keys established between the PO and
the MDs. Therefore, the DC can potentially be mobile and
untrusted, which makes our scheme essential for ensuring the
security of community aided data collection in the smart grid.

Our protocol has four key features that distinguish it from
existing protocols. First, the protocol is computationally light-
weight for the MDs as it requires the MDs to perform very few
expensive cryptographic operations and to send few messages.
Thus the protocol supports resource constrained MDs with
limited memory and a slow CPU. Second, the protocol allows
to trade off computation for memory requirements in the MDs.
There is one long-term secret per entity, its private key. Thus,
the PO needs to maintain the public key of all MDs in the sys-
tem. It also maintains state information for the current session
of data collection. The MD only needs to remember its own
private key and the public key of the PO. They can recalculate
or store the session keys, depending on their computational
and memory constraints. Third, the protocol provides flexible
association between DCs and MDs. As an MD does not need
to know the public key of any DC, the PO can assign different
DC:s to collect data from the same MD at different times. This
feature is particularly important in scenarios where the DCs
are mobile or the infrastructure is evolving so that different

mappings or assignments between DCs and MDs can be used
at different times after the deployment of the MDs. Finally,
the protocol protects the collected data from a compromised
DC. Thus, an attacker cannot access the collected data even if
it is in control of a DC. This allows the PO to outsource the
data collection procedure without sacrificing security.

The paper is organized as follows. In Section II, we discuss
related works. Section III describes a two-phase protocol that
enables secure data collection via untrusted DCs. In Section
IV, we analyze the complexity and security of the protocol.
Section V provides experimental results of the protocol and
we conclude the paper in Section VI.

II. RELATED WORK

Security in smart grids is a challenging problem for many
reasons [7], [8]. One of the biggest challenges comes from
connecting the grid with a plethora of devices with limited
memory, computational power and network connectivity [7].
Furthermore, interoperability and legacy-compliance are also
key concerns [8]. General purpose Internet security protocols
are thus not suitable, and new security protocols tailored for
the smart grid need to be developed.

[5] describes a lightweight and scalable transport protocol
for establishing multiple sessions among MDs to the control
center. The study focuses on how to reduce the storage
needed in maintaining the state information of the massive
amount of sessions. The session keys used can be derived
so that the control center does not have to remember a lot
of keys. Nevertheless, the number of sessions maintained is
still proportional to the number of MDs. The protocol is also
not suitable for the hierarchical data collection architecture
in which a DC is responsible for collecting and/or processing
data from multiple MDs before sending the data to the control
center. The authors in [4] develop a transport protocol for
reporting data through a data collector. Two separate TCP
connections are maintained: one between the control center
and the data collector, and another between the MD and
the data collector. Each connection can be protected inde-
pendently. This approach assumes that the data collector is
trustworthy, which may not be the case when the data collector
is outsourced or compromised.

Secure authentication for smart grids has been considered
in [9], [10]. The focus of these mechanisms is on how to
establish a shared key for data authentication between two
entities. The two entities need to establish a session, which
may be infeasible in the hierarchical data collection model.
[6] studies how to remotely access power system devices
for substation monitoring. The substation controller (or data
concentrator) is used as the central point of access control.
The substation controller authenticates users and keeps access
logs, and is assumed to be trusted. The issue of securing data
between the devices and the PO is not discussed.

Another line of work deals with key management. The
authors in [3] propose to have a trust anchor for performing
mutual authentication and key establishment between a device
and a collector. This approach may not be scalable when there

TABLE I
SUMMARY OF NOTATIONS

Symbol Meaning

PO Power Operator

DC Data Collector

MD Measurement Device

K{M} Encrypt message M using shared key K

[M]a Sign message M using the private key of entity A
{M}a Encrypt message M using the public key of entity A
G(p) Multiplicative group over prime p

Gy(p) Subgroup of G(p) of order ¢

g Generator of subgroup G, (p) for a large prime g

are many devices. [11] studies which unicast and multicast
sessions need to be secured in a wide-area measurement
system. The authors suggest keys to be established by direct
connection between the two entities that need shared keys.
Thus, the scheme is not suitable for secure data collection via
a data collector. The work in [12] describes a key management
scheme for unicast, multicast, and broadcast messages in
AMI. The keys form a graph so that keys are easily stored
and derived. Session keys are generated based on previously
read data. Nevertheless, this scheme cannot be applied in a
hierarchical data collection architecture.

