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Abstract—Smart-grid applications based on synchrophasor
measurements have recently been shown to be vulnerable to
timing attacks. A fundamental question is whether timing attacks
could remain undetected by bad-data detection algorithms used
in conjunction with state-of-the-art situational-awareness state
estimators. In this paper, we analyze the detectability of timing
attacks on linear state-estimation. We show that it is possible
to forge delay attacks that are undetectable. We give a closed
form for an undetectable attack; it imposes two phase offsets to
two or more synchrophasor-based measurement units that can
be translated to synchrophasors’ time delays. We also propose
different methods for combining two-delays attacks to produce a
larger impact. We simulate the attacks on a benchmark power-
transmission grid, we show that they are successful and can lead
to physical grid damage. To prove undetectability, we use classic
bad-data detection techniques such as the largest normalized
residual and the x2-test.

Index Terms—Time Synchronization Attack, False Data Injec-
tion, Phasor Measurement Units, Linear State Estimation

I. INTRODUCTION

The coordinated universal time reference (UTC) among
phasor-measurement units (PMUs) is essential for the use
of synchrophasor measurements in power-transmission net-
works [1]. This common time-reference is usually obtained
through GPS [2], although packet-based time-synchronization
protocols (PBTSPs), such as Precise Time Protocol v2
(PTPv2) [3], can be used if the physical location makes the
GPS signal inaccessible.

Recent works show that both GPS and PBTSPs can be
attacked (e.g., [4], [5]). As civilian GPS satellite signals are
not authenticated, they can be spoofed by superimposing a
fake signal with a higher signal-to-noise ratio, which would
enable an attacker to manipulate a GPS clock [4]. In the case
of PBTSPs, an attacker could inject a malicious offset in the
time signal by delaying messages, which is feasible because
in any PBTSP it is impossible to measure asymmetries in the
propagation delay [6]; for this reason, any notion of asymmetry
needs to be provided to the protocol (e.g., PTPv2 assumes
that propagation delays are symmetric). As the attack involves
only delaying messages, such an attack would work even if
synchronization messages are encrypted and/or authenticated.

In this paper, we analyze the effect of tampering with
the common time reference of PMUs used for linear state
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estimation of a transmission network, applying the well-known
weighted least-square method (WLS) [7]. We show that by
manipulating the time reference only, it is possible to perform
an attack that does not change the measurement residuals, and
thus it bypasses the bad-data detection (BDD) used in state-
of-the-art state estimators. We show that a successful attack
requires tampering with at least two different angles, and we
provide a method to compute attacks that maximize damage
while remaining undetectable. We illustrate the findings with
respect to a PMU-based linear state-estimator applied to the
39-bus IEEE-benchmark power system. We demonstrate that
in given transmission lines, attacks can produce a large mis-
estimation of the power flows while passing the x? and largest
normalized residual tests (LNR).

The rest of the paper is organized as follows. In Section II,
we analyze related work in cyber-attacks on timing references
in power systems and on linear state estimators. In Section III,
we describe the power system and the attack model. In
Section IV, we formulate the time synchronization attack and
we provide conditions for undetectability. In Section V, we
introduce the rank-1 approximation method, together with a
criterion (Index of Separation, IoS) which can be used to
find location pairs where the attack is undetectable given
the measurement values and a closed-form expression for the
attack angles. We also provide an additional criterion IoS™
to identify measurements pairs that are attackable regardless
of the measurement values. In Section VI, we show how to
combine the results of Section V in order to mount attacks
with more than two delays. We show that attacks on disjoint
pairs, that are each undetectable when performed alone, can be
superimposed to produce an undetectable attack. The angles of
each attack remain the same as if they were performed alone.
Furthermore, attacks on possibly overlapping pairs, that are
each undetectable when performed alone, can be combined
sequentially. We also show that when performing a sequence
of attacks, it is possible to know whether each attack in the
sequence will be undetectable before computing the attack,
by analyzing the IoS based on the original (non-attacked)
measurements. Finally, we show how a sequence of attacks
can be computed using a greedy algorithm in order to optimize
an attacker’s goal such as maximizing the spoof power flow
variation (e.g in order to damage a line by an excessive
power flow). In Section VII, we use simulations to validate
the attacks and to show their effectiveness. In Section VIII,
we propose countermeasures for the attacks and discuss the
possibility of attacks under the time-correction constraints of
PMUs. Section IX concludes the paper.



II. RELATED WORK

Timing attacks on PMUs have been recently studied. In
[8], the authors describe a defense mechanism against GPS
spoofing attacks on PMUs, based on cross-check of angle-of-
arrival (AOA) detection mechanism and residual-based bad-
data detection. Still, AOA detection feature in GPS receivers
is not widely available for off-the-shelf PMUs, and residual-
based bad-data detection techniques are ineffective against the
attack described in this paper. In [9], the cyber-attack mitiga-
tion model proposed assumes that at time ¢ = 0 the defender
may have identified a number of compromised PMUs, which
again may not be feasible if the attacker performs an attack
such as the one described in this paper. In [4], [10], the authors
analyze the implications of timing attacks on synchrophasor-
based voltage-stability control in transmission networks but
they do not address whether fundamental supervisory control
and data acquisition (SCADA) or energy management system
(EMS) functionalities, including state estimation (SE), could
be affected by these attacks without being detectable.

The first study on undetectable false-data injection (FDI)
attacks on linear state-estimators is presented in [11], where
the authors formulate an algebraic expression for the existence
of undetectable attacks that could not be mitigated by BDD.
Other papers that focus in FDI attacks to linear state-estimation
can be grouped based on the approach/objective: (i) attack the
minimum number of measurements for undetectability [12],
[13]; (i) attack the minimum number of measurements to
corrupt a particular target measurement [14], [15]; and (iii)
size the attack to compromise information technology (IT)
components [14], [16], [17].

