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AI Changes the Threat Model
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AI-Powered Adversaries
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• Social engineering

– Target selection, deepfakes

• Phishing

– Improved personalization, live communication at scale

• Vulnerability discovery

– Hardware/software vulnerability analysis

• Autonomous malware



AI-Powered Cyber Resilience
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Activity logs 
(Network and Host)

• Network IDS
• Host IDS

Event stream

• Event correlation
• Alert deduplication

Alert stream

• Detection and 
analysis

Incidents

• Response

• From logs to incident response

• ML is data intensive
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Outlier detection

Pattern recognition

Behavioral analysis

Autoencoder
Regression
Clustering
Prediction Supervised

ML Causal 
reasoning

• Business continuity
• Impact assessment

• Counterfactual 
reasoning

• Interaction with 
humans

• Conversational AI
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ML/AI as a Power Tool
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Gökstorp et al,``Anomaly Detection in Security Logs using Sequence
Modeling,’’ in Proc. of IFIP/IEEE NOMS, 2024

Tokenizer Bidirectional 
Transformer

Prediction 
loss



ML/AI as a Power Tool
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Rehman et al., “FLASH: A Comprehensive Approach to Intrusion Detection via 
Provenance Graph Representation Learning”, in Proc. of IEEE S&P, 2024



ML/AI as a Power Tool
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Santos et al., ``Channel-Centric Spatio-Temporal Graph Networks for Network
based Intrusion Detection,’’ in Proc. of IEEE CNS,  2024



ML/AI as a Power Tool
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– https://security.googleblog.com/2024/04/accelerating-incident-response-using.html



Autonomous Cyber Defense
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• Operational requirements

– Auditable

– Controllable

– Transferable/Adaptive

– Secure

– Observable/Explainble

Introduction 
of AI/ML
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Source: https://github.com/Limmen/awesome-rl-for-cybersecurity



Human-in-the-loop AI for Security
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• AI/ML complementing human decision making

– Reduced response time 

– Higher accuracy

https://arm.stanford.edu/research/leveraging-human-intent-shared-autonomy



Human-in-the-loop AI for Security
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• AI/ML complementing human decision making 

– Reduced response time 

– Higher accuracy

Target system 
(environment)

Human expert
Action

Observation

Human 
Model

Action Observation

System 
Model

Action Observation



Framework Design Space
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System Model Complexity
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Human-in-the-Loop AI Framework
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True or False



State in Cyber Security
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• Attack tree: Hypergraph of conditions and exploits

• Attack state: the set of conditions/privileges the attacker gained

• States and transitions  Markov model
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Problem of Partial Observability 

2024-10-16 16

• Security state is not visible to the defender

– Attacker activity can trigger alerts

• Hidden Markov model

X — states
y — possible observations
a — state transition probabilities
b — output probabilities



System model – Security state

2024-10-16 17

• Time is slotted

• Attack Hypergraph

– Nodes: conditions (access privilege, etc)

– Hyperedges: exploits

• Security state: set of enabled conditions 

• Example

– c1: wu-ftpd 2.5 running on host

– c2: ftp server remotely accessible

– e3: CVE-1999-0878

– c3: Root privilege on host 
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C4 C5

C3
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e4 e5

e1 e2

C1 C2
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e3
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e1 e2

[ State at t = 1] [ State at t = 2]

(= Service 1) (= Service 2)

(=  Super
user right)

FTP

Kim et al, “An Active Learning Approach to Dynamic Alert Prioritization 
for Real-time Situational Awareness" Proc. of IEEE CNS,  2022



• Attacker chooses exploits independently

– Probability of choosing exploit 𝑒: 𝛼

– Probability that exploit 𝑒 succeeds: 𝛽

• If exploit 𝒊 is used

– Generates alert 𝑎 with probability 𝛿

• False positive with probability 

• Alert vector ௧ ଵ 
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ଶ ହ
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Attacker model

Kim et al, “An Active Learning Approach to Dynamic Alert Prioritization 
for Real-time Situational Awareness" Proc. of IEEE CNS,  2022

[ State at t = 1] [ State at t = 2]

FTP



• Observation at time t: ௧ (alert vector)

• Action: 

– Inspect up to I  alerts in 𝑌௧

– Inspecting alert 𝑦௧
 results in modified alert 𝑦ො௧



• Human model: Investigation error probability 

• Belief about security state

• Cost: State estimation error

• Optimal policy: 

19

Investigation outcome

FPTPGround truth

𝜔1 − 𝜔TP

1 − 𝜔𝜔FP



• In practice the state is unknown  cannot calculate MSE

Use belief uncertainty as a proxy for the MSE.
Intuition: Low uncertainty is likely to imply an accurate belief

