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Abstract—Recent innovations in protection and control ap-
plications for power systems require the use of Phasor Mea-
surement Unit (PMU) measurements. PMUs rely on precise
time synchronization and have been shown to be vulnerable
to time synchronization attacks. In this paper, we explore time
synchronization attacks against PMU measurements that are
undetectable by state-of-the-art Bad-Data Detection (BDD) al-
gorithms, used for Linear State-Estimation (LSE). We show that
compromising three or more PMUs enables an attacker to create
a continuum of undetectable attacks, and based on geometric
arguments we provide a closed form expression for computing
the attacks. Furthermore, we provide an algorithm for identifying
PMU measurements that are vulnerable to the considered attacks.
We use simulations on the IEEE 39-Bus benchmark power system
to show that attacks can have a significant impact in terms of
power flow mis-estimation that could lead to the violation of
ampacity limits in transmission lines.

Index Terms—false-data injection, time synchronization attack,
linear state estimation, PMU measurements

I. INTRODUCTION

In the past years there has been an increasing interest
in the use of synchrophasor measurements taken by phasor
measurement units (PMUs) for applications in power transmis-
sion networks (e.g., power-oscillation damping, phase angle
monitoring) [1]. PMUs require precise time synchronization,
but existing time synchronization solutions are known to
be vulnerable [2], even if the time synchronization protocol
is authenticated and encrypted [3]. In lack of mitigation,
PMU time synchronization attacks could have a significant
impact [4], hence it is important to develop an understanding
of their feasibility and detectability.

A promising approach for the real-time detection of time
synchronization attacks could be bad-data detection (BDD) in
conjunction with synchrophasor-based linear state-estimation
(LSE). LSE has been known to be prone to undetectable
false-data injection attacks since the seminal work in [5], and
has been widely studied under different attack models [6]–
[9]. Yet, its vulnerability to time synchronization attacks has
only been pointed out recently [10], where we proposed
a rank-1 approximation method and derived a formula for
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computing the delays for an undetectable attack against a pair
of PMUs. We showed that attacks against pairs of PMUs can
be combined, and proposed a greedy algorithm that iterates
through a sequence of pairwise undetectable attacks, and picks
the one with highest impact. These results on the feasibility of
undetectable attacks make it important to understand whether
the set of undetectable attacks against three or more PMUs is
discrete or continuous, and whether efficient algorithms could
exist for maximizing the attack impact. A related question
of equal importance is whether the set of PMUs that are
vulnerable can be identified by an attacker a priori, based on
the system topology only.

In this paper, we answer these fundamental questions by
extending the results of [10]. We provide a closed-form
expression for attacking p ≥ 3 non-critical PMU measurement
points with p attacking delays, we show that the solution space
is a continuum, and we provide an algorithm for performing
an attack that maximizes a specific damage function. We
show that the attacker can know a priori which PMU sets
are vulnerable to the attack. Furthermore, we validate the
findings on the 39-bus IEEE benchmark power system by
using a synchrophasor-based LSE. We show that even in the
case of system dynamics (e.g., sudden reactive power drop)
we are able to follow the change in the measurements’ phase
angles and to keep the attack undetectable by state-of-the-
art BDD algorithms. Our results show that the mis-estimation
error in the power flows can be up to 1000%, which is
almost twice that of the greedy algorithm proposed previously
(based on p = 2 attacking delays) [10]. This error can lead
the network operator into taking wrong protection or control
decisions which, as a consequence, could lead to ampacity-
limit violations on transmission lines.

The rest of the paper is organized as follows. In Section II,
we describe the system and attack model. In Section III
we provide algorithms to compute the attacking angles. In
Section IV we show how to find the set of PMUs that can
be attacked undetectably. In Section V we present numerical
results that show the effectiveness of the attack, and in
Section VI we conclude the paper.



