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Abstract—We study the statistical characteristics of SURF and
BRISK interest points and descriptors, with the aim of supporting
the design of distributed processing across sensor nodes in a
resource constrained visual sensor network.

Our results show high variability in the density, in the spatial
distribution, and in the octave layer distribution of the interest
points. The high variability implies that balancing the processing
load among the sensor nodes is a very challenging task, and ob-
taining a-priori information is essential, e.g., through prediction.
Our results show that if a-priori information is available about
the images, then Top-M interest point selection, limited, octave-
based processing at the camera node, together with area-based
interest point detection and extraction at the processing nodes can
balance the processing load and limit the transmission cost in the
network. Complete interest point detection at the camera node
with optimized descriptor extraction delegation to the processing
nodes in turn can further decrease the transmission load and
allow a better balance of the processing load among the network
nodes.

Index Terms—SURF; BRISK; visual sensor network; interest
point distribution; distributed feature extraction

I. INTRODUCTION

In visual sensor networks (VSNs), images or video se-
quences captured by low cost cameras need to be processed
and transmitted to a central node or image database to per-
form visual analysis tasks, like image retrieval or video data
mining [1]. Visual analysis is often based on the detection and
extraction of visual features that can characterize the image.
The detected set of features should enable high performance
visual analysis, for example, in the case of image retrieval high
precision and recall. Moreover, the features should be scale
and rotation invariant, so that objects captured from different
distances and angles can be identified [2], [3], [4], [5].

In general, feature extraction techniques consider the pixel
data of an image, detect a set of interest points and extract
the related feature descriptors. The feature descriptors are
then used to, e.g., retrieve images or identify objects in a
database. For visual analysis in a VSN environment one of
two approaches is usually followed, compress-then-analyze
or analyze-then-compress. Under the compress-then-analyze
approach the image is compressed in pixel domain and is
transmitted to the central node, which performs the feature

extraction. The key challenge is to minimize the amount of
pixel data to be transmitted. As lossy coding in the pixel
domain affects the visual analysis at the central node, recent
works propose image coding schemes optimized for feature
extraction [6], [7].

Under the analyze-then-compress approach the camera node
performs the feature extraction, and the compressed descrip-
tors are transmitted to the central node. The main challenge is
to minimize the computational load at the camera node, and
therefore many of the emerging feature extraction schemes
aim at decreasing the computational complexity [8], [9]. If
the transmission bandwidth of the VSN is very limited, the
objective can even be to limit the amount of data to be
transmitted by compressing the descriptors or by limiting their
number. Descriptor compression techniques are suggested and
evaluated in [10], [11]. In [12] a progressive transmission
scheme is proposed, which terminates the transmission of
new descriptors as soon as the image is retrieved. In [13]
the number of considered interest points and the quantization
level of the descriptors are jointly optimized to maximize the
accuracy of the recognition, subject to energy and bandwidth
constraints. In the case of visual analysis of video sequences
the computational load and the transmission requirements can
be decreased by leveraging the temporal correlation among the
frames. In [14] candidate interest points are selected based on
motion prediction. As only the areas around these candidates
are processed, the computational load is decreased. In [15]
intra- and inter-frame coding of descriptors is proposed to
decrease the transmission requirements.

Both of these schemes, the compress-then-analyze and the
analyze-then-compress, use the nodes of the VSN exclusively
for forwarding data to the central node. Nevertheless, VSN
nodes that do not have a camera could in principle be leveraged
for in-network data processing. Sensor nodes without a camera
are arguably cheaper, they could thus be used to increase
the computational power available in the sensor network at
a relatively low cost. Furthermore, processing in the VSN
nodes could be used to decrease the computational load and
the corresponding energy consumption of the camera nodes,
and can thus help to extend their lifetimes. While camera

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2015.2406574

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Processing

Node P

Processing

Node 2

Processing

Node 1

Camera

Node C

Server

Node S

(a) Considered VSN scenario. (b) Interest areas for SURF interest points (c) Interest areas for BRISK interest points

Fig. 1: Considered VSN scenario and example for SURF and BRISK interest point detection.

nodes need to be parametrized and calibrated in situ in order
to be able to capture images for complex 3D visual analysis
tasks, such as tracking, processing nodes can more easily be
deployed. It would thus be favorable for a VSN to drain
the batteries of the processing nodes and to replace those
more frequently, instead of replacing the camera nodes. The
feasibility of this approach in a multihop VSN that consists
of battery driven BeagleBone Black single board computers
was recently demonstrated for object recognition and tracking
using BRISK in [16].

In this paper we consider that the nodes of the VSN have
computational capabilities, and we evaluate the possible gains
of utilizing the VSN nodes not only for transmission, but also
for in-network interest point detection and feature extraction.
We take into account constraints pertinent to VSNs, in partic-
ular, the limited transmission rate, computational power and
energy resources of the nodes, which call for the optimization
of the communication as well as the processing in the VSN.
We consider two popular but conceptually different feature
extraction algorithms, Speeded-up Robust Features (SURF) [3]
and Binary Robust Invariant Scale Key-points (BRISK) [9].
We define four strategies for delegating the tasks of interest
point detection and descriptor extraction across the nodes of
the VSN, which could potentially allow the VSN resources
to be used efficiently and the computational and transmission
load to be balanced. Based on a large public image database we
present a detailed statistical evaluation of the number, location
and scale of SURF and BRISK interest points and descriptors,
and use the results of the statistical evaluation to discuss the
performance of the delegation strategies.