In this paper, we combine the objectives of groups (i) and
(iii) in the context of timing attacks and propose a criterion
for choosing the best attack locations. The prior work assumes
that false data injection is performed by tampering with data
sent by PMUs or in the SCADA/EMS systems, and requires
compromising one or several of these devices. In contrast,
our work assumes that the only manipulation concerns the
time base used by PMUs. As shown for example in [18],
such attacks may be possible without compromising any
cryptographic security system. To the best of our knowledge,
there is no work that addresses how to perform an undetectable
attack on linear state-estimators by maliciously manipulating
only the time reference of a set of PMUs.

III. SYSTEM MODEL
A. State Model

We consider a one-phase direct-sequence equivalent of a
three phase transmission network with IV, buses, and we let
N be the set of all buses (with N = N, elements). The system
state is = € CV. It is worth mentioning that state estimators
using branch currents as state variables have been proposed,
for instance, in [19], and their performance is comparable
with voltage-based state estimators as presented in [20]. There-
fore, we assume nodal injected-current phasors and/or nodal
voltage-phasors measurements coming from PMUs only. We
count separately measurements for voltages and for currents.
At a bus where both voltage and current are measured, we

count two measurement points; at a bus where only voltage
(resp. current) is measured, there is a single measurement
point. We denote by M"Y C A the set of measurement points
for voltage, and by M’ C N the set of measurement points
for nodal currents. Let M = MY U M/ be the set of all
measurement points, and M = |M|. The measurement vector
is z € CM.

Let Y be the (N x N) single-phase complex admittance-
matrix, and H be the M x N complex measurement matrix.
We have

Hm,m = 1, m € MV
Hm,n = O,mGMV,m#n
Hypn = Yon, meMineN.

The measurement model is given by the equation
z=Hzx +e, (D

where & € CV is the system state, ¢ € CM is the
complex measurement-error with a distribution discussed in
Section VII-A. Define the verification matrix F' as

FEHHH)'H -1 )

We denote with H' the conjugate transpose of H. Note that
Fz = 0 if and only if there exists some state x with z = Hx.
If Fz = 0, there is a unique complex vector x that solves
z = Hz and it is given by o = (HTH)~'H'z. In general (i.e.,
when Fz # 0), x = (HVH)"'H'2 is the least-square esti-
mator of the state. Note that in this paper we assume that the
state estimation uses a different and more accurate estimation,
called weighted least-square (WLS), which uses rectangular
coordinates instead of complex numbers (SectionVII). The
reason for using complex numbers here becomes apparent in
the next section, where we find closed form expressions that
could not be found otherwise.

Recall that F' is a complex matrix, of size M x M. We
assume that the system is observable, i.e., dim (range H) =
N, so that the rank of F' is M — N. Such ranks are to be
computed while treating F' as a M x M complex matrix.

B. Attack Model

The goal of the attacker is to create a mis-estimation of the
state of the grid while maintaining the residuals of the state-
estimator unaffected. As illustrated by the attack in Fig. 1, this
goal can be achieved using various attack vectors. We consider
an attacker that is an insider to the utility, thus he has access
to the network topology and to the admittance matrix, but he
is not able to physically tamper with any PMU or transducer
(sensor). We assume the attacker is able to observe, but cannot
forge the measurement vector z, which is consistent with
the security standards for synchrophasor data transmission, as
those mandate only authentication but not encryption (Section
90-12 in [21]). We thus consider that the attacker can add
an offset to the time reference of some PMUs, which will
be seen as an offset in the synchrophasor estimation. An
attack against the time reference can be done with moderate
effort for both PTP and GPS synchronization schemes [10].
For the case of PTP, many overhead lines contain an optical
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Fig. 1. Attack-tree for attacking the time reference of a PMU measurement
infrastructure.

fiber with physical layer repeaters placed every few kilometers
on the line poles, and it is also common to have unmanned
facilities with repeaters. For an attacker it would be sufficient
to disconnect a cable and to insert a delay box to attack PTP
[18]. In the case of GPS, spoofing GPS transmitters can be
built from low-cost components and can be coordinated easily
(4], [22].

As a result of the attack, the PMU shifts the time window
for which the synchrophasor is computed. Therefore, besides
the incorrect estimation of the phase, the attack affects the
estimation of the phasor’s amplitude, the frequency of its main
tone and the ROCOF estimation. As we are considering a
transmission network, it follows that the estimation of the
phase angle is the one that is most affected by the attack,
thus this is the only error we consider in this paper.

IV. UNDETECTABLE TIME-SYNCHRONIZATION ATTACKS

In this section, we present a theory of undetectable attacks,
which forms the basis for the practical methods presented in
the following sections.

A. Absolutely Undetectable Attack

Let p be the number of time references manipulated by
the attacker, «; the i-th phase angle difference between the
attacked and the original synchrophasor measurement and 4;
the set of measurement points to which the angle difference
«; 1s imposed, ¢ = 1:p.

For all m € M, define Az, = z, — z,, Where z,, is the
value of the m‘" measurement that would be obtained if there
would be no attack and 2/ is the value obtained when the

m
timing attack is present. We have:

Az = zm(u;—1), ifme A
Az = 0, if me M\|JA
with u; = cosa; + jsina; = 7%, i = 1:p.

By the definition of F', an attack that produces a change
Az = (Azp)m=1.m to the true observation vector z is
absolutely undetectable if and only if

FAz =0. 3)
Let ¥ be the attack-measurement indicator matrix, defined by

V,,;=1if m € A; and ¥,, ; = 0 otherwise, @

with m = 1:M and 7 = 1:p. Then Az can be re-written as
Az = (uq — 1) diag(2)¥. 1 + ... + (up — 1) diag(2)¥., (5)

where ¥, ; denotes the i-th column of matrix ¥ and diag(z)
is the M x M diagonal matrix with diag(z)m. m = #m. By
(3), the attack « is absolutely undetectable if and only if

p
> (ui = 1)F diag(z)¥.; = 0. (6)

=1

We can make (6) more tractable by introducing the attack-
angle matrix W, which is a p X p hermitian-complex matrix
defined as

W 2 U7 diag(2) FTF diag(z)¥ (7)
or in other words

Wi,j = Z \I’l,i\llm,an,an,mle'm (8)
l,m,nem

with 4,7 = 1:p. We use Fn,l to denote the conjugate of F, ;.
Note that the dimension of the matrix W is p X p, where p
is the number of different delays imposed by the attack; it is
particularly interesting to use W when p is small.