II. SYSTEM AND ATTACK MODEL

Our system model is akin to that in [10]. We consider a
transmission system that consists of Nb buses, with N being
the set of all buses (with N = Nb elements). LetMV ⊆ N be
the set of measurement points for voltage, and MI ⊆ N the
set of measurement points for nodal currents. LetM =MV ∪
MI be the set of all measurement points, and M = |M|.
Given the measurement matrix H , the measurement model
is z = Hx + e, where x ∈ CN is the system state, z ∈
CM is the measurement vector and e ∈ CM is the complex
measurement-error whose distribution is discussed in detail
in [10]. We define the verification matrix

F , H(H†H)−1H† − I, (1)

where H† is the conjugate transpose of H . Clearly, Fz = 0
occurs if and only if there exists some state x with z = Hx.

A. Attack Model

We consider an attacker that is able to manipulate the time
synchronization of p ≥ 3 PMUs, such that the time reference
of the attacked PMU is delayed or advanced. This is equivalent
to introducing p ≥ 3 attacking angles αi, i = 1 : p, which
correspond to the phase angle shifts of the PMUs due to the
attack.

B. Undetectability Condition

In the following we recall the undetectability condition from
[10]. Let Ψ be the M×p attack-measurement indicator matrix,
defined by

Ψm,i = 1 if m ∈ Ai and Ψm,i = 0 otherwise, (2)

where Ai, i = 1 : p is the subset of PMU measurements that
are affected by attacking angle αi. Based on Ψ we define the
p × p attack-angle matrix W , which is a Hermitian complex
matrix

W , ΨT diag(z)†F †F diag(z)Ψ, (3)

where z is the complex measurement vector and F is given
by (1). Each element of W is given by

Wi,j =
∑

l,m,n∈M

Ψl,iΨm,jF̄n,lFn,mz̄lzm (4)

with i, j = 1:p, and F̄n,l denotes the conjugate of Fn,l.
As shown in (Theorem 1, [10]), an attack α = (α1, . . . , αp)

is absolutely undetectable if and only if

W (~u−~1) = 0, (5)

where ~u = (u1, ..., up)
T , ui = ejαi , i = 1:p and ~1 =

(1, ..., 1)T . We call (5) the undetectability condition for an
attacking vector ~u. In [10], we derived an explicit closed-
form expression for αi for the case where the number of
attacking angles is p = 2 and when the matrix W in (5)
is well approximated by a rank-1 matrix. Furthermore, we
showed how to find pairs of PMUs such that this condition
holds for any value of the measurement vector z.

III. COMPUTING THE ATTACKING ANGLES

In this section we provide algorithms to compute the angles
for an undetectable timing attack against vulnerable sets of
PMUs, i.e. the W matrix has an effective rank equal to 1. We
provide an efficient algorithm in Section IV for finding such
sets of PMUs.

A. Computing the Angles for p = 3

We start with considering an attack against p = 3 PMU
measurements. Without loss of generality we denote the at-
tacked measurements by [z1, z2, z3], and the corresponding
attack angles by [α1, α2, α3]. Since the W has an effective
rank equal to 1, we can rewrite (5) as

w1(u1 − 1) + w2(u2 − 1) + w3(u3 − 1) = 0, (6)

where [w1w2w3] is the row of largest norm of the attack angle
matrix W , ui = eiαi ∈ T, and T is the set of complex numbers
of modulus 1 (i.e., the circle group).

Equation (6) can be converted to a system of two non-linear
equations in three unknowns by equating both the real and
imaginary parts of the left-hand side to zero and by using the
well-known trigonometric identity cos2 α+sin2 α = 1. As the
number of variables is one more than the number of equations,
we expect one variable to be a free variable, e.g., α3, and this
enables a continuum of solutions. Without loss of generality,
we assume that the free variable is α3.

Unfortunately, solving a system of non-linear equations is
usually computationally expensive. Therefore, in this section
we present a computationally efficient approach to solve (6).
Our approach provides a closed-form expression for the solu-
tion of (6) based on visualizing it geometrically in the complex
plane and consists of the following two steps:
1) Identify the set Θ of feasible values of the free variable

α3.
2) For an α3 ∈ Θ, find the corresponding α1 and α2 values.
Both steps involve computing the intersection points between
two circles. Therefore, it is important to state the following
lemma.