To the best of our knowledge, there is no existing work that
allows a PO to generate different shared keys with different
MDs in a scalable manner. Existing standard protocols such
as DNP3 [13] and TLS [14] are not suitable for the scenario
when the data collectors are untrusted and potentially mo-
bile with intermittent connectivity. DNP3 [13] is a standard
communication protocol used for telecontrol and telemetry in
SCADA systems. Its security model is not designed to provide
data integrity and confidentiality against compromised relay
nodes, as it assumes that all components are within the security
perimeter of the operator. TLS [14], on the other hand, involves
multiple phases of handshakes and is therefore not suitable
if the data collector is off-line when communicating the
measurement devices. In this paper, we present a secure and
light-weight protocol that allows a power operator to collect
data from measurement devices using potentially multiple
mobile and non-trustworthy data collectors.

III. PROTOCOL FOR SECURE DATA COLLECTION

Before we describe our protocol in detail, we first explain
the security and scalability objectives that we want to achieve.
Table I summarizes the notations used in the paper.

Confidentiality and integrity: The data reported by the MD
to the PO should remain secret to a potential eavesdropper,
an active attacker, and a compromized DC. The PO should
be able to tell whether the data have been tampered with.
In addition, our protocol should allow the DC to perform an
integrity check right after it receives the message containing
the data from the MD, even though it cannot decrypt the
message to retrieve the raw data. This enables a trustworthy
DC to immediately detect potential data corruption/tampering,
so that a remedial action can be taken. Without this feature,
corrupted/tampered data cannot be detected until delivered to

the PO. We establish different session keys between different
pairs of parties to achieve this objective.

Perfect forward secrecy (PFS): Our protocol protects the
confidentiality of the data sent in earlier sessions even if the
long-term secrets are obtained by the attacker later. We adopt
the Diffie-Hellman (DH) mechanism for key establishment to
support PFS.

Low memory and computational requirement: The data
reported by different MDs must be protected by different
keys. To reduce the memory needed to maintain this key
information, the PO uses the same DH public key to develop
different shared keys with different MDs. This approach may
be subject to the small subgroup attack, i.e., an attack in which
several compromised MDs try to guess the PO’s DH secret
key. In Section IV, we will describe the attack and analyze
the probability of such an attack to be successful.

MDs are computationally-constrained devices, and they
should not perform too many expensive operations or handle
too many messages. In our protocol, the MD only has to
exchange two messages with the DC. This simple handshake
not only reduces complexity, but also allows data to be
reported quickly. To further understand the complexity of our
protocol, we conduct simulations in Section V.

We assume that the PO, the DCs, and the MDs are initially
configured with the following set of parameters:

Long-term keys: The PO, every DC, and every MD have
their public and private key pairs; the PO knows the public
keys of all MDs and DCs, while the MDs know the public
key of the PO. MD does not store the public key of DC so
that PO can flexibly assign different DCs to collect data at
different time.

Diffie-Hellman (DH) parameters: The PO and the MDs
agree on parameters of the prime order digital signature
algorithm subgroup G, (p) with generator g of group G(p).
The length of p is the same order of magnitude as that of a
public key, but g is substantially smaller.

The Diffie-Hellman key exchange works as follows: when
Alice and Bob want to establish a shared key, Alice
picks a natural number a and keeps as secret. Similarly,
Bob picks a natural number b as his secret. Alice sends
g“mod p to Bob, and Bob sends g’mod p to Alice. When
Alice receives g’mod p, she computes the shared key by
(g"mod p)* mod p = g®mod p. Bob, on the other hand,
computes the shared key by (g%mod p)” mod p = gmod p.
Note that although an eavesdropper knows p, g, g?mod p, and
g’mod p, it is very difficult for him to compute g®?mod p. In
this paper, we call g%mod p and g’mod p DH half keys or
DH public keys.