The statistical characterization of local features has recently
received some attention [17], [18]. In [18] the authors eval-
uate the interest point distribution among different octaves
in the case of SURF on a small dataset, while [17] con-
siders the spatial distribution of interest points for various
local descriptor algorithms, including SURF but not BRISK,
for the particular application of homography estimation and
confims our results on this particular aspect of interest point
characteristic. Our paper is different from these works as it
provides a characterization of a variety of statistical properties
of interest points that are relevant for in-network processing
is VSNs. While our study is motivated by applications in
VSNs [19], [20], [21], our results may provide insight into

parallel or distributed processing of visual features on multi-
core computing platforms and for stream processing in cloud
environments [22], [23]. Furthermore, the evaluation and the
comparison of the spatial distributions of the interest points
using SURF and BRISK are also relevant for visual tasks such
as homography estimation, 3D visualization and tracking, as
demonstrated in [17].

The rest of the paper is organized as follows. In Section II
we give a background on SURF and BRISK, describe the VSN
and the four off-loading strategies. Section III gives statistical
analysis of the expected processing load, while SectionsIV-
VI evaluates the different off-loading schemes. Finally, in
Section VII we discuss the results and conclude our work.

II. BACKGROUND AND SYSTEM MODEL

We consider a VSN consisting of a single camera node C, a
set P , |P| = P of processing nodes and a data storage node S,
as shown in Figure 1a. The processing capability and energy
resources of all nodes are limited as well as the communication
bandwidth. The transmission channel from C to P may be
broadcast, or may consist of directional links. The goal of the
VSN is to compute descriptors for the images captured at C
and to transmit them to S.

A. Computing Feature Descriptors

The computation of feature descriptors for an image in-
volves three major processing steps: the detection of the inter-
est points, orientation identification and descriptor extraction.

Interest points are detected by searching for locations with
intensity changes in the image. The locations can be blobs or
edges and corners. The detector implemented in SURF is an
example of a blob detector. SURF calculates blob response
maps by convolving the image with the Hessian of second
order derivatives of a Gaussian box filter; the response t of a
pixel is the determinant of the Hessian matrix. A pixel is an
interest point candidate if the response value t of the pixel is
larger than the detection threshold value Θ. To provide scale
invariance, the process is repeated several times, with increas-
ing filter sizes. The filter size is described by the standard
deviation σ of the Gaussian distribution. The considered σ
parameters are selected according to an octave, octave layer
structure. As a final step, responses at the neighboring octave
layers are compared to select the interest points and the scale
σ of an interest point is determined through interpolation.
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The detector of BRISK is an example of a corner detector. A
pixel of the image is a corner candidate if 9 consecutive pixels
in a circle of 16 pixels around it are darker (or brighter) than
the pixel plus (or minus) a threshold Θ. The response value
t of a pixel is the maximum threshold value for which the
pixel is still a corner candidate, and the pixel is an interest
point candidate if its response value t exceeds the detection
threshold value Θ. BRISK achieves scale invariance by pro-
gressively down-sampling the image according to an octave,
intra-octave structure, and repeating the detection process for
each layer. Finally, interpolation is done between the layers to
derive the refined coordinates and the scale σ of the interest
point.

To summarize, SURF and BRISK have similar input pa-
rameters, that is, the number of octaves and octave layers,
respectively intra-octave layers, defining the scale space of in-
terest, and a threshold value Θ. These parameters are selected
based on the requirements of the visual task [3]. As a result
of the detection process, each detected interest point k in an
image i is characterized by its coordinates (x, y)i,k, the scale
σi,k and the response value ti,k.

Detection is followed by orientation identification. This step
uses the pixel information within a circular interest area Ai,k
around the interest point location (x, y)i,k. The radius of the
interest area is

√
2·10σi,k in SURF, while in BRISK the radius

is defined by the requirements of the descriptor extraction; in
the original implementation the radius is 11.047σi,k. Figures
1b and 1c show examples of interest points and related interest
areas detected by SURF and by BRISK, respectively.

The last step is the extraction of the descriptors Di,k. In
SURF, descriptor extraction is done using a rectangular interest
area Ri,k of side length 20σi,k within the interest area Ai,k. In
BRISK the interest area Ri,k used for extraction is the same
as Ri,k used for orientation identification. Both SURF and
BRISK generate descriptors with a fixed length.

B. Delegation of Feature Computation

To accelerate the extraction process and to extend the
lifetime of the VSN, some or all processing steps can be
delegated from the camera node C to P .