Theorem 1. The attack o = (aq,...,qp) is absolutely
undetectable if and only if
W@—-1)=0 9)

with @ = (uy, ..., u,)T,T=(1,...,1)T.

Proof: First recall that the attack is absolutely undetectable
if and only if (6) holds. Second, we prove that for any complex
vector y € CP :

Wy =0« F diag(z)y = 0. (10)

The < side of the implication directly follows from the
definition of W. Conversely, assume that Wy = 0 for some
y € CP. Then

UT diag(z)' FTF diag(z)¥y =0

= yIUT diag(2)T FTF diag(2)Vy =0
= ||F" diag(z)¥y|]* =0

= F diag(z)Ty = 0.

In the above, ||-|| denotes the ¢ norm, defined for y € CP?

by [lyll = > i1 lyl7- O

B. Timing attack with a single delay (p = 1)

Consider that the attacker can only induce a single delay,
ie, p =1 and a = (a1). Then the matrix W is a single
complex number W = (W7 1), and Theorem 1 becomes

Wii(up —1)=0 (11

with Wy 1 = Zl,mEAl,nEM F‘,L71Fn7,,Lle,,L. It is very unlikely
that Wi 1 = 0, thus undetectability requires u; = 1 (i.e. o =
0), namely there is is no attack. Thus this case is of no interest.



C. Timing attack with two delays (p = 2)

Consider now that the attacker can induce two delays (e.g.,
with two GPS coverage zones or two different communication
paths in a PTP network), i.e., p = 2 and @ = (1, g ). Observe
that for p = 2 the matrix W is 2 x 2, and Theorem 1 becomes

W171(’LL1 — 1) + WLQ(U,Q — 1) = 0
Wg,l(ul - 1) + WQ’Q(UQ — 1) = 0.

Before we formulate our theorem, we propose the following
Lemma.

Lemma 1. Let a,b € C. If a+b # 0 then the solutions of the
system of equations

{ alu—1)+bv—-1)=0
jul = o] = 1

with unknowns u,v € C are

ala—+0b) _ bla+D)
a(@+b)’ ~ b@a+b)

If a + b = 0, there are infinitely many solutions, given by
u=wv,ul =1

u=v=1and u=

Proof: We can interpret the system of equations as follows.
Denote with S! the unit circle in the complex plane, i.e., S =
{ueC,|u| =1}. When u € S, z = a(u—1) is a point in the
circle of center —a and radius |al; similarly, z = —b(v—1) is a
generic point in the circle of center b and radius |b|. Solutions
to the equations are given by the intersection of these two
circles, if they intersect. Now they intersect because u = v = 1
is a solution. Therefore, there is exactly one other solution,
except in the special case where the two circles are tangent or
when the two circles are identical.

Further, we can compute the solution in closed form by
using standard geometry arguments. [

Theorem 2. For p = 2, if rank(W) = 1 there is one non-

trivial absolutely undetectable attack vector o = (aq,as),
given by
aq = 2arg(Wi 1 + W 2)(mod 2m) (12)

ay = —2arg(Wh o) + 2arg(Wy 1 + Wi 2)(mod 2m)

Proof : With rank(WW) = 1, the system of equations derived
from Theorem 1 is equivalent to

W171(U1 — ].) + WLQ(UQ - ].) =0 (13)

where the unknowns are ui,us € C with the constraints

|ui| = |uz| = 1. This system of equations can be precisely

solved by applying Lemma 1 to (13) and obtain a single non-

trivial attack, given by

- Wi+ Wi

Wi+ Wi

. Wl,Z(WLl + Wi )

C Wi (Wit + Wip)

from where we derive the attack vector «, using the fact that
W11=Wi 1 because W is hermitian. O

Ui

U2

For the case rank(WW) = 2, there is only one solution u; =
ug = 1, i.e., there are no absolutely undetectable attacks.

As we show next, Theorem 2 forms the basis for practical
attacks because, even when W is full rank, it can often be
well approximated by a rank-1 matrix.

V. PRACTICALLY UNDETECTABLE ATTACK WITH TWO
DELAYS

In this section we describe a strategy for performing a
practically undetectable attack when W is full rank and p = 2.
We assume that each attacking-angle affects a single PMU, i.e.,
we attack two PMUs in total. In [14] it is shown that attacking
at least two PMU s is enough to perform an undetectable attack.

A. Attack based on Rank-1 matrix approximation

Recall that the W matrix is hermitian, thus we can diag-
onalize W as W = UAUT, with UUT = UTU = I and A
is a diagonal matrix with real, nonnegative and descending-
ordered eigenvalues. Let us construct A = diag (A, 1,0), with
A2 = 0 and we define W = UAUT, i.e., we replace the
smallest eigenvalue by 0. The approximate attack is one that
satisfies

W(i—1)=0, (14)

and the attack vector « is then given by (12) with W in lieu
of W.

B. The IoS criterion

The effectiveness of using W instead of W depends on
the value of Ay o and whether or not zeroing this value is a
good approximation. To investigate this, we use the index of
separation (IoS) of the matrix W, which is classically defined

as
IoS — )\max _ Al,l
Ei g Aig+ A2,2.

We obtain the two eigenvalues of W as roots of the charac-
teristic polynomial:

15)

1
Aig = 3 (trace (W) + /trace (W)2 — 4det(W)>
Ao o = trace (W) — Ay 1

and using Aj; and Ag o in (15) we get

4 det(W)

IoS = )
oS trace (W)2

1
41— 1
+3 (16)

N | =

Note that for an attack with two delays (p = 2), IoS(W) €
[0.5,1] and ToS(W) =1 = rank(W) = 1.