Cryptographic functions: The PO and the MDs have a
common set of cryptographic schemes for encryption (e.g.,
AES) and for hash computation (e.g., SHA-256). We use a
keyed hash for data authentication. In the rest of the paper,
we call the key for encrypting data the encryption key, and
the key for providing integrity the integrity key.

In total, every MD has to store one private key, one public
key, and the parameters of the group G4, (p), i.e., g, qo and p.

PO DC MD

(1) [{g*mod p [Tpcleo
(2) [{g" mod p}polne - KT} Generate b
K =f(g" mod p, TT)
(3)K{MD list || e || C}
C:=[g'modp||gemod p || VT, || VT, || DClpo @ 1]l T2
Generate d
KI=f(g" mod p, T2),
K2=/(g* mod p, T2)
(5) [g'mod p || T2lyy, . CIPHER-DATA, keyed hash
1
I
(6) K{[g?mod p || T2]yp || CIPHER-DATA || T2}
f i

Fig. 2. The SELINDA Protocol

Following the hierarchical data collection model, we de-
scribe our protocol based on the two sessions that it consists of:
the PO-DC session and the DC-MD session. Fig. 2 illustrates
the complete data collection process.

A. PO-DC Session

The purpose of the PO-DC session is to provide to DC the
information needed to be able to collect the data: the list of
MDs that the DC has to collect data from, the public keys of
the MDs and the DH half keys. The DH half keys will be used
later for establishing the encryption/integrity keys between the
PO and the MD, and between the DC and the MD. The session
is composed of the following messages between the PO and
the DC.

(1) PO to DC: [{g“mod p||T1}pclpo
T1 is the current timestamp of PO. DC checks whether
T1 is close to its own time. To detect replay attacks, DC
should keep the previous T'1 received. The current T'1 is
accepted only when it is later than the previous one.

(2) DC to PO: [{g’mod p}polpc. K{T1}
If T1 is valid, DC generates its DH half key g’mod p
and computes the shared key K. K depends on g?’mod p,
T1, and the identity of DC. Recall that both the DC and
the PO know the function to generate K, thus the PO
can generate K after receiving g’mod p. DC sends K{T'1}
to authenticate itself to the PO, which the PO does by
verifying T'1 carried in K{T'1}. If the authentication is
successful, the PO can send to the DC the list of MDs,
together with the public key information of the MDs.

(3) PO to DC:
K{MD list||e||C} where
C = [gmod pl|g®mod p||VT;||VT,||DC]ro
We call C a token from PO to DC for data collection.
The token, and the DH half keys g‘mod p and g°mod p
inside, will be valid during the time period [VT;,VT,],
and VT, must be later than T'1. g°mod p is used for
establishing shared keys between PO and MDs. g°mod p,
on the other hand, is for DC to establish a session key
with the MDs. Note that e is contained in the message so
that DC can retrieve it using K. It is important to note the
fact that g°mod p is provided by the PO assures that a
compromised DC cannot perform a small subgroup attack
on the MDs’ DH keys, as we will see in Section IV-A.

To be able to decrypt the data collected by the DCs, the PO

has to remember one K per DC, but DH secret ¢ can be the

same for all DCs. Therefore, the memory requirement at the
PO is very low. To further reduce the state information kept
at the PO, it is possible to close the session after the DC has
received the token, and resume the session when the DC is
about to report data. Whether or not this is done does not
affect the rest of the protocol.

B. DC-MD Session

The DC-MD session happens when the DC is able to
communicate to one of the MDs, and its purpose is the actual
data collection. It contains two messages between the DC and
every MD, and one message from the DC to the PO.

(4) DC to MD: {C,T2}yp where
C = [g°mod pl|g“mod p||VTi||VT.||DC]po
T2 is the current timestamp of the DC, and C is the token
received in Step (3). When the MD receives the message,
it verifies it by checking whether 72 is close to its current
time and whether 72 falls in the range [VT;,VT,]. T2
should be also later than the previous timestamp used for
the same purpose. The MD then generates its reply.