The delegation of the interest point detection can be done
in three ways. C can delegate to a processing node j ∈ P
an area Zi,j of image i to be processed. We call this area-
split. The delegated areas need to overlap in order to be able
to detect all interest points, and thus the overlaps may need
to be transmitted more than once if the wireless links are
directional. The width of the overlaps is determined by the
size of the largest interest area, and is therefore

√
2 · 10 and

11.047 times the expected largest scale for SURF and for
BRISK, respectively. With area-split the number of interest
points detected by a processing node depends on the spatial
distribution of the interest points. Alternatively, C can assign a
processing node the octave parameters (effectively the scales)
to be used for interest point detection. We call this scale-split.
In this case all nodes need to receive the entire image, and the
number of interest points detected by each of them depends

on the distribution of the interest points across octave layers.
Finally, the delegation of interest point detection can be based
on both area and scale.

The delegation of orientation identification requires the
pixel data for Ai,k to be transmitted, and the delegation
of descriptor extraction requires the pixel data for Ri,k to
be transmitted. The areas for different interest points might
overlap, and the overlap can be used to decrease the amount
of data transmitted between the nodes for delegating these two
processing steps.

The delegation of the processing steps affects the use of
the computational and communication resources of the VSN
nodes: the data transmission from C to P , the computational
load of C and that of the nodes in P , and the data to be
transmitted from P to S. These three are strongly coupled, and
therefore the delegation needs to be optimized. We consider
the following schemes for delegating processing steps in order
to off-load the camera node C:

• No Detection / No Extraction (ND/NE): The camera node
performs neither detection nor extraction. Thus, the entire
image needs to be sent to the processing nodes, and area-,
scale- or hybrid split can be used.

• Partial Detection / Partial Extraction (PD/PE): The cam-
era node detects a subset of the interest points and extracts
the related descriptors. The way the subset of interest
points to be processed locally at the camera is determined
depends on how the processing steps are delegated. In
case of area split, interest points in an area Zi,0 are
detected and extracted at the camera. In case of scale-split
interest points of particular octave-layer parameters are
processed locally. The detection and extraction of interest
points at large scales would then decrease the redundancy
of area-split. In case of hybrid-split both area and octave-
layer could be specified.

• Complete Detection / No Extraction (CD/NE): The cam-
era node detects all interest points and delegates the
descriptor extraction to the processing nodes. Given the
location and scale of all interest points, the camera node
needs only transmit the pixel data for each interest area
Ai,k. If the camera node calculates orientation as well,
only the pixel data of Ri,k is needed, which, if SURF is
used, can decrease the number of pixels to be transmitted
by up to one third. At the same time the vector of interest
point locations and scales needs to be transmitted. The
balancing of the computation among processing nodes
can be done based on the known location and scale
parameters and becomes trivial if a broadcast link is
considered. In the case of directed links, however, the
problem is related to graph clustering and is known to be
NP-complete.

• Complete Detection / Partial Extraction (CD/PE): The
camera node detects all interest points and extracts some
of the descriptors. The set of interest points for which
descriptors are extracted at the source should be chosen
to minimize the remaining image pixels to be transmitted
to P . In this paper we consider a simple heuristic,
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Fig. 2: Average number of detected interest points and average interest point density vs. detection threshold Θ for (a) SURF
and for (b) BRISK.

processing interest points with largest scales at the source,
which is optimal when interest areas do not overlap.

Which of these schemes can achieve the best performance
depends on two factors. First, on the topology, and the
computational and transmission resources of the VSN. Second,
on the locations and scales of the interest points, which are
unknown a priori. In what follows we address the impact of the
latter. We evaluate statistical properties of the interest point and
scale-size distribution and assess the expected computational
and transmission gains of the above delegation schemes.

C. Evaluation methodology

Our results are based on the 30607 images of the Caltech-
256 object category data set [24], processed by the SURF
implementation of OpenCV [25] and by the original C++
implementation of BRISK for OpenCV [26]. For SURF we use
the default parameters, 4 octaves and 2 octave layers within
each octave. For BRISK we consider 4 octave and 4 intra-
octave layers. We performed the interest point detection and
feature extraction using BRISK and using SURF on a desktop
computer, but SURF and BRISK implementations for battery
powered sensor platforms with limited memory exist [16],
[27], and since the algorithms are deterministic, they would
produce the same results on a VSN node.

III. VSN WORKLOAD: NUMBER OF INTEREST POINTS

As demonstrated in [20], [27], the time needed for interest
point detection and for feature extraction are linear functions
of the image size ||i|| (in pixels) and of the number of interest
points Ki found in the image, both for SURF and for BRISK,
on various hardware platforms. Furthermore, since SURF and
BRISK descriptors have a fixed size, the number of interest
points also influences the amount of data to be transmitted to
the server node S. Therefore we start the evaluation with the
distribution of the number of interest points over the set of
images.

Figure 2a shows the mean number of detected interest points
K̄ as a function of the detection threshold Θ for SURF on a
logarithmic scale. In the considered Θ range, the mean number

of interest points decreases by an order of magnitude. The
figure shows the best power law fit, 0.9876 × Θ−0.0014, for
the curve. The good fit suggests that the decay indeed follows a
power law, i.e., is slower than exponential. Thus, the number of
interest points decreases fast for low threshold values but with
diminishing rate. Therefore, we can conclude that increasing
an already high threshold value will not significantly decrease
the average computational and transmission load in the VSN.