Lemma 1. Consider two circles, Cx and Cy , in the complex
plane centered at cx and cy and with radii rx and ry ,
respectively. Assume that rx > ry and that the two circles
intersect. Let I = {I1, I2} be the set of intersection points. I1
and I2 are given by

I1 = cx + a+ h, I2 = cx + a− h

where

a = d ·
dd̄+ r2x − r2y

2dd̄
, h = d · i ·

√
r2x − aā
dd̄

, d = cy − cx.

Proof. Figure 1 depicts the problem of finding the intersection
of the circles. Let pf be the point of intersection of the line
connecting cx to cy and the radical axis of the two circles.
Let d be the vector directed from cx to cy , that is, d = cy −
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Fig. 1. Example illustrating the intersection between two circles
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Fig. 2. Illustration of the circle and the annular region of (7) for
[w1, w2, w3] = 10−4 ∗ [1.7976,−3.2494− 9.1894i, 1.5344 + 0.22584i]

cx. Furthermore, let vector a be the vector directed from cx
towards pf , and h be the vector directed from pf to I1. Note
that a points in the same direction as d and h is perpendicular
to both vectors. By inspecting the two triangles (cx, pf , I1)
and (cy, pf , I1) we have

|a|2 + |h|2 = r2x, (|d| − |a|)2 + |h|2 = r2y

solving the two equations for |a| and using |d|2 = dd̄, we get

|a| =
dd̄+ r2x − r2y

2|d|
.

Since a is parallel to d, we have a = d · |a||d| , which yields
the expression for a in the lemma. We also know that |h| =√
r2x − aā, and since h is perpendicular to d, we obtain h =

d · i · |h||d| , which in turn yields the expression for h in the
lemma. The intersection points can be computed as

I1 = cx + a+ h, I2 = cx + a− h.

Note that if the two circles intersect only at one point, then
h = 0, leading to I1 = I2.

Now we provide the details of the two steps involved in
computing the attack angles.

1) Computing the Feasible Set for the Free Variable: In
order to identify the set Θ of feasible values of α3, let us
rearrange (6) to

w1(u1 − 1) + w2(u2 − 1) = −w3(u3 − 1) (7)

Observe that for u3 ∈ T the set of values of the right-hand
side of (7) is a circle C3 in the complex plane, centered at
c3 = w3 with radius r3 = |w3|. The set of values of the left-
hand side for u1, u2 ∈ T is an annular region centered at ca =
−(w1 +w2) , with outer circle Co of radius ro = |w1|+ |w2|
and inner circle Ci of radius ri = ||w1| − |w2||. Finding a
solution to (7) is equivalent to finding a point where C3 and
the annular region intersect, as illustrated in Figure 2.

In general, C3 could intersect with Ci, Co, both, or neither;
and it is easy to see which of the circles C3 intersects with.
An intersection point will correspond to the beginning or to
the end of a feasible interval. We can use Lemma 1 to find
those intersection points if they exist. Note that the condition
|d| > rx+ry or |d| < rx−ry is a quick way to check whether
an intersection exists or not. To find the corresponding attack
angles at the intersection points, we equate the RHS of (7)
with each intersection point I . Doing this results in

u3 =
I

−w3
+ 1, α3 = arg(u3) (8)

Proposition 1. For p = 3 and r(W ) = 1, the set U of feasible
values of u3, i.e., U = {u3 : u3 = eiα3 ∀α3 ∈ Θ} is either
a non-empty connected compact subset of T or the union of
two non-empty connected compact subsets of T. Furthermore,
u3 = 1 ∈ U .

Proof. Let Io and Ii be the set of intersection points of the
circle C3 with the outer and the inner circle, respectively. We
distinguish between four cases.
1) |Io| + |Ii| = 1, i.e., C3 is tangent to one of the circles.