(5) MD to DC: [{g%mod p}po||T2]up, CIPHER-DATA,
keyed hash
Let DATA be the data measured by the MD in plaintext,
i.e., the data to be collected. As mentioned earlier, we
want to encrypt DATA in a way that only the PO can
read it, but at the same time, we want to allow DC
to check the integrity of DATA, so it can detect if an
attacker between MD and DC tampers with the data. We
achieve this by establishing one session key between the
PO and the MD, and one session key between the DC
and the MD. Both keys are established through DH, and
to reduce complexity, the MD uses the same DH public
key (g%mod p) for both keys.
Given d (MD’s DH private key), the MD can derive the
session key K1 shared with the PO based on g“/mod p
and based on 72. By using 72 to establish K1, even if the
DH half keys are reused to save computation, K1 will be
different in every DC-MD session. The MD can then use a
standard mechanism to develop the encryption key and the
integrity key from K1, e.g., using a hash function to hash
K1 with other information as done in [PSec. Similarly, the
MD obtains K2 based on g*?mod p and T2.
The MD then uses the keys derived from K1 to encrypt
and to authenticate DATA towards the PO; we denote the
result by CIPHER-DATA. Observe that CIPHER-DATA is
piggybacked in the same message as the DH public key
used to generate the session key K1. As we show later,
this is important for security. Finally, the MD uses K2 as
a key to generate a keyed hash of CIPHER-DATA.

Upon receiving the message from the MD, the DC verifies
T2 from the signed message. DC can then compute K2 using
g%mod p and T2, and can verify the integrity of CIPHER-
DATA. If the integrity check is successful, DC encrypts
CIPHER-DATA and T2 using the session key K it established
with the PO in the PO-DC session, and send it to the PO. The
PO uses g?mod p and T2 to compute K1 and the encryption

and integrity keys needed to decrypt and to validate CIPHER-
DATA. The data collection process is complete once the PO
receives and validates DATA.

C. Protocol complexity

We now study the number of expensive operations the MD
has to perform every time data are collected. Both public
key operations and DH operations are regarded as expensive,
while shared key operations and hash operations are not. Upon
receiving Message 4 in Fig. 2, MD has to perform a public key
decryption to retrieve C and 72. To verify it is PO who has
signed C, a signature verification operation is needed. Three
DH operations are needed to generate g?mod p, g*mod p,
and g°“mod p. Finally, a signature operation is needed to sign
g?mod p and T2 in Message 5. There are altogether three
public key operations and three DH operations.

It is worth noting that the DH operations become unnec-
essary if we reuse the DH keys. Suppose after the first data
collection, MD keeps g?mod p, g“mod p, and g*“mod p in
its memory. PO also keeps ¢ and e. In the next collection, PO
can send [“REUSE DH”||VT||VT,||DC]po as a token to DC.
When MD receives the token, it does not have to generate
a new d or recompute g°mod p and g*“mod p. Note that
because T2 in the new session must be different from the
last one, K1 and K2 will be different from the last session
even though the DH keys are the same. In principle, reusing ¢
several times could make it easier for an attacker to guess c.
In the following, we show that for SELINDA this is not true.

IV. SECURITY ANALYSIS

In this section we show that the use of a single DH public
key g°mod p to agree on a session key with many MDs (c.f.
Fig. 2) does not make the protocol subject to simultaneous
small subgroup attacks [15] because of the fact that MDs
have to piggyback data with their public keys in Message 5.
We consider an attacker that compromises a set .#Z¢ of MDs
with the goal of obtaining PO’s DH secret c. It does so by
modifying the MDs’ public DH keys sent to the PO.

We start with introducing the necessary notation. Let us
denote by G(p) the multiplicative group of integers modulo
p, where p is a prime, and by G, (p) a subgroup of G(p) of
order ¢;, where g;, 0 <i </ is the ih prime factor of p—1,
and p—1= Hf.:O gi. For some computational power B, let
5 = {i:log,q; < B} be the set of small prime factors, and
let .75 C #p be the least cardinality set of small subgroups for
which Zie_;};« log, gi > log, go — B. Let g be the large prime
factor of p—1 used for DH key agreement, and let g be the
generator of the subgroup G, (p). Congruence is defined using
“mod p” unless otherwise noted.

We first explain the attack without piggybacking, we then
show how piggybacking in Message 5 mitigates the attack.