The figure shows as well the 5- and 95-percentile values,
which spread by more than one order of magnitude for any
given Θ. Vice versa, to keep the number of interest points
constant among the images, the detection threshold has to
be adjusted by up to an order of magnitude. To see whether
the high variability of the number of interest points can be
the result of different image sizes in the data set, we plotted
the average interest point density, that is, the average of the
number of detected interest points normalized by the image
size, Ki/||i||, in the same figure. We see similar trends for the
interest point density, though with somewhat decreased 5-95-
percentile ranges, which confirms that the number of interest
points per image varies significantly even for images with the
same size.

Figure 2b shows the corresponding results for BRISK. The
figure shows the best exponential fit, 0.03306×e−0.03115Θ, and
suggests that the density of BRISK interest points decreases
exponentially as a function of the detection threshold in the
considered range. Comparing to the results for SURF (cf.,
Figure 2a), we also see that the variability of the interest point
density for given Θ is slightly higher for BRISK.

As the interest point density for a particular threshold would
determine the processing load of a VSN, in Figures 3a and
3b we show the rank statistic of the interest point density for
three detection threshold values for all images. The considered
threshold values are Θ = 100, 500, 900 and Θ = 40, 60, 80
for SURF and for BRISK, respectively, resulting in a range of
average number of interest points and interest point densities
that allow good retrieval performance based on results in [13],
[28].

We observe that the interest point density varies by up to two
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Fig. 3: Rank statistics of the interest point density for different detection thresholds and the best-fit generalized Zipf distribution.

orders of magnitude for SURF, and the variability for BRISK
is even higher, around three orders of magnitude. Nevertheless,
the shape of the curves is similar for the two algorithms and for
all Θ values. To understand the characteristics of the curves,
we fitted the generalized Zipf law to the data [29]. According
to the generalized Zipf law the frequency of an object with
rank r is given by

fGZipf(f1,λ,µ,θ)(r) =
f1[

1− λ
µ + λ

µ e
1
θµr
]θ . (1)

The generalized Zipf law exhibits an initial plateau, a power-
law trunk and an exponential cut-off, and was used to model
proportional voting processes and content popularity in the
Internet [29], [30]. Figures 3a and 3b show that the fitting is
rather accurate, and suggests that there might be a power-law
scaling in the number of interest points per image.

Motivated by the above results, in the rest of the paper we
use Θ = 500 and Θ = 60 as default threshold values for SURF
and for BRISK, respectively. These threshold values lead to
similar average interest point densities for the two algorithms,
and allow good retrieval performance [13], [28].

We conclude that the number of detected interest points
in an image depends significantly on the image content.
Therefore, without a-priori information it is difficult to choose
detection parameters so as to ensure that an adequate number
of interest points is detected. Nevertheless, the processing load
due to extracting descriptors can be bounded if it is sufficient
to extract descriptors for the M interest points with highest
response values only, for some M . We refer to this as the
Top-M extraction scheme in the following [13]. We denote
the set of top-M interest points by KMi and their number by
KM
i = ||KMi ||. To implement the Top-M extraction scheme,

if the number of detected interest points Ki in image i is
larger than M for the detection threshold Θ used, the interest
points are ordered according to their response values ti,k,
and only the M interest points with highest responses are
considered for descriptor computation. Nevertheless, if the
detection threshold Θ is too high, the number of detected
interest points can be less than the target M . Consequently,
the number of extracted interest points KM

i can be less than

the target M depending on the threshold Θ used for detection
and depending on the image.

IV. AREA-SPLIT: SPATIAL DISTRIBUTION OF INTEREST
POINTS

The spatial distribution of the interest points in an image
plays an important role in the efficiency of area-split, as it
affects the distribution of computation and transmission load
among the camera node C and the processing nodes P . Under
the ND/NE and PD/PE schemes the spatial distribution is not
known by the camera node, hence a large variation of the
spatial distribution across images would lead to unpredictable
processing load under area-split.

A. Spatial distribution of interest points

Let us define x̃i,k as the normalized X-coordinate of interest
point k in image i, i.e., xi,k divided by the width of image i.
Furthermore, we define ni(x̃) to be the number of interest
points with normalized X-coordinate less than or equal to
x̃ in image i, i.e., ni(x̃) = |{k|x̃i,k ≤ x̃}|. We define the
distribution function for image i as Fi(x̃) = ni(x̃)

Ki
, and the

mean over all images F (x̃) = 1
N (
∑N
i=1 Fi(x̃)).