This intersection point must be the one corresponding to
α3 = 0, because we know that α1 = α2 = α3 = 0 (no
attack) is a solution to (6). Thus Θ = {0}.

2) 2 ≤ |Io|+|Ii| < 4, i.e., C3 intersects with one of the circles
at two points and could be tangent to the other circle. Let
the two intersection points (not the tangent) correspond
to angles α1

3 and α2
3. If we assume {α1

3, α
2
3} ∈ [0, 2π]

and α1
3 < α2

3 then we have two intervals, [α1
3, α

2
3] and

[α2
3, α

1
3 + 2π], and the set of feasible values is the one

including 0, since we know α3 = 0 is a feasible solution.
Hence, Θ = [α2

3, α
1
3 + 2π].

3) (|Io| = |Ii| = 2), i.e., four intersection points. Let the cor-
responding angles in increasing order be {α1

3, α
2
3, α

3
3, α

4
3}.

Observe that due to the ordering, angles 1 and 2 correspond
to intersection points with the same circle. The feasible
set consists of the intervals between angles that corre-
spond to intersection points with different circles. Thus,
Θ = [α2

3, α
3
3]∪[α4

3, α
1
3+2π]. Notice that the second interval

includes α3 = 0.
4) |Io| + |Ii| = 0 or |Io| + |Ii| = ∞. Since α3 = 0 is a

feasible solution, we know that |Io|+ |Ii| = 0 implies that
C3 is inside the annular region, while |Io| + |Ii| = ∞
implies C3 coincides with one of the circles. Thus, in both
cases Θ = [0, 2π[

Note that Θ always includes the intersection angles because
they correspond to feasible solutions, hence the set of feasible



Algorithm 1 Compute-Feasible-Angles(C3, Ci, Co)

Input: Centers and radii of {C3, Ci, Co}
Compute Ii = {I1, I2} by applying Lemma 1 on (C3, Ci).
Compute Io = {I1, I2} by applying Lemma 1 on (C3, Co).
Compute Θ using Proposition 1

Output: Θ

Algorithm 2 Compute-Angle-Pairs(C1, C2)

Input: centers and radii of {C1, C2}
S ← φ
Compute I12 = {I1, I2} by applying Lemma 1 on (C1, C2).
for all I ∈ I12 do

Compute (α1, α2) by using I in equations (10) , (11)
S ← S ∪ (α1, α2)

end for
Output: S

solutions is closed. Furthermore, due to the structure of the
circle group T, an interval of feasible angles maps into a
connected set. Moreover, in all four cases, 0 ∈ Θ. In other
words, 1 ∈ U .

Algorithm 1 summarizes the procedure of computing the
set Θ of feasible values for the free variable.

2) Computing α1 and α2: We now turn to the computation
of α1 and α2 for a chosen α3 ∈ Θ. By substituting s =
−w3(u3 − 1) into (7) we obtain

w1(u1 − 1) = s− w2(u2 − 1). (9)

Proposition 2. For each α3 ∈ Θ there exist either one or two
pairs of (α1, α2).

Proof. Both the left- and right-hand sides in (9) represent
circles in the complex plane. We will refer to them as C1

and C2, respectively. C1 is centered at c1 = −w1 with
radius r1 = |w1|, and C2 is centered at c2 = w2 + s
with radius r2 = |w2|. An intersection point of these circles
corresponds to a solution to (9). We know that the two circles
intersect as α3 ∈ Θ. Again, we can use Lemma 1 to find
the set of intersection point(s) I12, and each intersection point
corresponds to a pair (α1, α2).

For each intersection point I we can compute the corre-
sponding (u1, u2) and (α1, α2) by equating the left and right
hand sides of (9) to I . We then get

u1 =
I

w1
+ 1, u2 =

−w3(u3 − 1)− I
w2

+ 1 (10)

α1 = arg(u1), α2 = arg(u2). (11)

Algorithm 2 summarises the procedure of computing α1 and
α2 corresponding to α3 ∈ Θ.

