

Boosting Cyber Resilience with Human-in-the-loop Al

György Dán

IEEE CNS 2024 Workshop on Cyber Resilience

The Needle in the Haystack?

AI Changes the Threat Model

AI-Powered Adversaries

- Social engineering
 - Target selection, deepfakes
- Phishing
 - Improved personalization, live communication at scale
- Vulnerability discovery
 - Hardware/software vulnerability analysis
- Autonomous malware

	ÉRTESÍTÉSúj földgázszámláról	
	Kedvez Ugyfelünk! Uj foldgizasienligi kasifit, anelyet most känyelmesen kängverlithet a leeti Berletem bankkritykai länke kättöttä. Saimla edistai:	
	Fizetési határidő:	
	Utsi Edhal szükkéges editak (* Regeleni Auszlálan poman k tort taktoária alamen agy az az telyetezől azonalára azagori	
	Másodlagos azonosíkó (bankazámazám helyett):	
	Számla sorszáma (lözleménybe):<	
	Befizetern bankkártyával	
EIGYELMEZTETÉS A	DATHALÁSZATRALVigvázzon adataira, ne dőliön be az MVM v	agy az NKM nevéve
visszaélő csalóknak	anna a sea na na Starren a annan a' na a agun a a ar na na	-67 of the term
Bővebb tájékoztatás	: www.mvmnext.hu/Adathalaszat	

Lore a Red Team Emulation Tool

Publisher: IEEE

New type of polymorphic fully autonomous malware uses Al

Technology News | August 2, 2023

AI-Powered Cyber Resilience

From logs to incident response

Gökstorp et al, ``Anomaly Detection in Security Logs using Sequence Modeling,'' in Proc. of IFIP/IEEE NOMS, 2024

2024-10-16

ap:-\$ sudo sed -n '/error/p' /var/log/syslog sudo] password for sara:

Jun 10 14:28:29 pnap gnome-session[2491]: gnome-session-binary[2491]: GLib-GIO-CRITICAL : g_bus_get_sync: assertion 'error == NULL || *error == NULL' failed Jun 10 14:28:29 pnap gnome-session-binary[2491]: GLib-GIO-CRITICAL: g_bus_get_sync: ass

Jun 10 14:28:29 phap gnome-session-binary[2491]: GLib-GIO-CRITICAL: g_bus_get_sync: ass ertion 'error == NULL || *error == NULL' failed Jun 10 14:28:29 phap gnome-session-binary[2491]: GLib-GIO-CRITICAL: g_bus_get_sync: ass ertion 'error == NULL || *error == NULL' failed

Jun 10 14:28:29 pnag gnome-session[2491]: gnome-session-binary[2491]: GLib-GIO-CRITICAL : g_bus_get_sync: assertion 'error == NULL || *error == NULL' failed Jun 10 14:29:38 pnap tracker-extract[3638]: Task for 'file:///usr/share/applications/vi m.desktop.dpkg-new 'finished with error: Error when getting information for file "/usr/ share/applications/vim.desktop.dpkg-new": No such file or directory

Rehman et al., "FLASH: A Comprehensive Approach to Intrusion Detection via Provenance Graph Representation Learning", in Proc. of IEEE S&P, 2024

CCSTGN

Santos et al., ``Channel-Centric Spatio-Temporal Graph Networks for Ne

<Security Incident>

<Title> [tool_name_verdict] Abuse verdict for project id: xyz.</Title>

«Metadata» This ticket was filled and submitted on the 2023-10-01. It was marked with the labels: "Investigation" and "AB".</metadata>

<Description> Counter-Abuse has issued an abuse verdict against a GCP project.</Description>

<Additional Information> The incident was reported through the xyz pipeline with a policy violation of "COIN_MINING".

The infraction can be found in the project xyz.</Additional Information>

<Date Incident> 2023-10-01 11:50:19</Date Incident><Incident Causes> The identified causes are: MISCONFIGURATION, WEAK_OR_NO_PASSWORD</Incident Causes><Actions Taken> The following actions were taken:

1) Action1

2) Action2</Actions Taken>

<Software Involved> Software1</Software Involved>

<Sensitive Data> - NONE, TEST</Sensitive Data>

<Mitigation History><Comment index="1" author="user10domain.com"> Looks like there was a CPU spike: URL around 05:00. Running application1 now.</Comment>

<Comment index="2" author="user3@domain.com"> Instance compromised, shutting it down</Comment> <Comment index="3" author="user4@domain.com"> InstanceMetadata</Comment>

<Comment index="4" author="user@domain.com"> Get additional information on InstanceMetadata: URL'<Code Section/>`</Comment>