In Figure 4 we show the mean distribution F (x̃), and the
5- and 95-percentile values F5(x̃) and F95(x̃), for different Θ
values. Both for SURF and for BRISK, Favg(x̃) is close to
the diagonal, which suggests that the spatial distribution of the
X-coordinates is close to uniform on average. We see a small
deviation close to 0 and close to 1, reflecting that on average
fewer interest points can be found close to the image borders,
as a consequence of the applied detection techniques. Although
the mean is close to uniform, the 5-95-percentile interval is
rather wide, particularly for BRISK. The width of the interval
increases with Θ, that is, fewer interest points result in a more
uneven spatial distribution. As we have seen in Figure 2b,
BRISK results in highly varying interest point density under
given Θ, and specifically, in the Θ = 80 case gives less then 10
interest points for 5% of the images. This in turn leads to the
very wide 5-95-percentile interval for this scenario. The results
of the statistical analysis of the Y-coordinate distribution were
very similar and are therefore not shown in the paper.
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Fig. 4: Spatial distribution of the normalized X-coordinates of the interest points.

(a) SURF (b) BRISK

Fig. 5: CDF of the correlation coefficient of the normalized X and Y coordinates in the images.

An important question for area-split would be whether one
could split an image in a number of areas with equal number
of interest points if one knew the marginal distributions of the
X and Y coordinates of the interest points. To investigate this
question we consider the correlation between the X and Y-
coordinates. Figure 5 shows the distribution of the correlation
coefficients ρiX,Y for the X and Y-coordinates over all images
i, for SURF and for BRISK, for various threshold values Θ.
The figures also show the best fit Laplacian distributions with
their location and scale parameter. The location parameter
values are close to zero, suggesting that the average ρX,Y
is close to zero both for SURF and for BRISK. The scale
parameter of the Laplacian distributions are higher for higher
threshold values Θ, suggesting higher correlation when the
number of detected interest points is low. In general, the
scale parameter of the Laplacian distribution is higher for
BRISK, possibly due to images with very low number of
interest points. Although the correlation distribution is close
to symmetric around zero, the correlation values are non-zero
for most images, and thus the interest point coordinates cannot
be considered independent. Consequently, knowledge of the
marginal distributions would not be sufficient for balancing
the load using area-split.

B. Processing load imbalance

Let us now turn to the impact of the spatial distribution of
interest points on the feasibility of balancing the processing
load under area-split. We divide each image into P equal-
sized areas, for P = 2, 4, 6, 9, using vertical and horizontal
cuts, and assign area Zi,j to processing node j. We denote
by ni,j the number of interest points detected by node j.
Since the interest point distribution is close to uniform on
average (cf., Figure 4), the total computation and transmission
load among the processing nodes will be nearly balanced
after processing many different images. Nevertheless, over the
course of processing a few images, the non-uniform spatial
distribution and the correlation of the X and Y coordinates may
lead to unbalanced processing loads, and thus highly varying
processing times. This may be problematic if the processing
has to be done under delay constraints.

We define the processing load imbalance Li for an image
i as the ratio of the maximum number of interest points in
any of the areas divided by the average of number of interest
points per area,

Li =

max
1≤j≤P

ni,j

Ki/P
. (2)

By definition 1 ≤ Li ≤ P . A value close to 1 corresponds to
balanced load distribution, while a value of L = P means that
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Fig. 6: Processing load imbalance as a function of the number of processing nodes.
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Fig. 8: Hit ratio vs. (a) number of nodes P for M = 250, (b) number of interest points M to be extracted for P = 9.

all interest points fall into the same area and are processed by
a single processing node.

Figure 6 shows the average and the 5-95-percentiles of the
load imbalance Li as a function of the number of processing
nodes P for various Θ values, for SURF and for BRISK.
The imbalance increases nearly linearly for the considered P
values; the increase is faster for larger Θ, and is generally
slower for SURF, which can be explained based on the results
for the spatial distribution shown in Figure 4. The results show
that on average the most loaded processing node would have
close to three times more workload than the average value,
and the imbalance exceeds 4 and 5 for 5% of the images for
SURF and for BRISK, respectively.

Next, we consider the imbalance under the Top-M extrac-
tion scheme, for two cases. First, we consider the ideal case
that the processing nodes P are aware of the threshold Θ that
has to be used to detect M interest points in total.

Figure 7 shows the average and the 5-95-percentiles of the
processing load imbalance L for P = 9 for SURF and for
BRISK, for values of M that provide good retrieval perfor-
mance [13], [28]. The imbalance decreases as the number M
of interest points to be detected and extracted increases, but
comparing the results with the ones in Figure 6, extracting
the Top-M interest points leads to increased processing load

imbalance, even at M = 400.

Second, we consider the practical case that the processing
nodes P do not know the correct threshold Θ that should
be used to detect the Top-M interest points. Therefore, each
processing node j ∈ P has to determine which of the interest
points detected in its area Zi,j belong to the Top-M interest
points in the entire image. Without a-priori information, the
most processing intensive approach would be to have process-
ing node j detect and extract up to M interest points in its area
Zi,j . In the worst case this approach would result in (P−1)M
interest points to be detected and extracted unnecessarily. The
least processing intensive approach, which we consider, is that
processing node j extracts up to M/P interest points, the
interest points with highest response in Zi,j . Let us denote the
set of extracted interest points by κMi,j . If we denote by ni,j
the number of interest points detected in area Zi,j of image
i then the number of extracted interest points at processing
node j is |κMi,j | = min{ni,j ,M/P}.