B. Computing the Angles for p ≥ 3

In the following, we provide an algorithm for computing
undetectable attacks for the general case of p ≥ 3. In this

Algorithm 3 Compute-Attack-Vector(w, p, ~u∗, s)
Input: w (first row of W), p, ~u∗ (initially ~u∗ ← 0p×1), s (initially
s← 0)
if p = 2 then

C1 ← circle defined by w1(u1 − 1)
C2 ← circle defined by s− w2(u2 − 1)
S ← Compute-Angle-Pairs(C1, C2)
choose (α∗

1, α
∗
2) ∈ S

~u∗
1 ← ejα

∗
1 , ~u∗

2 ← ejα
∗
2

return ~u∗

else
Cx ← circle defined by s− wp(up − 1)
(Ci, Co)← annular region defined by

∑p−1
i=1 wi(ui − 1)

Θp ← Compute-Feasible-Angles(C3, Ci, Co)
choose α∗

p ∈ Θp and compute ~u∗
p ← ejα

∗
p

s← s− wp(~u∗
p − 1)

return Compute-Rank-1-Attack(w, p− 1, ~u∗, s)
end if

Output: ~u∗

case, (7) would become

p−1∑
i=1

wi(ui − 1) = −wp(up − 1) (12)

where wi is the entry in the row of largest norm of the attack
angle matrix and the ith column of W . In (12), the right hand
side represents a circle in the complex plane with center cp =
wp and radius rp = |wp|, while the left hand side represents
an annular region with center ca = −

∑p−1
i=1 wi, outer radius

rao =
∑p−1
i=1 |wi|, and inner radius rai = max{0, 2|wi∗ | −∑p−1

i=1 |wi|}, where i∗ = arg maxi∈{1..p−1} |wi|. Similar to
the procedure of the case when p = 3, the feasible set Θp

of αp can be computed by Algorithm 1. For any choice of
α∗p ∈ Θp (and corresponding u∗p) we can rewrite (12) as

p−2∑
i=1

wi(ui − 1) = −wp−1(up−1 − 1) + sp

where sp = −wp(u∗p − 1). Again, Algorithm 1 can be used
to compute the feasible range Θp−1 of αp−1. After p − 2
iterations of computing the feasible regions, we end up with

w1(u1 − 1) =

p∑
i=3

si − w2(u2 − 1) (13)

We notice that (13) has the same form as (9). Therefore, α∗1
and α∗2 can be computed using Algorithm 2. The recursive
procedure of computing attacks for p ≥ 3 is illustrated in
Algorithm 3. It is easy to see that Algorithm 3 works for
p = 2 as well. Note that in Algorithm 3 we do not specify
either the order in which the sets Θp of feasible values of the
angles are computed nor the selection criteria for α∗p ∈ Θp.
For these two factors, the best choice depends on the attack
objective and the optimization method used for maximizing
this objective.



IV. FINDING SETS OF VULNERABLE PMUS

In what follows we provide sufficient conditions for a set
of three or more PMU measurements to be vulnerable, i.e., a
sufficient condition for the effective rank of the matrix W in
(5) to be equal to 1.

For some p ≥ 2 and m ≥ 2 let us denote by W (i1,..,im) the
submatrix of W with only rows and columns (i1, .., im). In
other words, W (i1,..,im) is the attack angle matrix for attacking
only a subset of m measurements from the p measurements
attacked in W . For a subset of m = 2 measurements let us
recall the following definition from [10].

Definition 1. For a pair (zi, zj) of PMU measurements the
minimum index of separation

IoS∗(i,j) =
1

2
+

|fij |
2
√
fiifjj

,

where
fij =

∑
l,m

∑
n

Ψl,iΨm,jF̄n,lFn,m.

Note that IoS∗(i,j) depends only on the measurement matrix
H (i.e. on the admittance matrix of the grid) and does not
depend on the actual values of the measurement vector z.
Furthermore, from [10] we know that if IoS∗(i,j) = 1 then
the rank of (W (i,j)) is 1 for any value of the measurement
vector z.