<Comment index="5" author="user30domain.com"> Looks like it was compromised through successfully
authentication as root account using SSH with password authentication: '<Code Section/> </Comment>
<Comment index="6" author="user30domain.com"> A malicious cron job was created on the machine
'<Code Section/> '. The cron job downloaded a bash script from IP and executed it. The script was
not present under '<Code Section/> ' at the time of the investigation <Code Section/> '</Comment>
<Comment index="10" author="user30domain.com"> Exec update sent.</Comment>
</Mitigation History>

Time spent (in minutes) writing an incident summary

<u>https://security.googleblog.com/2024/04/accelerating-incident-response-using.html</u>

Autonomous Cyber Defense

Human-in-the-loop AI for Security

- AI/ML complementing human decision making •
 - Reduced response time
 - Higher accuracy

Human-in-the-loop AI for Security

- AI/ML complementing human decision making
 - Reduced response time
 - Higher accuracy

Framework Design Space

Human-in-the-Loop AI Framework

State in Cyber Security

- Attack tree: Hypergraph of conditions and exploits
- Attack state: the set of conditions/privileges the attacker gained

• States and transitions → Markov model

Problem of Partial Observability

- Security state is not visible to the defender
 - Attacker activity can trigger alerts

• Hidden Markov model

System model – Security state

- Time is slotted
- Attack Hypergraph
 - Nodes: conditions (access privilege, etc)
 - Hyperedges: exploits

 $\mathcal{H} = (\mathcal{N}, \mathcal{E})$ where $\mathcal{N} = \{c_1, ..., c_{n_c}\}$, and $\mathcal{E} = \{e_1, ..., e_{n_e}\}$

Security state: set of enabled conditions

$$s_1 = \{c_1\} \qquad s_2 = \{c_1, c_2\}$$

- Example
 - c1: wu-ftpd 2.5 running on host
 - c2: ftp server remotely accessible
 - e3: CVE-1999-0878
 - c3: Root privilege on host

Attacker model

Attacker chooses exploits independently

, 1, 1,

 δ°

 y_2

- Probability of choosing exploit e_i : α_{e_i}
- Probability that exploit e_i succeeds: β_{e_i}
- If exploit e_i is used
 - Generates alert *a* with probability δ_{ia}
- **False positive** with probability ζ_a

• Alert vector
$$Y_t = (y_1, \dots, y_{n_z})$$

Defender model

- **Observation at time t:** *Y*_t (alert vector) •
- Action: •
 - Inspect up to I alerts in Y_t
 - Inspecting alert y_t^a results in modified alert \hat{y}_t^a
- Human model: Investigation error probability ω ٠
- Belief about security state ٠

$$\pi_{t} = \begin{bmatrix} \pi_{t}^{1,1} & \pi_{t}^{1,2} & \cdots & \pi_{t}^{1,n_{a}} \\ \pi_{t}^{2,1} & \pi_{t}^{2,2} & \cdots & \pi_{t}^{2,n_{a}} \\ \vdots & \vdots & \ddots & \vdots \\ \pi_{t}^{n_{s},1} & \pi_{t}^{n_{s},2} & \cdots & \pi_{t}^{n_{s},n_{a}} \end{bmatrix} \in \Delta(\mathcal{S} \times \Phi)$$

- Cost: State estimation error $J^{\kappa} = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \gamma^{t} MSE(\pi_{t}^{\kappa}, s_{t}^{\kappa})$ Optimal policy: $\kappa^{*} \in \arg \min_{\kappa \in \mathcal{K}} J^{\kappa}$

	Investigation outcome						
Ground truth	TP	FP					
ТР	$1 - \omega$	ω					
FP	ω	$1-\omega$					

Active learning for alert prioritization

In practice the state is unknown → cannot calculate MSE

Use **belief uncertainty as a proxy** for the MSE. Intuition: Low uncertainty is likely to imply an accurate belief

- Proposed candidate policies
 - Max-entropy
 - → Investigate the alert v that decreases the entropy most $\min_{v} H(S_{t+1} = s_{i'}, \Phi_{t+1} = \phi_{l'} | V_{t+1} = v, Y_{t+1} = y_n, \Pi_t = \pi_t)$

 c_1 c_2 c_3 c_4 c_5 c_6 c_7 e_8 e_9 e_{10} e_{11} e_{11} e_{11} e_{11} e_{11} e_{12} e_{13} e_{13} e