An attacker should therefore look for attack locations such
that IoS(WW) ~ 1. In general, for a given choice of locations,
ToS(W') depends on the measurement vector z; however, it is
possible to avoid this dependency by computing the minimum
index of separation (I0S™), defined as the minimum value of
IoS(W) taken over all values of z € CM. If ToS* ~ 1 for
a given choice of locations, then the delay attack given by
(12) and W in lieu of W is undetectable, regardless of the
value of the measurements. The following theorem provides a
closed-form expression for IoS*.



Theorem 3. For an attack with two delays (p = 2), and one
attacked measurement point per delay (A, = {z1} and Ay =
{22}), the minimum index of separation (10S™) is equal to

Jos™ = + % (17)
2 2(firfa)?
with -
Fii =D 01V i Fo i Frm (18)

ILm n

where U is defined as in (4). Note that 10S™ depends only on
the measurement matrix H and the location of the attacked
PMUs.

Proof: We want to find the minimum of (16). First we
need to compute the elements W;; of W to find det(W)
and trace (W) as a function of attacked measurements z; and
z2. We use (8) with p = 2 and one attacked measurement per
delay

Wl,l = Z \Pl,lqjm,lpn,lF7L,m2lZm = ‘Zl|2f11
l,m,n
Wio = Z U1 Won o B i FrmZizm = 2122 f12
l,m,n ) (19)
Wa1 = Z U oW 1 Fo i FromZi2m = Z221 fo1
l,m,n
W2,2 = Z \I/l,QLIjm,QFn,an,lezm = ‘Z2|2f22'
l,m,n
The trace and determinant of W are given by
trace (W) = |z1)% f11 + | 22| fa2
det(W) = \Zl|2f11\2’2|2f22 - |2’1|2|22\2f21f12 (20)

= |21 |22l (firfoz — [ f12]) -
Note that fo1 fi2 = |f21]? = |fi2|?. Using (16) and (20) we
can express the problem as
1 20,12 _ 2
min L1 4Al \222| (f11f22 : |f122| ).
1,72 2 ([212f11 + [22/* f22)
Note that the objective function can be simplified if we

substitute s = tﬂg in (21), which brings

min 1\/145(f11f22|f12|2).

21

s 2 (f11 + 8f22)?

By analyzing the sign of the derivative with respect to s we
find a minimum when s = %, and substituting this in (16)
we obtain the value of ToS™ given in the theorem. O

Theorem 3 can be used to find pairs of PMUs that can
be attacked undetectably by finding that the corresponding
ToS™ ~ 1. This is computationally simpler than the algorithms
in [14] or [16].

For locations where Theorem 3 does not provide IoS™ ~ 1,
depending on the operating conditions of the grid, the follow-
ing result shows than an attacker could still find alternative
attack locations to produce an undetectable attack.

Theorem 4. For an attack with two delays (p = 2) , one
attacked measurement per delay (A; = {z1} and Az = {z2}),

and rank(W) = 2, there is still a possibility of performing
a practically undetectable attack if the ratio between the
magnitude of the attacked measurements is either very small
or very large.

Proof: By analyzing (16), it follows that ToS(W) =~ 1 if
and only if IoS(W) ~ 1 < trace (W)? >> det(W). By
using (20) we can express the inequality as

2
(|21 f11 + |22 fa2)” >> |21P[22]? (f11fo2 — | for]?)

2 (22)
z z
<|1|f11 + |2|f22) >> (f11f22 - |f21|2) .
22| |21
Define d = %, d > 0,d € R; substituting d in (22)
1 2 )
afll +dfaa )] >> (f11f22 = | fal ) (23)

If we take the left-handside of (23) and plot it as a function
of d, we can observe that it has a quadratic behavior with
minimum in d* = (f11/ fgg)% and expands to +oo, both when
d — 0 and when d — +o0, i.e., if the ratio between the
magnitude of the attacked measurements is either very small
or very large. O
In summary, an attacker can compute loS™ for arbitrary pairs
of locations; this requires only the knowledge of H. If he
finds location pairs with ToS* = 1, he has obtained candidate
locations where an undetectable attack is possible; he can
then test the effect of such attacks. If, in contrast, there is no
location with IoS™ = 1, the attacker can rely on Theorem 4
to assess the candidate measurements to be attacked, and pick
two measurements with smallest or largest magnitude ratio.

VI. PRACTICALLY UNDETECTABLE ATTACK WITH MORE
THAN TWO DELAYS (p > 2)

In this section we consider the problem of computing attacks
with more than two delays, i.e., finding a solution to the
problem in Theorem 1 for p > 2. In what follows, we show
how to combine attacks against two delays (p = 2) to obtain
an attack against p > 2 delays.

A. Combining Attacks on Disjoint Pairs of PMUs

As a first step, we consider that there is a set of disjoint
PMU pairs (p = 2) that can be attacked using the algorithm
proposed in Theorem 2, i.e., pairs of PMUs for which the IoS
is close to 1. In what follows we show that even though an
attack modifies the apparent measurements (and the apparent
system state), when the attacked pairs of PMUs are disjoint,
the attacks can be computed independently in parallel.

Theorem 5. Consider a collection of K attacks, and let Agk)
be the set of measurements affected by the it" angle of the k*"
attack. Let z,, be the m*" measurement value when no attack
is performed and let W'¥) be the matrix given by (7) when it
is only attack k that is performed. Then

(i )( gie matrix W% depends only on the values z,, for m €
UA; .



Assume furthermore that the sets AE’“) are disjoint, i.e. any
measurement point appears in some AE‘“) for at most one k
and at most one 1. Then

(ii) if each attack k is absolutely undetectable if performed
on its own, then so is any combination of the attacks, per-
formed sequentially or simultaneously.

Proof: By (8),

k _
Wi o= > 2z e a0y L meaoy 9tm
LmeM

Z Z zfzmgl,m

(E.Agk) mE.A;m

with g¢m = Zn Fnyanym. Note that gy ,, depends only
on the verification matrix F' and is thus independent of the
measurements and of the attack. Statement (i) follows.