While the processing load is expected to be balanced in
this case, without cooperation the processing nodes may not
be able to find all top-M interest points, which may lead to
decreased visual analysis performance. To quantify the ability
of the nodes to extract the Top-M interest points we define
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the hit ratio as the ratio of the number of extracted Top-M
interest points and the number KM

i of Top-M interest points
that should have been extracted

HM
i =

||
P⋃
j=1

κMi,j
⋂
KMi ||

KM
i

. (3)

The hit ratio is by definition bounded by 1
P ≤ HM

i ≤ 1.
HM
i = 1 when all KM

i = ||KMi || top-M interest points are
processed, and HM

i = 1
P when one area contains all the top-

M interest points.
Figure 8a shows the average and the 5-95-percentiles of the

hit ratio HM
i as a function of the number of processing nodes

P , for M = 250. When there are many processing nodes,
only about 70% of the top interest points are detected, and
for 5% of the images this ratio drops below 50%, which may
deteriorate visual analysis performance. Consistent with the
less even spatial distribution of interest points, the hit ratios
are lower for BRISK. Figure 8b shows the results as a function
of M for P = 9. The figure shows that the hit ratio increases
with M , because the distribution of the Top-M interest points
among areas becomes more balanced, but the 5 percentiles are
still very low.

From the above results we conclude that without a-priori
information on the interest point distribution, e.g., in the

case of ND/NE and PD/PE, the processing load imbalance
can be very high. This in turn can lead to significantly
increased processing times in the VSN, as well as to decreased
network lifetime due to the uneven energy consumption at the
processing nodes P . Similarly, the Top-M extraction scheme
either requires knowledge of the detection threshold Θ to be
used, or if that is not known a-priori, then each processing
node either has to extract more than M/P interest points in
its area, which leads to processing overhead, or the processing
nodes need to coordinate to agree on the set of Top-M interest
points, which leads to communication overhead and delay.

Area-split could become an efficient solution to delegate
the feature extraction tasks to the processing nodes if the
camera node could obtain the location of the interest points
by performing complete detection, i.e., CD/NE and CD/PE.
Alternatively, the camera node could try to predict the interest
point distribution if the subsequent images are correlated, as,
for example, in the case of visual analysis of video sequences.

V. SCALE-SPLIT: OCTAVE DISTRIBUTION OF INTEREST
POINTS

We now consider the distribution of the interest points over
the octave layers they are detected at. This distribution is
important for understanding the feasibility of scale-split, i.e.,
when each processing node performs detection only in a part
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Fig. 10: Spatial distribution of interest points along the X-axis for different octave layers.

of the scale space.
We again start with considering the ND/NE scheme, thus

the delegation needs to be based on the parameters of the
detection algorithm, which are the octave layers in the scale
space. Therefore, we evaluate the interest point distribution
as a function of this parameter. For SURF we consider the
default parameters of 4 octaves and 2 octave layers within each
octave, denoted as (1, 1), (1, 2), (2, 1) . . . (4, 2). For BRISK
we consider 4 octave as well as intra-octave layers, denoted as
c0, d0, c1 . . . d3. Thus, for both algorithms, the interest point
detection is performed in 8 rounds.

Figures 9a and 9d show the mean value of the ratio
of interest points detected at the different octave layers at
various detection threshold values for SURF and for BRISK,
respectively. We note that the majority of the interest points
are detected at low octaves/layers, representing a small scale
σ: at octave/layer (1, 1) and (1, 2) under SURF and at c0
under BRISK. The share of interest points detected at low
octaves/layers decreases slightly as Θ is increased. Extreme
cases for SURF were reported in [18] for very high threshold
values and for a limited set of images.

Figures 9b and Figure 9e show the average and the 5-95-
percentile of the probability mass function (PMF) of the inter-
est point distribution across the octave layers for SURF and
for BRISK, respectively. The distributions are very skewed;
for example, processing interest points at the lowest octave
layer results in 40% and 50% of the processing load for
SURF and for BRISK, respectively, while the two highest
octave layers together would result in 0.3% and in 5% of
the processing load. The 5-95-percentile intervals are wide
for both algorithms, and even here the BRISK results show
higher variability across the images.

Figures 9c and 9f show that the octave layer distribution
remains skewed even under the Top-M detection scheme. The
distributions are rather similar for all M values, apart from
the (1, 1) layer results for SURF, which suggests that interest
points with very high responses are slightly less likely to be
found in the lowest octave layer.

An important consequence of the skewed octave layer
distribution is that delegation using scale-split only is not

very suitable for balancing the load under ND/NE and under
PD/PE, if balancing the processing load is desired, e.g., for
every individual image. We therefore now consider combining
scale-split with area-split in order to balance the processing
load at low octave layers among the processing nodes. To
evaluate the benefit of combining scale-split with area-split,
Figure 10 shows the average cumulative distribution func-
tion Favg(x̃) of the normalized X-coordinates, and the 5-95-
percentiles for interest points detected at three different octave
layers. For comparison we show a low, a medium and a high
scale octave layer for both algorithms: layers (1, 1), (2, 2) and
(4, 2) for SURF and layers c0, d1 and d3 for BRISK. The
results for low octave layers are very similar to the ones
in Figure 4. For higher octave layers the distribution of the
average over all images gets further from uniform and the
5-95-percentile intervals get wider, since interest points with
large scale σk are not detected close to the borders of the
images, and their number is low in general.