Our main contribution in the following is that we show that
the set M of measurements can be divided into equivalence
classes of attackable measurements based on their pairwise
IoS∗. Two measurements {i, j} belong to the same equiv-
alence class if their pairwise IoS∗(i,j) = 1. If three mea-
surements are in the same class, they constitute a vulnerable
set, regardless of the actual value of the measurement z; a
continuum of undetectable attacks can thus be mounted against
them, using the algorithm presented in the previous section.
The following theorem summarizes this result.

Theorem 1. If IoS∗(i,j) = 1 and IoS∗(i,k) = 1, then IoS∗(j,k) =

1. Furthermore, the rank of W (i,j,k) is 1 for any value of the
measurement vector z.

In order to prove the theorem, we will first formulate the
following lemmas.

Lemma 2. The entries on the main diagonal of W are non-
zero, Wi,i 6= 0.

Proof. The diagonal elements of the W matrix are given by

Wi,i =
∑

l,m,n∈M

Ψl,iΨm,iF̄n,lFn,mz̄lzm (14)

Since we assume only one attacked measurement per delay,
l = m. Thus (14) can be written as

Wi,i =
∑
n∈M

F̄n,mFn,mz̄mzm (15)

In (15), each term in the summation is indeed a real non-
negative value. Wi,i could be equal to zero if either zm = 0

or Fn,m = 0, ∀n ∈M. The first condition is not of interest
as it is highly unlikely that a measured value is zero.

The second condition means that the mth column of the F
matrix is all zeros. Recall that F∆z = 0 is the condition for
undetectable attacks. If F contains a column m that contains
only zeros, the manipulation of zm would not be detected by
the state estimator independent of z, and zm is not part of
state estimation, as there are no redundant measurements for
it. Therefore, this case is not of interest either. This concludes
the proof.

Lemma 3. The rank of the hermitian matrix W is r if and
only if there is a principal r× r submatrix A that is of rank r
and all principal submatrices of W obtained by adding to A
the same row and the same column, or the same 2 rows and
columns are singular.

Proof. See Theorem 15 in [11].

Lemma 4. If W is hermitian positive semi-definite and the
principal submatrix W (i1,..,im) is singular then W is singular.

Proof. We will call a vector ~x isotropic with respect to a
matrix W if ~xHW~x = 0. Null vectors (i.e. vectors such that
W~x = 0) are obviously isotropic; the converse is not true in
general, but is true when W is hermitian semi-definite (this
can easily be seen by diagonalization).

As W (i1,..,im) is singular, there is a non-zero vector
~x(i1,..,im) ∈ Cm such that W (i1,..,im)~x(i1,..,im) = 0. Sub-
sequently, ~x(i1,..,im) is isotropic with respect to W (i1,..,im).
We obtain the vector ~̂x(i1,..,im) ∈ Cp by expanding ~x(i1,..,im)

to dimension p and by filling missing values with zeros (we
assume W is a matrix of dimensions p × p). ~̂x(i1,..,im) is
isotropic with respect to W , hence is in the null-space of W .
Since ~̂x(i1,..,im) is non-zero, W is singular.

Lemma 5. If W is hermitian positive semi-definite, the rank of
W is r if and only if there is a principal r×r submatrix A that
is of rank r and all principal submatrices of W obtained by
adding to A the same row and the same column are singular.

Proof. Follows directly from Lemma 3 and Lemma 4

We are now ready to prove Theorem 1.

Proof of Theorem 1. Consider W (i,j,k). It is hermitian posi-
tive semi-definite because of (3). By Lemma 2 the diagonal
terms Wi,i are non-zero. The principal submatrix obtained by
adding row and column j is singular because IoS∗i,j = 1
by hypothesis. The same holds if we add row and column k
instead of j. By Lemma 5, it follows that the rank of W (i,j,k)

is 1. By Lemma 4, it follows that W (j,k) is singular, therefore
IoS∗(j,k) = 1.