- Bayes factor policy

 \rightarrow Investigate the most ambiguous alert (alert probability without false positives vs. false positive rate)

$$K^{a} = \frac{P(Y_{t+1}^{a} = 1 \mid Y_{t+1}^{-a} = y_{n}^{-a}, \Pi_{t} = \pi_{t})|_{\zeta_{a} = 0}}{\zeta_{a}},$$

System Level Benefit

Framework Design Space

Katsikeas et al. "An attack simulation language for the IT domain," in *Proc. of Int. Workshop on Graphical Models for Security*, pp. 67–86, 2020_22

MITRE ATT&CK Model

Initial Access	Execution	Persistence	Evasion	Discovery	Lateral Movement	Collection	Command and Control	Inhibit Response Function	Impair Process Control	Impact
Data Historian Compromise	Change Program State	Hooking	Exploitation or Evation	Control Device Identification	Default Credentials	Automated Collection	Commonly Used Port	Activate Firmware Update Mode	Brute Force I/O	Damage to Property
Drive-by Compromise	Command-Line Interface	Module Firmware	Indicator Removal on Host	I/O Module Discovery	L Noitation of Remote Services	Data from Information Repositories	Connection Prov	Alarm Suppression	Change Program State	Denial of Control
Engineering Workstation Compromise	Europation through API	Program Download	Masquerading	Network Connection Enumeration	External Remo Services	Detect Operating Mode	Standard Application Lave Protocol	Block Command Message	Masquerading	Denial of View
Exploit Public- Facing Application	Graphical Iser Interfa	Project F In ction	Rogue Master Device	Network Service Scanning	Program Organization Units	Detect Program State		Block Reporting Message	Modify Control Logic	Loss of Availability
External Remote Services	Man in the iddle	System Firmware	Rootkit	Network Sniffing	Remote File Copy	I/O Image		Block Serial COM	Modify Parameter	Loss of Control
Internet Accessible Device	Progra Organizatio Units	Vaid Accounts	Spoof Reporting Message	Remote System Discovery	Valid Accounts	Location Identification		Data Destruction	Module Firmware	Loss of Productivity and Revenue
Replication Through Removable Media	Project File Lection		Utilize/Change Operating Mode	Serial Connection Enumeration		Monitor Process State		Denial of Service	Program Download	Loss of Safety
Spearphishing Attachment	Scripting					Point & Tag Identification]	Device estart/Shutdown	Rogue Master Device	Le of View
Supply Chain Compromise	User Execution					Program Upload		Manipulate I/O Image	Service Stop	hipulation of Control
Wireless Compromise						Role Identification]	lodify Alarm Settings	Spoof Reporting Message	Manipulation of View
						Screen Capture		Modify Control Logic	Unauthorized Command Message	Theft of Operational Information
								Program Download		
								Rootkit		ATT&CK for
								System Firmware		Enterprise
								ounzerChange		ATTRCK for ICSc

Operating Mode

ATT&CK for ICSs

Attack and Observation Model

- Set of attacker states $S = \{s_1, \dots, S_{n_S}\}$
- State at time $t: S_t$
- Set of alerts $\mathcal{J} = \{1, \dots, J\}$
- True alert probability $\delta_{ij} = P(Y_t^j = 1 | S_t = s_i)$
- False alert probability $\zeta_i = P(Y_t^j = 1 | S_t = s_1)$

Defender Model

- **Observes** alerts Y_t at time t
- Investigates up to *I* alerts $v \subseteq Y_{1:t}$
 - Investigation outcome o_t
- Human model: Investigation error probability ω
- Confidence function

 $\gamma(\omega) = \begin{cases} 2(1 - \gamma_0)\omega + \gamma_0, & (linear), \\ 4(1 - \gamma_0)\omega^2 + \gamma_0, & (concave), \\ 4(\gamma_0 - 1)(\omega - 0.5)^2 + 1 & (convex), \end{cases}$

Update of HMM Observation Model

$$\delta_{t}^{t',j,i} = \begin{cases} \frac{1}{\gamma(\omega)} \delta_{t-1}^{t',j,i} & \text{if } o_{t}^{t',j} = 0\\ \min\left(\gamma(\omega)\delta_{t-1}^{t',j,i},1\right) & \text{if } o_{t}^{t',j} = 1 \end{cases}$$
$$\zeta_{t}^{t',j} = \begin{cases} \min\left(\gamma(\omega)\zeta_{t-1}^{t',j},1\right) & \text{if } o_{t}^{t',j} = 0\\ \frac{1}{\gamma(\omega)}\zeta_{t-1}^{t',j} & \text{if } o_{t}^{t',j} = 1 \end{cases}$$