From these results we can conclude that scale-split, even
when combined with area-split would lead to extremely
unbalanced load under ND/NE, and does not seem to have
any advantage compared to pure area-split. The question
that remains is whether letting the camera node detect and
potentially extract at high octave layers, combined with area-
split among the processing nodes P could make scale-split
beneficial. This will be evaluated in the next section.

VI. INVOLVING THE CAMERA NODE

Considering the statistics of the scale and the spatial dis-
tribution of the interest points, we see that both show high
variability across the images. Thus, under ND/NE one either
needs to be able to predict the detection parameters that
lead to a balanced processing load or one needs extensive
coordination between the processing nodes. We therefore now
consider the PD/PE, the CD/NE and the CD/PE schemes.
These schemes provide the camera node with information
that it could potentially use for controlling the balance of the
delegation of the descriptor extraction.
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Fig. 11: Average transmission redun-
dancy under area-split for PD/PE and
CD/PE.

(a) SURF (b) BRISK

Fig. 12: CD/NE and CD/PE transmission imbalance for (a) SURF and (b) BRISK.

A. Transmission redundancy and imbalance

We start with considering the transmission of the image
pixel information from C to P . If a broadcast link is used,
all pixel information is transmitted to all nodes at once, and
offloading incurs no redundant transmission. Nevertheless, in
the case of directed links the amount of data to be transmitted
to P depends on the offloading scheme, and certain areas of
the image may have to be transmitted several times.

For the evaluation we consider area-split with P = 2, 4, 6
and 9 processing nodes. The subareas assigned to the nodes are
constructed as follows. First, the image is cut with horizontal
and vertical cuts into 2× 1, 2× 2, 3× 1, or 3× 3 rectangular
areas. Then, overlapping areas are added to ensure that the
interest points close to the cuts can be detected. For ND/NE
and PD/PE the rectangular areas are of equal size and the
width of the overlap is defined by the radius of the interest area
Ai,k at the highest possible scale σ. For CD/NE and CD/PE
we optimize the location of the cuts so that each area includes
an equal number of interest points, and the overlaps depend
on the actual interest point positions (x, y)i,k and scales σi,k.

We define the transmission redundancy as the sum of the
sizes of the transmitted areas divided by the image size ||i||
and normalized by the number of areas

Ri =

P∑
j=1

||Zi,j ||

||i||P . (4)

The transmission redundancy is by definition 1/P ≤ Ri ≤ 1.
Ri = 1 means that every processing node needs to receive the
entire image, while Ri = 1/P means no redundancy.

Figure 11 shows the average transmission redundancy for
SURF and for BRISK under the PD/PE and the CD/PE
schemes. We show the results for decreasing levels of extrac-
tion at the camera node. The leftmost axis label (2−8) means
that all but the lowest octave layer are extracted at C, the axis
label 8 means that only the highest octave layer is extracted at
C, while NE stays for no extraction at the camera node, which
corresponds to PD/NE or CD/NE. The figure shows results for
P = 2 and P = 9, that is, 2× 1 and 3× 3 cuts.

The redundancy is close to 1 under PD/NE and CD/NE,
both for SURF and for BRISK, though the rendundancy for
BRISK is in general lower, because the interest areas Ai,k are
smaller. Interestingly, the redundancy decreases quite fast and
steadily as more and more octave layers are extracted at C.
Thus, there is a significant trade-off between the transmission
redundancy and the processing load at C. A similar trade-off
can be observed when comparing the redundancy for PD/PE
and for CD/PE. CD/PE allows the overlaps to be minimized,
which helps to decrease the redundancy compared to PD/PE,
at the price of increased processing at C. We conclude that
detection at the camera node can significantly decrease the
redundancy in the data transmitted to the processing nodes.

In principle CD/NE and CD/PE allow one to balance the
processing load among the processing nodes P as the interest
point locations are known in the camera node, and they would
even allow a lower transmission redundancy in the case of
directed links. Balancing the processing load would, however,
require that the different processing nodes process areas of
different sizes.

To quantify the imbalance in terms of the area sizes needed
to balance the processing load, we define the transmission
imbalance as the ratio of the size of the largest area transmitted
to a node divided by the average of the area sizes

Ti =

max
1≤j≤P

||Zi,j ||
P∑
j=1

||Zi,j ||/P
. (5)

As the size of the transmitted areas depends on the layers
extracted at C, Figures 12a and 12b show the transmission
imbalance for SURF and for BRISK with different levels of
extraction at the camera node and as a function of the number
P of processing nodes. For SURF, the average tranmission
imbalance T is only little affected by the number of octave
layers extracted at C, but the 5-95-percentiles are slightly
wider when only the lowest layers are processed at P . The
number of processing nodes has a minor impact on the average
imbalance, although the 5-95-percentile interval gets wider
when there are more nodes. For BRISK these tendencies
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(a) SURF (b) BRISK

Fig. 13: Empty area distribution under CD/NE for various detection thresholds, for (a) SURF and for (b) BRISK.