In practice, Theorem 1 can be used as follows: Compute
IoS∗(i,j) for all pairs of measurements i, j and partition the
set of measurements by putting i and j into the same class
whenever IoS∗(i,j) = 1. Any class that has more than one
measurement is vulnerable, and can be attacked by using the
method of Section III.



V. NUMERICAL RESULTS

In this section we illustrate the proposed methodology
on the IEEE 39-bus IEEE benchmark power transmission
grid [12]. For ease of comparison, we use the same PMU
locations as in [10, Figure 2].

A. Vulnerable Measurements

For the considered PMU locations [10, Table I] provides
the pairs of PMUs for which IoS∗(i,j) = 1, and we can
observe that IoS∗(i,j) = 1 when i, j ∈ {21, 23, 24, 35, 36},
and IoS∗(i,j) < 1 otherwise. This is in accordance with
Theorem 1, which establishes that the condition IoS∗(i,j) = 1
is transitive. Thus the set of PMUs {21, 23, 24, 35, 36} forms
an equivalence class, and we can mount an undetectable delay
attack against any three or more PMUs in this set using the
algorithm proposed in Section III. In what follows we show
results for PMUs #21, #23, #24, #35 and #36, and we used
the tests described in [13] to ensure that we pick non-critical
measurements.

B. Evaluation Methodology

We used the following evaluation procedure
1) On every time step, we compute a load flow to determine

the true state of the grid;
2) We perturb the result from the previous step with randomly-

generated Gaussian noise characterized by the cumulated
standard deviation of the PMUs and their sensors (assum-
ing class 0.1 voltage and current sensors);

3) We compute the attack vector according to the method
described in V-D

4) We perform the WLS estimation;
5) We perform the WLS estimation with the attacked mea-

surements;
6) We perform the largest normalized residual (LNR) test (

[10], [13]) for the residuals from Step 4 and from Step 5;
7) We compute the estimated power flow for the line between

buses #16 and #24, for Steps 4 and 5.

C. Continuum of Solutions in α1, α2, α3 (p = 3) Space

Figure 3 shows the set of solutions for the p = 3 case in the
α1, α2, α3 space, i.e., the set of all combinations of attacking
angles (α1, α2, α3) that are undetectable for PMUs #21,#23
and #36, at time t = 0. The figure shows that the solution
set is indeed closed, and a numerical evaluation showed that
the solution set in fact forms a quasi-ellipse, i.e., all points lie
on a two dimensional plane in three dimensional space. Note
that the quasi-ellipse is a function of the measurement vector,
it thus changes over time, and during inrushes the curve at
time t might be far away from the curve at time t + 1. Note
that even if the quasi-ellipse changes, it will swivel around the
point (0, 0, 0) (no attack), as that is always a solution to (5).

D. Maximization of the Attack Impact

Next, we show how to construct an undetectable attack that
maximizes the attack impact. We used the proposed algorithm
to build an attack on 5 different PMUs (p = 5). To simplify
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Fig. 3. Set of all combinations of attacking angles (α1, α2, α3) that are
undetectable for an attack on PMUs #21,#23 and #36 at time t = 0. All
units are in radians.

the notation, we set i = 1, 2, 3, 4, 5 for PMUs #21, #23, #24,
#35 and #36. The goal of the attacker is to find a vector
of undetectable attacking angles α = [α1, α2, α3, α5, α5],
representing the time offsets of the attacked PMUs, which
produces a mis-estimation of the power-flow on a specific
transmission line. We define the attack impact V(α, z) to be
the perceived reduction of the apparent power-flow on the line
between buses #16 and #24. V(α, z) can be calculated from
the power-flow equations; the result depends on the attacking
angles α and the measurement z.