Now assume that the attacked sets of measurements A*F) =
UiAEk) are disjoint. The matrix W(¥) for attack k depends
only on the values of z,, for m € A®*). An attack k¥’ # k
affects only the measurement sites in AF) and A®) QAR =
() therefore for m € A%, the values of Zmy remain the same
before or after after attack k’. Therefore W) also remains
the same before and after attack k' is performed. O

The above result implies that for a set of disjoint PMU
pairs with IoS =~ 1 a practically undetectable attack can be
performed by attacking each pair of PMUs simultaneously
with the angles given by (12).

B. Combining Attacks on Overlapping Pairs

Let us now consider attacks on overlapping pairs of PMUs.
Unfortunately, we cannot apply the previous result because the
W matrix of an attack now may depend on the apparent mea-
surement values due to another, overlapping attack. However,
as we show next, it is possible to combine attacks sequentially,
provided that the effect of the previous attack in the sequence
is accounted for.

Theorem 6. Consider a sequence of k = 1:K attacks,
computed one after the other. The pairs of PMUs attacked
may be overlapping. Let zw,’ = 2z, be the true value of
measurement m, and zy,’ the apparent value after the kth
attack. Let attack k be constructed so as to be absolutely
undetectable assuming that the measurements are 27(115 V. Then
the combination of the K attacks is absolutely undetectable.

Proof: Note that by assumption the kth attack, resulting in
z(k), is undetectable, i.e., by (3) it satisfies

Ia (Zw) _ ZUH)) -0

where F' is the verification matrix, which is independent of
the measurements. Summing all these equations for £ = 1: K
gives:

F (Z(K) - z(o)) =0

which shows that the combination is undetectable. O

The theorem implies that if a sequence of attacks on pairs of
PMU s is practically undetectable, then so is their combination.
One may think that it is difficult to predict, in the general

case, whether a sequence of attacks is practically undetectable,
since the undetectability condition (IoS(k ) ~ 1) depends on the
matrix W (*) which itself depends on the result of the previous
attack. As we show next, this is not the case, as the IoS of
a pair of PMUs does not change due to an attack against a
subset of those PMUs.

Theorem 7. Consider a pair of PMUs, with matrix W given
by (8) derived using the original measurements z. Assume
that an attack is performed that affects a subset of this pair
of PMUs, producing an apparent measurement z'. Let W'
be the matrix given by (8) computed using the apparent
measurements z'. Then IoS(W') = loS(W').

Proof: Observe that by (15) and (20), IoS(W) depends
only on the modulus of the complex measurements z,,. Since
an attack modifies only the angle of the measurements, the
modulus are unchanged, and so is ToS(W). O

The practical implication of the above results is that an
attacker can identify an arbitrary set of pairs of PMUS with
IoS ~ 1 based on the true measurement values, or a set of
pairs of PMUs with IoS* = 1. The attacker can then take an
arbitrary sequence of these PMU pairs, computes the angles
of the kth attack using (12) and with matrix W (¥) updated to
account for the effect of the preceding £ — 1 attacks in the
sequence, and this way the attacker obtains an undetectable
attack. In the example studied in Section VII we consider a
case where 10 pairs of PMUs have IoS* = 1, and we found
that, in general, every sequence of attacks gives a different set
of attack angles.

A special case of interest is if we repeatedly attack a
particular pair of PMUs (that has IoS =~ 1). The effect of doing
so is that the second attack restores the original measurement,
i.e., it undoes the first attack. To see why, let z be the
original measurement value, z(!) the apparent measurement
after the first attack and z(?) the apparent measurement after
the second attack (computed using the updated matrix W (1)),
We have 2(?) £ 2(1) by construction of the second attack.
By Theorems 6 and 7, the sequential combination is an
undetectable attack on z, which has produced an apparent
measurement z(?). Nonetheless, by Theorem 1 there is only
one non trivial undetectable attack, therefore z(2) = 2.

C. A Greedy Heuristic

In the previous subsections we have shown how to find a
potentially very large number of undetectable attacks. In this
section we propose a greedy heuristic for computing an attack
that aims at optimizing a certain attacker objective [23].

We assume that the attacker has an objective that it wants
to maximize; for example she might want to to underestimate
the apparent-power flow of a transmission line (with the
potential consequence of burning it). The attacker has access
to the admittance matrix Y, the PMU measurement type and
locations and the measurement vector z. The attacker’s goal
is to mount an undetectable delay attack that induces a forged
measurement vector 2z’ that maximizes the attacker’s objective,
say J(2').

A greedy algorithm for achieving this objective is as fol-
lows.



1) Establish a list £ of pairs of PMUs that have IoS =~ 1
given the measurement vector z. Alternatively, the list
L can be computed using IoS* = 1, in which case it is
independent of the measurement z.
2) Let 20 =z and k=0
3) k= k+ 1. Find the pair j;, € £ that maximizes J(z(*))
where z(®) is the forged measurement obtained after
applying the attack to the pair j; and to the measurement
z(kfl)
4) If k < KMAX and J(2®) — J(2(*=1) > ¢ goto 3)
else exit and output j1, ja, ...
In other words, the algorithm finds at every step, among all
the computed attacks, the one that gives the largest damage.
It then updates the measurement vector z based on the attack,
and continues until no new attack can increase the damage line.
The attack to be mounted is then given by the sequence of pairs
of PMUs j1, jo,.... By the theorems in the previous section,
this combined attack is practically undetectable. In Section
VII-C we provide numerical results for testing undetectability
of the resulting attack, and in Section VII-D we compare the
apparent-power flow mis-estimation obtained by this method
versus an undetectable attack on a single pair of PMUs.

VII. PERFORMANCE EVALUATION

In this section we illustrate how the previously presented
attack method can be applied to the IEEE 39-bus system, a
benchmark for power transmission grids [24]. We show in
particular how the computation of ToS™ can be used to easily
find attack locations. We also demonstrate that the attacks
are non detectable by bad-data detection methods based on
residuals.