Defender's Problem

Defender objective: Minimize mean time to detection Model Model Model A

$$= \underset{\kappa \in \mathcal{K}}{\operatorname{arg\,min}} \sup_{t_{1 \to 2} > 0} \mathbb{E}^{(t_{1 \to 2})} [d^{\kappa} - t_{1 \to 2}]$$

- Subject to: Constraint on false positive rate

$$\mathbb{E}^{(\infty)}[d^{\kappa}] \ge \tau$$

 κ^*

Kim et al, "Human-in-the-loop Cyber Intrusion Detection Using Active Learning" IEEE TIFS, 2024

Background: Sequential Hypothesis Testing

Defender's Problem

Defender objective: Minimize mean time to detection Model

 $\kappa^* = \underset{\kappa \in \mathcal{K}}{\operatorname{arg\,min}} \sup_{t_{1 \to 2} > 0} \mathbb{E}^{(t_{1 \to 2})} [d^{\kappa} - t_{1 \to 2}]$

- Subject to: Constraint on false positive rate $\mathbb{E}^{(\infty)}[d^{\kappa}] \ge \tau$
- Generating Alternative Hypotheses
 - Most likely hypothesis at time t

 $\hat{h} = argmax_{h \in \mathcal{H}} P_h(Y_{1:t} | \mathcal{F}_t, v_t^{\kappa})$

Likelihood ratio

>
$$S_t^{\kappa} = \frac{P_{\hat{h}}(Y_t | \mathcal{F}_t, v_t^{\kappa})}{P_1(Y_t | \mathcal{F}_t, v_t^{\kappa})}$$

Active Learning for Quickest Detection

- Optimal detection rule without active learning
 - Generalized likelihood ratio test
- Two candidate policies
 - Max-ratio policy
 - \rightarrow Set of alerts that maximizes the expected probability ratio

$$\mathcal{V}_t^{MR} = rgmax_{v_t \subseteq Y_{1:t}^+, |v_t| \le B} \left| \mathbb{E} \left[rac{p_{\hat{h}}(Y_{1:t} = y_{1:t} | \mathcal{F}_t = f_t, \mathcal{V}_t = v_t)}{p_1(Y_{1:t} = y_{1:t} | \mathcal{F}_t = f_t, \mathcal{V}_t = v_t)}
ight]$$

- Max KL Divergence
 - → Set of alerts that maximize the KL divergence of the distribution of observed alerts after investigation

$$\mathcal{V}_{t}^{MKL} = \underset{v_{t} \subseteq Y_{1:t}^{+}, |v_{t}| \leq B}{\arg \max} \mathbb{E} \big[\sum_{t'=1}^{t} D \big(\mathbb{P}_{\hat{h}}(Y_{t'} = y_{t'} | \mathcal{F}_{t} = f_{t}, \mathcal{V}_{t} = v_{t}) \parallel \mathbb{P}_{1}(Y_{t'} = y_{t'} | \mathcal{F}_{t} = f_{t}, \mathcal{V}_{t} = v_{t}) \big) \big] \\ - \sum_{t'=1}^{t} D \big(\mathbb{P}_{\hat{h}}(Y_{t'} = y_{t'} | \mathcal{F}_{t} = f_{t}) \parallel \mathbb{P}_{1}(Y_{t'} = y_{t'} | \mathcal{F}_{t} = f_{t}) \big)$$

Kim et al, "Human-in-the-loop Cyber Intrusion Detection Using Active Learning" IEEE TIFS, 2024

Detection Performance

Impact of the Human Model

Expertise is Important

- 2 experts with potentially varying expertise
- Heterogenous expertise
 is preferrable

Kim et al, "Human-in-the-loop Cyber Intrusion Detection Using Active Learning" IEEE TIFS, 2024

Human-in-the-Loop AI Framework Revisited

Framework Design Space

Katsikeas et al. "An attack simulation language for the IT domain," in *Proc. of Int. Workshop on Graphical Models for Security*, pp. 67–86, 2020, 2024-10-16

Conclusion

- Human-in-the-loop-Al for cyber resilience
 - Efficient use of human resources and ML
 - Human skills and behavior vs. system model complexity
 - Improved accuracy and lower time to detection

Many open questions

- How to model human behaviour
 - > Trust, psychological aspects
 - > Affects the design of AI algorithms
- How to apply the concept to CPS
- Vulnerability to an adaptive adversary in a game theoretical framework
- Integration with threat hunting
- Semi-autonomous incident response

Boosting Cyber Resilience with Human-in-the-loop Al

György Dán

IEEE CNS 2024 Workshop on Cyber Resilience