• Proposed candidate policies

– Max-entropy
 Investigate the alert 𝑣 that decreases the entropy most

min
୴

 H(𝑆௧ାଵ = 𝑠ᇲ , Φ௧ାଵ = 𝜙ᇲ |𝑉௧ାଵ = 𝑣, 𝑌௧ାଵ = 𝑦, Π௧ = 𝜋௧)

– Bayes factor policy
 Investigate the most ambiguous alert 
(alert probability without false positives vs. false positive rate)

Kim et al, “An Active Learning Approach to Dynamic Alert Prioritization for Real-time Situational Awareness" Proc. of IEEE CNS,  2022
20



System Level Benefit
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Less human effort needed

Less skilled experts needed

Kim et al, “An Active Learning Approach to Dynamic Alert Prioritization for Real-time Situational Awareness" Proc. of IEEE CNS,  2022



Framework Design Space
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System Model Complexity
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Katsikeas et al. “An attack simulation language for the IT domain,” in Proc. of Int. Workshop on Graphical Models for Security, pp. 67–86, 2020.

Compressed CoreLang Attack Graph with 540 nodes



MITRE ATT&CK Model
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Choi et al., “Probabilistic Attack Sequence Generation and Execution Based 
on MITRE ATT&CK for ICS Datasets”, in Proc. of ACM CSET, 2021



Attack and Observation Model
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• Set of attacker states ଵ ୬ௌ

• State at time : ௧

• Set of alerts 

• True alert probability

 ௧


௧ 

• False alert probability

 ௧


௧ ଵ

ଽ ଶଽ



• Observes alerts 𝑌௧ at time 𝑡

• Investigates up to 𝐼 alerts 𝑣 ⊆ 𝑌ଵ:௧

– Investigation outcome 𝑜௧

• Human model: Investigation error probability ω
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Kim et al, “Human-in-the-loop Cyber Intrusion Detection Using Active Learning" IEEE TIFS,  2024

• Confidence function

• Update of HMM Observation Model
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• Defender objective: Minimize mean time to detection

– Subject to: Constraint on false positive rate
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Kim et al, “Human-in-the-loop Cyber Intrusion Detection Using Active Learning" IEEE TIFS,  2024



Background: Sequential Hypothesis Testing
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• Generalized likelihood ratio test
• Composite hypothesis ଵ ଵ ு

• Detection rule ௧
ଵ

୫ୟ୶
∈ℋభ

 (ଢ଼|)

(ଢ଼|బ )

• Asymptotic behavior
• Risk 

• 
ᇲஷ

ᇲ ௧

• Expected detection time

• ௗ
 ିோ

(||ᇲ)

B. C. Levy, Principles of signal detection and parameter estimation. Springer, 2008.



• Defender objective: Minimize mean time to detection

– Subject to: Constraint on false positive rate

• Generating Alternative Hypotheses

– Most likely hypothesis at time 

∈ℋ  ଵ:௧ ௧ ௧


– Likelihood ratio

> ௧
 𝒉(|ℱ,௩

ഉ)

భ(|ℱ,௩
ഉ)
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• Optimal detection rule without active learning 

– Generalized likelihood ratio test

• Two candidate policies

– Max-ratio policy
 Set of alerts that maximizes the expected probability ratio

– Max KL Divergence
 Set of alerts that maximize the KL divergence of the distribution of observed alerts after investigation

Kim et al, “Human-in-the-loop Cyber Intrusion Detection Using Active Learning" IEEE TIFS,  2024
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Detection Performance
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Impact of the Human Model
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• Concave confidence 
function superior

• Max KL performs best





Expertise is Important
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• 2 experts with potentially 
varying expertise

• Heterogenous expertise 
is preferrable

Kim et al, “Human-in-the-loop Cyber Intrusion Detection Using Active Learning" IEEE TIFS,  2024



Human-in-the-Loop AI Framework Revisited
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Framework Design Space
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System Model Complexity
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Katsikeas et al. “An attack simulation language for the IT domain,” in Proc. of Int. Workshop on Graphical Models for Security, pp. 67–86, 2020.

Compressed CoreLang Attack Graph with 540 nodes



Conclusion
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• Human-in-the-loop-AI for cyber resilience

– Efficient use of human resources and ML

– Human skills and behavior vs. system model complexity

– Improved accuracy and lower time to detection

• Many open questions

– How to model human behaviour
> Trust, psychological aspects

> Affects the design of AI algorithms

– How to apply the concept to CPS

– Vulnerability to an adaptive adversary in a game theoretical framework

– Integration with threat hunting

– Semi-autonomous incident response
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