A. Mitigation without piggybacking

Without piggybacking every compromised MD m € .#€
generates a DH public key D,, = f,,g%", where B, € G, (p) for
some i > 0. Since g; and gq are relative primes D, € Gg,q,(P),

the product group of G, (p) and G, (p). Assume that the
PO uses D,, to compute the session secret K20 = (D,,)¢ =
BS(¢Y)" and then uses a key derived from KX© to encrypt
or to authenticate data sent to the compromised MDs. If
g; is small, i.e., i € g, then the attacker can use a brute
force attack to compute ¢ mod g;. This reveals approximately
log, g; bits of information about c. The attacker could perform
min(|.#€|,|-#;|) attacks simultaneously with different small
primes, and once it performs the attack Vi € .#g it could
recover ¢ mod p using the Chinese remainder theorem [15].

In general, small order subgroup attacks can be mitigated
in two ways. First, by choosing p such that p — 1 does
not have small prime factors, hence % = . Second, by
verifying that the received DH public key has order qo, i.e.,
Vm (Dp,)% = 1(mod p). If there are thousands of MDs, this
verification is computationally demanding. In the following we
analyze the trade-off between computational load and security
by introducing subset order verification defined as follows.

Definition 1: Subset Order Verification (SOV) is the fol-
lowing procedure. Pick 1 <V < |.#/|, the number of verifica-
tion sets. Assign every MD to one of V verification sets with
probability 1/V. Let .4, C .#, 1 <v <V be the verification
sets. Verify ([Tne.z, Dm)? =1 (mod p) for ., # 0.

To prove our results, we introduce the following nota-
tion. For a non-empty verification set .#, C .# let .#C =
M€ .4, be the compromised MDs in the verification set. Let
MG ={mE ML : Dy € Ggyq,(p)} be the set of compromised
MDs that use subgroup Gy, (p). Define B = I],,. Ve B if
MEF0, and B =1 if A4S =0. '

Lemma 1: The following statement holds:

([] Dw)®™ =1 (mod p) < Vi, Bi=1(mod p).

me. My

Proof: Here we prove “=" of the statement, as the other
direction is straightforward. Since (g%)% = 1(mod p) we have

(IT ow™ =TT (s™)* 1 (ﬁm)q°=g(ﬁi)q°~

me.M, me.MHy me.#E i

Observe that fB; € G, (p), and the g; are pairwise relative
primes and are relative primes with gg. Thus the product of the
groups G, (p) is isomorphic to a group G (p), whose order is
¢’ =T1;q:. This implies that [T_, (B))% =1 <= Vi, (B;)% =
1. Due to the relative primeness of go and ¢; we also have
(Bi)% =1 <= B; = l(mod p), which proves the lemma. B
Lemma 2: Let g; be an arbitrary generator of G,,(p), and
let %, be such that 3, = g/. Then, B; = I(mod p) implies
Zme%ﬁ ¥ = 0(mod g;).
Proof: Since ¢; and ¢q are relative primes, the result is
immediate.]
The PO performs the verification ([Tue g Dm)? =
1 (mod p) for every non-empty verification set .#, C ./
Since Vm € .4, Bi" # 1 (mod p), by Lemma 2 the attacker
has to ensure that if |.#;| > 0, then |.#| > 2 and furthermore
Y 7€ = O(mod ¢;). As a consequence, an attacker that

compromises one MD to perform a small subgroup attack for a

subgroup will be detected with probability one by SOV. Also,
if ¢ is only used once, then an attacker cannot compute c if
| #€| < 2|.95).

Otherwise, it is easy to see that it is optimal for the attacker
to use two compromised MDs per subgroup, and in this case
the probability that the compromised MDs using the same
subgroup fall in the same verification group is 1/V. Hence
the following results can be obtained.

Proposition 1: If the attacker wants to use the set % of
small subgroups for the attack, the probability of not being
detected is

)< () = v (1) =B ()
This probability can be unacceptably high for small V.

In general, the small subgroup attack can be launched by
an attacker that establishes a shared secret using DH with the
target of its attack, and its target would send messages to the
attacker using the established shared secret. In our protocol,
DC and MD establish a shared key using DH, and MD sends
the key-hash of CIPHER-DATA to DC. A compromised DC
could thus perform a small subgroup attack on the MDs. To
avoid this, instead of allowing a DC to pick its DH half key
g°mod p, the key is assigned by the PO in Message 3. Our
protocol is thus secure against compromised DCs.