The performance evaluation was entirely done in MATLAB
2015b-64 bit, on a PC with Intel® core i7-5500U, 2.40GHz
and 8 Gb of RAM. The procedure consisted in:

1) Every 20 ms, a load flow is computed in order to

determine the true state of the network;

2) The synthetic measurements forwarded to the state es-
timator are obtained by perturbing the true quantities
inferred from the previous step with randomly-generated
Gaussian noise characterized by the cumulated standard
deviation of the PMUs and their sensors. We assumed
to use class-P PMUs;

3) Computation of the attack vector according to the
method described in the paper;

4) WLS estimation;

5) WLS estimation with attacked measurements;

6) Comparison of the detectability for step 5 with respect
to step 4;

7) Comparison of estimated power flows for steps 4 and 5.
The computational cost of the attack is compatible with the
delays involved in a typical PMU-measurement flow. For
instance, with the adopted software and hardware, an attacker
needs an average of 0.4 ms with a max of 1.3 ms over a 300 s
attack window to compute the attack vector when p = 2.

A. Analysis of Residuals

In this section we describe how residuals are analyzed with
standard methods. Residuals are relative to the estimation

method used, which in practice is often WLS [7], [25].

WLS cannot be expressed easily using complex matrix
operations as we use in Section III, because the measurement
errors cannot be assumed to have circular symmetry, as we
discuss later. This is why in this section we have to introduce
a slightly different formalism than in Section III.

The error covariance matrix R is defined as

R=E (ee') (24)

where e is the measurement error vector from (1), assumed
to be Gaussian. Note that if PMU errors in polar coordinates
are relatively small, their projection in rectangular coordinates
result into a Gaussian distribution [26], [27]. R is a complex
hermitian matrix, namely R' = R. In order to work with
rectangular coordinates, we need to move from R € CMxM
to a matrix R’ € R?2M*2M [et ¢ = a + jb € CM and define

¢ = Z € R?M_ Then, using the same expression as
in (24) it follows that
R Rap
R/ —F 1 1T — aa a
(<) Rpo Ry

Note that R,q, Ry, € RM*M are diagonal matrices. Assume
now that the measurement error ¢’ can be modeled as inde-
pendent Gaussian noise, then R,;, = Ry, = 0. The hypothesis
of independent measurement errors is properly justified, based
on the following considerations:

« measurement values obtained by different devices can be
reasonably considered independent (e.g., [28]);

o we only use PMUs, i.e., no typical measurements are used
(e.g., power flows, power injections) or historical data;

« voltage and current amplitude measurements taken by the
same PMU can usually be considered uncorrelated [28];

o in [28] it is confirmed that neglecting PMU correlations
(both in amplitude and phase) in the estimator model,
does not lead to a significant decrease of the SE quality;

o based on the nomenclature and definitions given in [29],
we use only independent Gaussian-distributed measured
data and not processed dependent measurements;

e A unique sensor per measured quantity (i.e., voltage /
current) is used and the cross-talk interference is negli-
gible.

In view of the above, R’ is diagonal and can be expressed as

;r_{ Raa O
R_< 0 R

where oo, (m = 1,...,2M) is the standard deviation of
the mth measured quantity. (Note that if we would have
Ry = Rgaq, then e would have circular symmetry and we
could do least square estimation in complex numbers, but such
an assumption cannot usually be made.)

Let us rewrite the system state as ' € R?Y

) —diag(?,....0% ) (25)

' = Viges oy Ve, Viims - - s Vrim] (26)

where V,, .. and V), ;,,, are the 1-ph real and imaginary parts
of the voltage phasor at bus n (n = 1,..., N), respectively.
The corresponding measurement set becomes 2’ € R?M,



The estimated state becomes:
¥ =H"DH) 'H'" Dz =G 'H'" D

where H' € R*M*2N and D = diag(1/R').

We can compute the estimated measurements based on the
estimated state as 2’ = H'#’, which can be used for computing
the measurement residual r = 2’ — 2’. Measurement residuals
are distributed as r ~ N(0,2) [25], where Q is defined as

Q=SSR =(I-K)R =(I-HG'H"R R
=R -HG'H".

This can be used to define the normalized residual for mea-
surement m as

27)

(28)

N = 2 ~ N(0,1)
Q77*L,m

Well-known BDD methods (e.g., x2-test, largest normalized
residual test (LNR) [25], [30], [31]) take advantage of the
standard distribution of the normalized residuals to detect the
presence of BD. The y2-test exploits the property that the sum
of normally-distributed random variables is a variable with a
x? distribution and a certain number of degrees of freedom.
If the sum of the residuals does not respect this distribution
with a certain confidence level, one or more measurements in
the data set are not normal, therefore the existence of one of
more corrupted measurements is suspected.
The LNR test is another method that exploits the distribution
of the normalized residuals. The largest residual among those
that are above a certain threshold (set usually equal to 3
standard deviations) is marked as potential BD and removed
from the data set.

Recall that the undetectable attack is structured such that the
distribution of the residuals, and their values after the attack,
remain unchanged when compared with the values obtained
without the attack. Hence, all the detection methods based on
the normality of the residuals are expected to fail in identifying
the attack. This is shown numerically in section VII-C.

(29)

B. Electrical model

The IEEE 39-bus system is shown in Fig.2. We assume
Bus #31 as the connection point to the external grid with
a short-circuit power of S;. = 50 GVA. The ratio between
the real and imaginary parts of the short-circuit impedance is
Rs./Xsc = 0, as usually assumed for transmission networks.
We assume the network has 13 PMUs that measure voltage and
injected-current phasors and 8 PMUs that measure injected-
current phasors only, for a total of 21 PMUs installed. Network
observability (i.e., matrix H of full rank [32]) is the only
criterion followed when selecting measurement type (i.e.,
nodal voltage and injected-current phasors v.s. injected-current
phasors only) and PMU locations. These PMU locations, their
measurement type, together with the presence of 12 zero-
injection buses!, are sufficient conditions to guarantee the
observability of the system state. Note that other combination
of PMU locations and measurement type would affect the

'A zero-injection bus is defined as a bus where no load or generation is
connected therefore this information can be exploited as a so-called virtual
measurement.