Let zi(t) be the true value of the i-th measurement at time t.
In practice, to compute the attacking angles, the attacker
cannot have the measurements at time t and needs to use a
prediction ẑ(t). The attacker’s problem at time t can then be
formulated as the following non-linear optimization problem:

maximize
α(t)

V (α(t), ẑ(t))

subject to constraints

W (ẑ(t)) · (~u(t)−~1) = 0

~ui(t) = ejαi(t), i = 1 : 5

(16)

In the following numerical illustration we used the persistent
predictor ẑ(t) = z(t− 1). We solve (16) using an exhaustive
search on the solution curve, which is possible since we can
sample all points of the solution curve using Section III. The
attack algorithm is as follows.
1) Use Algorithm 3 to find the feasible region Θ5 for α5

2) Choose a subset Ωtest-5 = {α1
5, α

2
5, . . . , α

n
5}, of n equally

spaced values in Θ.
3) For each αi5 ∈ Ωtest-5: apply Step 1 for α4 and α3.
4) compute the two combinations of α1, α2 given by Algo-

rithm 2 and evaluate V((α1, α2, α
k
3 , α

j
4, α

i
5), ẑ(t)).

5) Choose the combination of α1, α2, αk3 , αj4, αi5 that maxi-
mizes V((α1, α2, α

k
3 , α

j
4, α

i
5), ẑ(t)).

In our implementation we used n = 20 points for searching
in the feasible region of α5, α4 and α3.

Figure 4 shows the LNR test applied to the residuals of the
LSE for the unattacked and attacked measurements scenarios.
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Fig. 4. LNR-test for non-attack and attack scenarios with p = 5

The dotted line shows the detection threshold with a confi-
dence of 99.73%, which corresponds to a 3σ deviation for a
single measurement. For the sake of comparison, we also show
the result of the attack based on the greedy algorithm described
in [10] using the same set of three PMU locations. We
observe a few extra or increased LNR values in both attacked
measurements (e.g., at t ≈ 24s). They occur whenever the
persistent predictor is not a very good predictor, for example
when there are changes in the power flows. Notwithstanding,
these points are rare and the deviations are very small, so
chances are high that the overall perception from the network
operator would be that the residuals are not anomalous.

Figure 5 shows the effect of the attack on the magnitude
of the apparent power flow in the target line, i.e. the line
between buses #16 and #24. In thin light-grey we show the
non-attacked scenario, and in black (resp. thick medium-grey)
the perceived apparent power when we use the algorithm
described in this subsection for p = 5 (resp. p = 3). We also
show, as comparison, in thin medium-grey (resp. thick light-
grey) the result of the attack based on the greedy algorithm
described in [10] for p = 5 (resp. p = 3). For the case p = 3,
we used PMUs #21, #23, and #36. We can verify that the
attack computed using the approach proposed in this paper
has almost twice as big an impact as the one described in [10]
(for both cases p = 3 and p = 5). This illustrates that being
able to discover the entire solution space (a continuum of
attacking angles) makes the attack significantly more powerful.
Moreover, the mis-estimation error of the power flow, as
compared to the non-attacked scenario, is in the order of
1000%. This confirms that, for the network operator, there
is a significant impact in terms of the estimated power flow
for the target line.

VI. CONCLUSION

We have shown that it is possible to find a closed-form
expression for attacking p ≥ 3 non-critical measurements with
p different angles. The attacker is able to produce a continuum
of undetectable attacks from which he can derive an attacking
strategy to maximize his goal (e.g., burn a line). We have
shown that it is possible to have an a-priori knowledge of
the attack locations with an easy-to-implement method that
requires only the notion of the H matrix. We have validated
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Fig. 5. Comparison of the estimated power flow in the target transmission
line between the non-attacked, greedy algorithm used in [10] and the proposed
algorithm, both for p = 3 and p = 5.

our findings with simulations on a benchmark transmission
network, and we have shown that there is an important impact
on the mis-estimation of the power flows. Future work includes
a comparison of the proposed attack against bad-data detection
techniques based in measurement prediction [14], rather than
residual-based test (e.g., LNR).
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