B. Mitigation with piggybacking

Let us consider now SELINDA: every MD has to use its
session secret to encrypt or to authenticate data sent to the
PO. We assume that the attacker can detect, e.g., based on the
application layer behavior, whether or not the PO was able to
decrypt the message sent by a compromised MD.

To perform the attack, the attacker would still send D, =
Brng®™ € Gy (p) to the PO, but it would use K, = B (g°)"
for some 1 < j,, < g; to establish the session secret used for
encrypting or authenticating the message. If the PO was able
to decrypt the message despite the compromised D,,, then
the attacker knows that the session secrets are identical, i.e.,
KPO = (D,,)¢ = B (g¢)%m = K,,, which means ¢ = j,, mod g;.
Thus, the attacker essentially has to guess ¢ = j, mod g;. If
the PO uses SOV, then due to Lemma 2 the attacker has
to make two guesses per subgroup, and thus it can perform
the guessing simultaneously for up to ||.#€|/2| subgroups
Gy (p). The distribution of the number of trials until success
is uniform on {1,(g; — 1)/2}. We can obtain the following
result by combining with SOV in Definition 1.

Proposition 2: The probability of an attacker guessing ¢ =
Jjm mod g; before being detected by SOV is given by and upper

bounded by

5 (ai1)/2 4 2 1

Y w<—(—=] @)
-2 =V qi—2\1-1/V

It can be seen that (2) is comparable to the probability of
guessing ¢ = j,, mod ¢; in one shot. Hence there is small
but non-zero probability that the attacker can compute ¢
despite SOV. In principle, if c is reused, then on average after

m Yic.s; qi uses of ¢ the attacker can compute c.

Q

E

s

8 1100]
3 —— DC-MD session
§,1000 - - -MD only il
'2 900+

8 8OO T g 1
§ oo Er : ; I

7 ;
00 2048
Data size [bytes]

1 512 1024

Fig. 3. Time Performance: total time of computation in MD and total time
for data collection for messages of different sizes

Observe, however, that the PO can detect a bad guess j,, #
¢ mod g; because it fails to decrypt the message received from
m. If this happens, the PO can verify (D,,)% = 1. For a bad
guess not to happen before ¢ is computed, the attacker has
to correctly guess j, = c mod g; for the first try for all g
prime factors, which happens with probability proportional to
ILe 7 1/q; =~ 28 /qo, which is comparable to directly guessing
c itself. Interestingly, the probability of a successful attack
does not increase thanks to piggybacking although c is reused
by the PO. Thus, piggybacking in Message 5 in SELINDA
provides strong security against compromised MDs without
the need for individual group order verification.

V. NUMERICAL RESULTS

To further understand the computational performance of the
SELINDA protocol, we measure the time needed for DC to
collect data from MD. The MD and DC are simulated using
two laptops with Intel Core i5 2.4GHz processor and 4GB
read-only memory. The prototype is implemented in Java.
The laptops communicate through a Wifi 802.11n wireless
network. We use RSA with key length 2048 bits as the
public-key cryptography and AES with key length 256 bits
for symmetric key cryptography. We use SHA-256 to compute
hash-based message authentication (HMAC), and use Diffie-
Hellman with a prime order of length 1024 bits.

To understand the computational complexity on the MDs,
we have measured the time needed to decrypt Message 4 and
create Message 5 (c.f., Fig. 2). We have also measured the
total time needed for the DC to collect data from a MD in
the DC-MD session, which includes the time it takes to create
Message 4, the round-trip network delay to send and receive
Messages 4 and 5, as well as the time required to verify the
integrity of CIPHER-DATA. Fig. 3 shows the measurement
results as a function of the size of DATA. Each data point is
the average time of 30 different trials, and we show the 95
percent confidence intervals.