(a) SURF (b) BRISK

Fig. 14: Empty area ratio under CD/NE and CD/PE for (a) SURF and for (b) BRISK.

are more pronounced, and the average and percentile values
are generally higher, which is a consequence of the higher
variability of the interest point locations for BRISK (cf. Fig. 4).

Based on these results we conclude that partial extraction
at the camera node is an efficient solution for decreasing
the amount of redundant data transmission, at the price of
increased computational load at the camera node. At the
same time, if interest point detection is done at the camera
node to aid balancing the load of the processing nodes then,
interestingly, partial extraction at the camare node does not
always help to balance the amount of data to be transmitted
to the individual nodes.

B. Empty area distribution

Let us finally consider CD/NE and CD/PE, that is, when the
camera node C performs the detection of all interest points.
As in this case the location and the scale of the interest points
are known, it could be sufficient to transmit only the interest
areas around the interest points to the processing nodes P ,
that is, a disc with radius

√
2 · 10σi,k for each interest point k

in image i. We refer to the area of an image not covered by
any interest area as empty area, and we define the empty area

ratio as the size of the empty area normalized by the image
size ||i||,

Ei = 1−
||

K⋃
k=1

Ai,k||

||i|| . (6)

Intuitively, the higher the empty area ratio the less data need
to be transmitted from the camera node.

1) Empty area distribution under CD/NE: Figures 13a and
13b show the distribution of the empty area ratio Ei for SURF
and for BRISK for CD/NE, and for various detection threshold
values Θ.

The ratio of the empty area turns out to be very small for
SURF. It increases slightly with increased detection threshold
because less interest points are detected. For the default
Θ = 500, the average achievable gain of not transmitting
empty areas from the camera node to the processing nodes
is roughly 10%, but around 30% of the images do not have
empty area at all. Thus, CD/NE might not significantly reduce
the amount of data to be transmitted from the camera node to
the processing nodes for SURF. BRISK leads to significantly
larger empty area ratios; on average 40-50% of the images
is empty area. The higher empty area ratios are due to two
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reasons. First, the radii of the interest areas are in general
smaller for BRISK. Second, the interest points happen to be
more clustered because of the type of detector.

2) Empty area distribution under CD/PE: A natural way
to increase the empty area ratio is to perform partial feature
extraction at the camera node, that is, CD/PE, as the interest
areas that correspond to interest points processed at the camera
node C do not need to be transmitted. In principle the
set of interest points extracted at the camera node could
be chosen such as to maximize the empty area, but doing
so requires combinatorial optimization due to the overlaps
between interest areas. We instead consider a low complexity
heuristic to choose the interest points to be extracted at C:
for a given percentage of the interest points, starting from the
highest scale, descriptors are extracted at C. Figures 14a and
14b show the CDF of the empty area ratio Ei under CD/NE
and CD/PE when 5% to 30% of the feature descriptors are
extracted at the camera node. Extracting 10% of the descriptors
at C for SURF doubles the empty area on average, and the
probability that an image does not have empty area at all gets
close to zero, which is a significant gain. The gain of partial
extraction is much lower for BRISK, because the empty area
ratios Ei are already relatively high without partial extraction.

We conclude, that for BRISK not transmitting the empty
areas seems to be an efficient solution to decrease the trans-
mission cost from C to P , even without local extraction at C.
The same solution gives significantly lower gain for SURF,
for which partial extraction at the camera node is needed to
increase the mean empty area ratio above 10%.

VII. CONCLUSION

We provided a statistical characterization of SURF and
BRISK interest points based on a large public image database
with the aim of getting insight into the efficiency of different
design choices for the delegation of processing tasks in a visual
sensor network. Motivated by the limited communication,
processing and energy resources of the nodes, we evaluated
whether it is possible to delegate the processing tasks so that
the transmission load in the network is balanced and possibly
decreased, and the processing load is balanced across the
nodes.

Our results show that the interest point density, the spatial
distribution of the interest point locations, and the octave
layer distribution of the interest points vary significantly
between images. These properties hold both for SURF and
for BRISK, and are expected to hold for all similar, blob
or corner detection based local feature extraction algorithms.
As a consequence, a balanced allocation of the load among
processing nodes is infeasible without a-priori information
on the image characteristics or without coordination between
the processing nodes. A-priori information could be obtained
through leveraging potential temporal correlation between
subsequent images in the case of video, or it can be obtained
through interest point detection performed at the camera node.
Our results show that the transmission redundancy needed

for area-split can be significantly decreased through octave-
based partial detection and partial extraction at the camera
node. Complete interest point detection at the camera allows
balancing the computational load of the processing nodes
at the price of increased computational load at the camera
node, but can significantly decrease the transmission load for
BRISK, as significant parts of the image do not have to be
transmitted. Comparing SURF with BRISK our results show
that a-priori information is more important for BRISK, as the
spatial distribution of interest points varies more. At the same
time, if a-priori information is available through detection at
the camera node, the gain in terms of decreased transmission
load is more substantial when BRISK is used.
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