—— Bus Zero injection bus () Transformer @ Generator
<«— Load === Transmission line PMU (V&I) [1]PMU (I)
@y,
[
25 O Eﬁz(u
c T

¢ L1

Fig. 2. Benchmark IEEE 39-bus transmission system and PMU locations.

verification matrix F' and all the quantities computed from it
such as the attack-angle matrix I and the minimum index of
separation [oS* defined in equations (7) and (17), respectively.
In summary, this would mean different attack-location as the
ones showed in this analysis.

PMU measurements are generated by adding a white Gaus-
sian noise to the amplitude and phase of the ideal phasors
obtained by running a load flow. The standard deviation of
the measurements is compatible with class 0.1 voltage and
current sensors as described in [33]-[35].

The load profiles are obtained from real measurements taken
at 50 frames-per-second by real PMUs installed in the 125-kV
sub-transmission network of Lausanne, Switzerland. For this
reason, the load profiles present time-domain behavior typical
of transmission networks. This sub-transmission network is
constituted by five 3-ph loads. In order to obtain values for
the 19 1-ph equivalent loads available in the IEEE 39-bus
system, some of the load profiles have been replicated. It is
worth mentioning that the load profiles are then adapted to
match the values provided in [24]. Moreover, as we do not
use the transformer tap changers, the power at three selected
buses (#7, #8 and #12) is adapted so that, in all the buses,
the voltage stays within the + 5% range of the rated voltage.
In order to verify the effectiveness of the attack during non-
steady-state conditions of the grid, we use a time window in
which a sudden reactive power drop takes place at Bus #4 (see
Fig. 3).

C. Results for undetectability and attacking methods

We applied Theorem 3 to all possible combinations of attack
locations, with p = 2, one measurement per delay, and taking
PMUs that measure only injected currents. Table I shows the
results for the ToS™ at each location pair, where any pair that
has an [oS* = 1, will allow an undetectable attack.

To demonstrate the undetectability of an attack at a pair
of PMUs where IoS™ = 1, we perform the X2-test for BD
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Fig. 3. Reactive power drop in Bus #4.
TABLE 1. IoS* for all the two-delays attack combinations for buses with

current measurements only in Fig. 2.

Busl  Bus2 IoS* | Busl  Bus2 ToS*
4 15 0.8437 21 24 1.0000
4 21 0.6613 21 26 0.8395
4 23 0.6613 21 35 1.0000
4 24 0.6613 21 36 1.0000
4 26 0.5282 23 24 1.0000
4 35 0.6613 23 26 0.8395
4 36 0.6613 23 35 1.0000
15 21 0.9516 23 36 1.0000
15 23 0.9516 24 26 0.8395
15 24 0.9516 24 35 1.0000
15 26 0.7669 24 36 1.0000
15 35 0.9516 26 35 0.8395
15 36 0.9516 26 36 0.8395
21 23 1.0000 35 36 1.0000

in the non-attacked and attacked scenarios with a detection
confidence of 99%, and we confirm the results by performing
the LNR test in the same scenarios. Both tests were executed
using the approach described in [25]. We attack the pair of
Buses [#21, #36] as a representative of an attack where IoS* =
1; we use the pair [#4, #26], as it has the lowest IoS*, as a
basis for comparison.

Fig. 4 shows the p-values of the y>-test. At the top of Fig. 4
we observe that the p-values of the y2-test for the pair of Buses
[#21, #36] are not modified by the attack, making the attack
undetectable. In the bottom of Fig. 4, we show result for the
pair [#4, #26], and the p-values for non-attacked and attacked
scenarios are largely different, meaning that the x2-test detects
the attack.

In Fig. 5 we show the LNR-test results for the attacks shown
in Fig. 4. For each pair of PMUs, we plot LNR = max,, |rY|,
with 72 given by (29) and m = 1 : M. The dotted line shows
the threshold corresponding to a confidence of 99.73%, which
maps to a 3o deviation for a single measurement. It can be
seen that when attacking the undetectable location pair (top),
the normalized residuals are invariant. Conversely, if we attack
the second location pair (bottom), the majority of the LNRs
are above the identification threshold making the attack easily
detectable. Note that the reactive power drop in Fig. 3 has no
effect on the LNR after the attack, when the attack location
has an IoS™ = 1. This behavior holds under any transient.

To numerically illustrate Theorem 4, in Fig. 6 we show the
LNR-test results for buses [#26, #35], which have an IoS* =
0.8395, for a case when the magnitude of the measurement
in Bus #35 is 9 times larger than that in Bus #26. The figure
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Fig. 4. Comparison of p-values for the x2-test applied to two attack

locations.

Bus #21 #36
5

................................... Threshold |-+
4
3
o
4
-
2
4
0
0 100 200 300 0 100 200 300
Bus #4 #26
10 10
8 8
6
o
P4
-
4
2
o‘ 0
0 100 200 300 0 100 200 300
time [s] time [s]
Fig. 5. LNR test applied to two different attack locations for the no-attack

and attack scenarios.

shows the LNR-test results before and after the attack, and
shows that the attack remains undetectable despite the fact
that ToS* < 1.

To illustrate Theorem 5, we show results for p = 6, for the
disjoint PMU pairs [#21, #36], [#26, #35] and [#23, #24] for
which either ToS* = 1 (first and third pairs), or Theorem 4 can
be applied (second pair). The attack is performed in parallel,
and Fig. 7 shows the results of the LNR-test, comparing
attacked and non-attacked measurements. We can observe
again that the results are statistically indistinsguishable from
the non-attacked case.