For MD, the difference in computational time between data
sizes of 1 byte and 4096 bytes is less than 60ms, and the
difference between 1K and 4K is less than 1ms. We can
conclude that our mechanism scales well for typical amounts
of data to be reported in the considered smart grid context. The
average total times it takes for the DC to collect data of sizes
1 byte and 4K bytes are 1241ms and 1324ms, respectively.
These results help to explore feasible mobility patterns for a
mobile DC. In a scenario where an automobile is used as a

DC. An automobile moving at 50km/h can advance less than
20m in this amount of time. Since the communication range of
802.11 is around 250m, even a mobile DC should have enough
time to complete the data collection as long as it is not very far
from the MD. We thus conclude that the proposed SELINDA
protocol fulfills the goal of being scalable and efficient.

VI. CONCLUSION

In this paper, we develop a secure, scalable, and light-
weight protocol for smart grid data collection. Our protocol
allows a measuring device to report data securely to the power
operator via a data collector that may not be trustworthy. It is
thus suitable for data collection using mobile data collectors,
and can be used for community-aided data collection. We
provided a formal analysis of the security of the protocol. We
implemented the protocol and provided measurement results
that show that the protocol indeed has low computational com-
plexity and makes mobile smart grid data collection possible.

ACKNOWLEDGMENT

The work was funded in part by the TCIPG funding of the
US DoE and by the Small Project Funds of the University of
Hong Kong. Ddn was a Fulbright research scholar at UIUC
while the work was done.

REFERENCES

[1] J. Zhou, Q. Hu, and Y. Qian, “Scalable distributed communication
architectures to support advanced metering infrastructure in smart grid,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 9,
Sep. 2012.

[2] N. Saputro and K. Akkaya, “Performance evaluation of smart grid data
aggregation via homomorphic encryption,” in Proc. of IEEE WCNC,
2012.

[3] D. Wu and C. Zhou, “Fault-tolerant and scalable key management for
smart grid,” IEEE Transactions on Smart Grid, vol. 2, no. 2, June 2011.

[4] T. Khalifa, K. Naik, M. Alsabaan, A. Nayak, and N. Goel, “Transport
protocol for smart grid infrastructure,” in Proc. of IEEE International
Conference on Ubiquitous and Future Networks, 2010.

[5] Y.-J. Kim, V. Kolesnikov, H. Kim, and M. Thottan, “SSTP: a scalable
and secure transport protocol for smart grid data collection,” in Proc. of
1IEEE SmartGridComm, 2011.

[6] B. Vaidya, D. Makrakis, and H. T. Mouftah, “Authentication and autho-
rization mechanisms for substation automation in smart grid network,”
IEEE Network, pp. 5-11, Jan/Feb 2013.

[7]1 J. Liu, Y. Xiao, S. Li, W. Liang, and C. Chen, “Cyber security and
privacy issues in smart grids,” IEEE Communications Surveys and
Tutorials, vol. 14, no. 4, Fourth Quarter 2012.

[8] G. Dén, H. Sandberg, G. Bjorkman, and M. Ekstedt, “Challenges in
power system information security,” IEEE Security & Privacy Magazine,
vol. 10, no. 4, 2012.

[9] M. M. Fouda, Z. M. Fadlullah, N. Kato, R. Lu, and X. Shen, “A
lightweight message authentication scheme for smart grid communica-
tions,” IEEE Transactions on Smart Grid, vol. 2, no. 4, Dec. 2011.

[10] C. Bekara, T. Luckenbach, and K. Bekara, “A privacy preserving and
secure authentication protocol for the advanced metering infrastructure
with non-repudiation service,” in Proc. of ENERGY, 2012.

[11] Y. Law, G. Kounga, and A. Lo, “WAKE: Key management scheme for
wide-area measurement systems in smart grid,” IEEE Communications
Magazine, January 2013.

[12] N. Liu, J. Chen, L. Zhu, J. Zhan, and Y. He, “A key management scheme
for secure communications of advanced metering infrastructure in smart
grid,” IEEE Transactions on Industrial Electronics, to appear.

[13] IEEE 1815-2012, “Dnp3 secure authentication version 5,” 2011.

[14] RFC 5246, “The transport layer security (tls) protocol version 1.2,” 2008.

[15] C.Lim and P. Lee, “A key recovery attack on discrete log-based schemes
using a prime order subgroup,” in Proc. of CRYPTO, 1998.