Finally, we used the greedy algorithm described in Sec-
tion VI-C with the objective of under-estimating the apparent
power flow for the line between Buses #16 and #24. The
algorithm found the maximum underestimation with p = 10,
attacking pairs [#21, #36], [#23, #24], [#24, #35], [#23,
#36], [#21, #23]. We can see the LNR-test applied to the
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Fig. 6. Undetectability of a pair of PMUs that have large measurement-
magnitude ratio, with oS < 1.
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Fig. 7. LNR-test applied to an attack on three disjoint pairs (p = 6),

following the method described in Theorem 5.

measurements before and after the attack in Fig. 8, which
shows that the sequential attack on pairs of PMUs that give
an undetectable attack, is also undetectable.

D. Results on power-flows mis-estimation

To illustrate the potential impact of time synchronization
attacks, we show results for an attack against a pair of PMUs
(i.e., [#21, #36]), which leads to over- and under-estimation of
power flows in the power system. The attack angles computed
are «; = 1.14 rad for Bus #21 and as = 0.57 rad for Bus
#36, and they increased of 0.02 rad after the reactive power
drop.

We applied the same random numbers for generating the
measurement noise to the scenarios with and without attack,
ensuring that any difference in the state-estimation results is
only due to the attack.

The attack worsens the estimated voltages, hence all the in-
ferred quantities from there are affected (e.g., injected currents,
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Fig. 8. LNR-test on a sequential attack with p = 10, using the greedy

algorithm strategy.
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Fig. 9. Comparison of the true apparent-power flow in two lines and the
estimated apparent-power flow for the no-attack and attack scenarios.
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Fig. 10. Comparison of the under-estimated power flow in a transmission
line, for different attack scenarios.

current flows, active and reactive powers, etc.), with errors
going above 500 %, as shown in the right side of Fig. 9. In this
case, the system operator believes that the power flowing in the
line between Buses #22 and #23 is much higher than it really
is, therefore the system operator could decide to shed some
loads or to reconfigure the network when this is not necessary.
On the contrary, in the left side of Fig. 9, the system operator
under-estimates the power flowing in the line between Buses
#16 and #24 thus exposing the line to power flows larger than
those it is designed for (in all the cases where the true power
flow is close to the line’s ampacity limit).

Fig. 10 compares the under-estimation of the apparent-
power flow on the line between Buses #16 and #24 obtained
by different attacks. We compare (i) the attack on a single pair
of PMUs (i.e., [#21, #36]); (ii) the attack on disjoint pairs of
PMUs described in Theorem 5 and (iii) the heuristic greedy
algorithm described in Section VI-C. Although we see that
adding extra pairs appears to increase the impact of the attack,
the assertion does not always hold (e.g., attacking twice the
same pair of PMUs cancels the attack, as mentioned before).
In general, it is the attacker that, by knowing the ToS™ criterion,
can build a strategy to best achieve its objective.

VIII. DISCUSSION
A. Countermeasures to avoid the attacks

The methodology of the attack presented here does not have
any influence on the value of the residuals, hence the BD
cannot be identified and removed from the measurement set
by applying the classic BDD algorithms. A possible defense
approach is discussed in [36], where the authors propose
strategies to maintain integrity of measurements, and describe



a bad-data detection technique based on a comparison between
measurements from PMUs and measurements from SCADA
(from other remote terminal units (RTUs)). Notwithstanding,
the differences between both types of measurements could
make ineffective the use of SCADA measurements to validate
the integrity of PMU measurements. Typical SCADA mea-
surements are available every 4 seconds and are not time syn-
chronized, while PMUs can provide 50 or 60 synchrophasors
per second.

Successful countermeasures capable to identify the GPS
spoofing need to be implemented at the device (PMU) level.
The recent literature has discussed potential countermeasures
using this approach. Additional features need to be added
in the GPS controller embedded in the PMU to detect, and
eventually mitigate, the GPS spoofing. As listed in [37],
reference [38] has discussed these techniques that can be
clustered as follows:

o detect changes of power-related parameters of the GPS
hardware (e.g., carrier-to-noise density ratio, absolute
received signal power, power variations, etc);

« observe time-related parameters of the GPS receiver like
the length of interval between phase transitions, the delay
between signals transmitted on different frequencies;

« analyse multiple signals with the same direction of arrival
using multi-antenna receivers;

o add secondary sources of time synchronization like, for
instance, precision time protocol (PTP).

Note that the attacks presented in the paper require knowledge
of the measurement vector, thus integrity or authentication
mechanisms are not sufficient for mitigation. Given the impact
of the attacks, and how simple and useful the ToS™ criterion is,
we strongly suggest that confidentiality of PMU measurements
be mandated by the standards.

B. Timing attacks under clock-drift conditions

The clock of any PMU has an internal oscillator that is
controlled by a clock-servo. A clock-servo is a filter that
prevents the clock from making abrupt changes in time and
has a stiffness that depends on the manufacturer. The described
attacks in the paper could cause a change in time which
could produce an alarm in the clock-servo, making the attack
detectable. Taking the clock-servo described in [39] as an
example, the total attack’s time-adjustment would require to
be divided in “chunks” of 5us/s to avoid an overfeeding to
the clock-servo that could trigger an alarm. Further research in
this direction could consider proposing an optimal attack with
a constraint in the derivative of the attack-angle calculation of
the form |ay; (t+ At) — a; (t)| < n4e¢ with At being the refresh
rate of PMU measurements and 17,4 the maximum incremental
step in time to avoid a clock-servo alarm.

IX. CONCLUSIONS

We show that, by manipulating the time reference of one
pair of PMUs, it is possible to perform undetectable attacks
in PMU-based linear state estimators. We introduce a criterion
to find location pairs where the attack is undetectable and
provide a closed-form expression to compute the attack angles.

We also provide an additional criterion to identify attackable
locations regardless of the measurement values. We mount
attacks with more than two delays and show that attacks on
disjoint pairs can be superimposed such that the attack is
executed in parallel. Furthermore, we show how combined
sequentially attacks are possible and can be used with a greedy
algorithm in order to damage transmission lines. We also show
that when performing a sequence of attacks, it is possible to
know whether each attack in the sequence will be undetectable
before computing the attack. Finally, we use simulations to
verify the attacks and to demonstrate their efficacy.
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